Skip to main content

A General Stitching Solution for Whole-Brain 3D Nuclei Instance Segmentation from Microscopy Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

High-throughput 3D nuclei instance segmentation (NIS) is critical to understanding the complex structure and function of individual cells and their interactions within the larger tissue environment in the brain. Despite the significant progress in achieving accurate NIS within small image stacks using cutting-edge machine learning techniques, there has been a lack of effort to extend this approach towards whole-brain NIS from light-sheet microscopy. This critical area of research has been largely overlooked, despite its importance in the neuroscience field. To address this challenge, we propose an efficient deep stitching neural network built upon a knowledge graph model characterizing 3D contextual relationships between nuclei. Our deep stitching model is designed to be agnostic, enabling existing limited methods (optimized for image stack only) to overcome the challenges of whole-brain NIS, particularly in addressing the issue of inter- and intra-slice gaps. We have evaluated the NIS accuracy on top of three state-of-the-art deep models with \(128\times 128\times 64\) image stacks, and visualized results in both inter- and intra-slice gaps of whole brain. With resolved gap issues, our deep stitching model enables the whole-brain NIS (gigapixel-level) on entry-level GPU servers within 27 h.

Supported by NIH R01NS110791, NIH R01MH121433, NIH P50HD103573, and Foundation of Hope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alahmari, S.S., Goldgof, D., Hall, L.O., Mouton, P.R.: A review of nuclei detection and segmentation on microscopy images using deep learning with applications to unbiased stereology counting. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  2. Banerjee, A., Poddar, R.: Enhanced visualization of tissue microstructures using swept-source optical coherence tomography and edible oil as optical clearing agent. Optik 267, 169693 (2022)

    Article  Google Scholar 

  3. Bennett, H.C., Kim, Y.: Advances in studying whole mouse brain vasculature using high-resolution 3D light microscopy imaging. Neurophotonics 9(2), 021902 (2022)

    Article  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Funke, J., Andres, B., Hamprecht, F.A., Cardona, A., Cook, M.: Efficient automatic 3D-reconstruction of branching neurons from EM data. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1004–1011. IEEE (2012)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Iqbal, A., Sheikh, A., Karayannis, T.: DeNerD: high-throughput detection of neurons for brain-wide analysis with deep learning. Sci. Rep. 9(1), 13828 (2019)

    Article  Google Scholar 

  8. Lin, Z., et al.: NucMM dataset: 3D neuronal nuclei instance segmentation at sub-cubic millimeter scale. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 164–174. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_16

    Chapter  Google Scholar 

  9. Pachitariu, M., Stringer, C.: Cellpose 2.0: how to train your own model. Nat. Methods 1–8 (2022)

    Google Scholar 

  10. Pape, C., Beier, T., Li, P., Jain, V., Bock, D.D., Kreshuk, A.: Solving large multicut problems for connectomics via domain decomposition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–10 (2017)

    Google Scholar 

  11. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)

    Article  Google Scholar 

  12. Vu, Q.D., Rajpoot, K., Raza, S.E.A., Rajpoot, N.: Handcrafted histological transformer (H2T): unsupervised representation of whole slide images. Med. Image Anal. 85, 102743 (2023)

    Google Scholar 

  13. Wang, H., Ren, H., Leskovec, J.: Relational message passing for knowledge graph completion. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1697–1707 (2021)

    Google Scholar 

  14. Yang, B., et al.: DaXi-high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy. Nat. Methods 19(4), 461–469 (2022)

    Article  Google Scholar 

  15. Yang, H., et al.: Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study. BMC Med. 19, 1–14 (2021)

    Article  Google Scholar 

  16. You, S., et al.: High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9(8), eade7923 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1018 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Z., Dan, T., Ding, J., Dere, M., Wu, G. (2023). A General Stitching Solution for Whole-Brain 3D Nuclei Instance Segmentation from Microscopy Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics