Skip to main content

Self-supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Dynamic Positron Emission Tomography imaging (dPET) provides temporally resolved images of a tracer. Voxel-wise physiologically-based pharmacokinetic modeling of the Time Activity Curves (TAC) extracted from dPET can provide relevant diagnostic information for clinical workflow. Conventional fitting strategies for TACs are slow and ignore the spatial relation between neighboring voxels. We train a spatio-temporal UNet to estimate the kinetic parameters given TAC from dPET. This work introduces a self-supervised loss formulation to enforce the similarity between the measured TAC and those generated with the learned kinetic parameters. Our method provides quantitatively comparable results at organ level to the significantly slower conventional approaches while generating pixel-wise kinetic parametric images which are consistent with expected physiology. To the best of our knowledge, this is the first self-supervised network that allows voxel-wise computation of kinetic parameters consistent with a non-linear kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.pmod.com.

References

  1. Avula, X.J.: Mathematical modeling. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science and Technology, 3rd edn., pp. 219–230. Academic Press, New York (2003)

    Google Scholar 

  2. Besson, F.L., et al.: 18F-FDG PET and DCE kinetic modeling and their correlations in primary NSCLC: first voxel-wise correlative analysis of human simultaneous [18F] FDG PET-MRI data. EJNMMI Res. 10(1), 1–13 (2020)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Cui, J., Gong, K., Guo, N., Kim, K., Liu, H., Li, Q.: Unsupervised PET logan parametric image estimation using conditional deep image prior. Med. Image Anal. 80, 102519 (2022)

    Article  Google Scholar 

  5. Dias, A.H., Hansen, A.K., Munk, O.L., Gormsen, L.C.: Normal values for 18F-FDG uptake in organs and tissues measured by dynamic whole body multiparametric FDG PET in 126 patients. EJNMMI Res. 12(1), 1–14 (2022)

    Article  Google Scholar 

  6. Dimitrakopoulou-Strauss, A., Pan, L., Sachpekidis, C.: Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 48, 21–39 (2021). https://doi.org/10.1007/s00259-020-04843-6

    Article  Google Scholar 

  7. Fahrni, G., Karakatsanis, N.A., Di Domenicantonio, G., Garibotto, V., Zaidi, H.: Does whole-body Patlak \(^{18}\)F-FDG PET imaging improve lesion detectability in clinical oncology? Eur. Radiol. 29, 4812–4821 (2019). https://doi.org/10.1007/s00330-018-5966-1

    Article  Google Scholar 

  8. Guo, X., Zhou, B., Chen, X., Liu, C., Dvornek, N.C.: MCP-Net: inter-frame motion correction with Patlak regularization for whole-body dynamic PET. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part IV. LNCS, vol. 13434, pp. 163–172. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_16

    Chapter  Google Scholar 

  9. Huang, Z., et al.: Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning. Eur. J. Nucl. Med. Mol. Imaging 49(8), 2482–2492 (2022). https://doi.org/10.1007/s00259-022-05731-x

    Article  Google Scholar 

  10. Küstner, T., et al.: CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci. Rep. 10(1), 13710 (2020)

    Article  Google Scholar 

  11. Li, A., Tang, J.: Direct parametric image reconstruction for dynamic myocardial perfusion PET using artificial neural network representation (2022)

    Google Scholar 

  12. Li, Y., et al.: A deep neural network for parametric image reconstruction on a large axial field-of-view PET. Eur. J. Nucl. Med. Mol. Imaging 50(3), 701–714 (2023). https://doi.org/10.1007/s00259-022-06003-4

    Article  Google Scholar 

  13. Moradi, H., Vegh, V., O’Brien, K., Hammond, A., Reutens, D.: FDG-PET kinetic model identifiability and selection using machine learning (2022)

    Google Scholar 

  14. Pantel, A.R., Viswanath, V., Muzi, M., Doot, R.K., Mankoff, D.A.: Principles of tracer kinetic analysis in oncology, part I: principles and overview of methodology. J. Nucl. Med. 63(3), 342–352 (2022)

    Article  Google Scholar 

  15. Pantel, A.R., Viswanath, V., Muzi, M., Doot, R.K., Mankoff, D.A.: Principles of tracer kinetic analysis in oncology, part II: examples and future directions. J. Nucl. Med. 63(4), 514–521 (2022)

    Article  Google Scholar 

  16. Sari, H., et al.: First results on kinetic modelling and parametric imaging of dynamic \(^{18}\)F-FDG datasets from a long axial FOV PET scanner in oncological patients. Eur. J. Nucl. Med. Mol. Imaging 49, 1997–2009 (2022). https://doi.org/10.1007/s00259-021-05623-6

    Article  Google Scholar 

  17. Snyman, J.A., Wilke, D.N., et al.: Practical Mathematical Optimization. Springer, New York (2005). https://doi.org/10.1007/b105200

    Book  MATH  Google Scholar 

  18. Surti, S., Pantel, A.R., Karp, J.S.: Total body PET: why, how, what for? IEEE Trans. Radiat. Plasma Med. Sci. 4(3), 283–292 (2020)

    Article  Google Scholar 

  19. Wang, G., et al.: Total-body PET multiparametric imaging of cancer using a voxelwise strategy of compartmental modeling. J. Nucl. Med. 63(8), 1274–1281 (2022)

    Article  MathSciNet  Google Scholar 

  20. Watabe, H.: Compartmental modeling in PET kinetics. In: Khalil, M.M. (ed.) Basic Science of PET Imaging, pp. 323–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-40070-9_14

    Chapter  Google Scholar 

  21. Zuo, Y., Sarkar, S., Corwin, M.T., Olson, K., Badawi, R.D., Wang, G.: Structural and practical identifiability of dual-input kinetic modeling in dynamic PET of liver inflammation. Phys. Med. Biol. 64(17), 175023 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the German Research Foundation (DFG, grant NA 620/51-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca De Benetti .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Benetti, F. et al. (2023). Self-supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics