Skip to main content

NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at Sub-Cubic Millimeter Scale

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Segmenting 3D cell nuclei from microscopy image volumes is critical for biological and clinical analysis, enabling the study of cellular expression patterns and cell lineages. However, current datasets for neuronal nuclei usually contain volumes smaller than 10\(^{-3}\) mm\(^3\) with fewer than 500 instances per volume, unable to reveal the complexity in large brain regions and restrict the investigation of neuronal structures. In this paper, we have pushed the task forward to the sub-cubic millimeter scale and curated the NucMM dataset with two fully annotated volumes: one 0.1 mm\(^3\) electron microscopy (EM) volume containing nearly the entire zebrafish brain with around 170,000 nuclei; and one 0.25 mm\(^3\) micro-CT (uCT) volume containing part of a mouse visual cortex with about 7,000 nuclei. With two imaging modalities and significantly increased volume size and instance numbers, we discover a great diversity of neuronal nuclei in appearance and density, introducing new challenges to the field. We also perform a statistical analysis to illustrate those challenges quantitatively. To tackle the challenges, we propose a novel hybrid-representation learning model that combines the merits of foreground mask, contour map, and signed distance transform to produce high-quality 3D masks. The benchmark comparisons on the NucMM dataset show that our proposed method significantly outperforms state-of-the-art nuclei segmentation approaches. Code and data are available at https://connectomics-bazaar.github.io/proj/nucMM/index.html.

Z. Lin and D. Wei—Equally contributed.

Krishna Swaroop K and N. Wendt—Works were done during internship at Harvard University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/zudi-lin/pytorch_connectomics.

  2. 2.

    https://github.com/stardist/stardist.

  3. 3.

    https://github.com/MouseLand/cellpose.

References

  1. Alwes, F., Enjolras, C., Averof, M.: Live imaging reveals the progenitors and cell dynamics of limb regeneration. Elife 5, e19766 (2016)

    Article  Google Scholar 

  2. Berger, D.R., Seung, H.S., Lichtman, J.W.: Vast (volume annotation and segmentation tool): efficient manual and semi-automatic labeling of large 3D image stacks. Front. Neural Circ. 12, 88 (2018)

    Article  Google Scholar 

  3. Bottou, L.: Stochastic gradient learning in neural networks. In: Proceedings of Neuro-Nımes (1991)

    Google Scholar 

  4. Caicedo, J.C., et al.: Nucleus segmentation across imaging experiments: the 2018 data science bowl. Nat. Methods 16, 1247–1253 (2019)

    Article  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NeurIPS (2012)

    Google Scholar 

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  8. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. TPAMI 31, 1362–1374 (2008)

    Article  Google Scholar 

  9. Dyer, E.L., et al.: Quantifying mesoscale neuroanatomy using x-ray microtomography. Eneuro (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  11. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: CVPR (2019)

    Google Scholar 

  12. Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J., Saalfeld, S.: Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete drosophila brain. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 317–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_36

    Chapter  Google Scholar 

  13. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605–610 (2018)

    Article  Google Scholar 

  14. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015)

    Article  Google Scholar 

  15. Krasowski, N., Beier, T., Knott, G., Köthe, U., Hamprecht, F.A., Kreshuk, A.: Neuron segmentation with high-level biological priors. TMI 37, 829–839 (2017)

    Google Scholar 

  16. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv:1706.00120 (2017)

  17. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Lou, X., Kang, M., Xenopoulos, P., Munoz-Descalzo, S., Hadjantonakis, A.K.: A rapid and efficient 2d/3d nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Rep. 2, 382–397 (2014)

    Article  Google Scholar 

  19. Meijering, E.: Cell segmentation: 50 years down the road. Signal Process. Mag. 29, 140–145 (2012)

    Article  Google Scholar 

  20. Nhu, H.T.T., Drigo, R.A.E., Berggren, P.O., Boudier, T.: A novel toolbox to investigate tissue spatial organization applied to the study of the islets of langerhans. Sci. Rep. 7, 1–12 (2017)

    Article  Google Scholar 

  21. Petkova, M.: Correlative Light and Electron Microscopy in an Intact Larval Zebrafish. Ph.D. thesis (2020)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Ruszczycki, B., et al.: Three-dimensional segmentation and reconstruction of neuronal nuclei in confocal microscopic images. Front. Neuroanatomy 13, 81 (2019)

    Article  Google Scholar 

  24. Shapson-Coe, A., et al.: A connectomic study of a petascale fragment of human cerebral cortex. bioRxiv (2021)

    Google Scholar 

  25. Stegmaier, J., et al.: Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36, 225–240 (2016)

    Article  Google Scholar 

  26. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021)

    Article  Google Scholar 

  27. Tokuoka, Y., et al.: 3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis. NPJ Syst. Biol. Appl. 6, 1–12 (2020)

    Article  Google Scholar 

  28. Toyoshima, Y., et al.: Accurate automatic detection of densely distributed cell nuclei in 3D space. PLoS Comput. Biol. 12, e1004970 (2016)

    Article  Google Scholar 

  29. Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin affinity learning of image segmentation. In: NeurIPS (2009)

    Google Scholar 

  30. Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141–1152 (2017)

    Article  Google Scholar 

  31. van der Walt, S., et al.: The scikit-image contributors: scikit-image: image processing in Python. PeerJ (2014)

    Google Scholar 

  32. Wei, D., et al.: MitoEM dataset: large-scale 3D mitochondria instance segmentation from EM images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 66–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_7

    Chapter  Google Scholar 

  33. Weigert, M., Schmidt, U., Haase, R., Sugawara, K., Myers, G.: Star-convex polyhedra for 3d object detection and segmentation in microscopy. In: WACV (2020)

    Google Scholar 

  34. Zhou, P., Feng, J., Ma, C., Xiong, C., HOI, S., et al.: Towards theoretically understanding why sgd generalizes better than adam in deep learning. arXiv preprint arXiv:2010.05627 (2020)

  35. Zlateski, A., Seung, H.S.: Image segmentation by size-dependent single linkage clustering of a watershed basin graph. arXiv:1505.00249 (2015)

Download references

Acknowledgments

This work has been partially supported by NSF award IIS-1835231 and NIH award U19NS104653. We thank Daniel Franco-Barranco for setting up the challenge using NucMM. M.D.P. would like to acknowledge the support of Howard Hughes Medical Institute International Predoctoral Student Research Fellowship. I.A-C would like to acknowledge the support of the Beca Leonardo a Investigadores y Creadores Culturales 2020 de la Fundación BBVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zudi Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z. et al. (2021). NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at Sub-Cubic Millimeter Scale. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics