Skip to main content

M-GenSeg: Domain Adaptation for Target Modality Tumor Segmentation with Annotation-Efficient Supervision

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 4462 Accesses

Abstract

Automated medical image segmentation using deep neural networks typically requires substantial supervised training. However, these models fail to generalize well across different imaging modalities. This shortcoming, amplified by the limited availability of expert annotated data, has been hampering the deployment of such methods at a larger scale across modalities. To address these issues, we propose M-GenSeg, a new semi-supervised generative training strategy for cross-modality tumor segmentation on unpaired bi-modal datasets. With the addition of known healthy images, an unsupervised objective encourages the model to disentangling tumors from the background, which parallels the segmentation task. Then, by teaching the model to convert images across modalities, we leverage available pixel-level annotations from the source modality to enable segmentation in the unannotated target modality. We evaluated the performance on a brain tumor segmentation dataset composed of four different contrast sequences from the public BraTS 2020 challenge data. We report consistent improvement in Dice scores over state-of-the-art domain-adaptive baselines on the unannotated target modality. Unlike the prior art, M-GenSeg also introduces the ability to train with a partially annotated source modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prevedello, L.M., et al.: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiol. Artif. Intell. 1(1), e180031 (2019)

    Article  Google Scholar 

  2. Dorent, R., et al.: CrossMoDA 2021 challenge: benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. Med. Image Anal. 83, 102628 (2023)

    Article  Google Scholar 

  3. Billot, B., et al.: SynthSeg: domain randomisation for segmentation of brain scans of any contrast and resolution (2021)

    Google Scholar 

  4. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 3, 1173–1185 (2022)

    Article  Google Scholar 

  5. Pei, C., Wu, F., Huang, L.: Disentangle domain features for cross-modality cardiac image segmentation. Med. Image Anal. 71, 102078 (2021)

    Article  Google Scholar 

  6. Li, C., Luo, X., Chen, W., He, Y. Wu, M., Tan, Y.: AttENT: domain-adaptive medical image segmentation via attention-aware translation and adversarial entropy minimization. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 952–959. IEEE (2021)

    Google Scholar 

  7. Huo, Y., et al.: SynSeg-Net: synthetic segmentation without target modality ground truth. IEEE Trans. Med. Imaging 38(4), 1016–1025 (2019)

    Article  Google Scholar 

  8. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.-A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation, vol. 38, pp. 865–872 (2019)

    Google Scholar 

  9. Jiang, J., et al.: Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation. Phys. Med. Biol. 65(20), 205001 (2020)

    Article  Google Scholar 

  10. Zhou, B., Liu, C., Duncan, J.S.: Anatomy-constrained contrastive learning for synthetic segmentation without ground-truth. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 47–56. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_5

    Chapter  Google Scholar 

  11. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation (2017)

    Google Scholar 

  12. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67

    Chapter  Google Scholar 

  13. Zhu, J.-Y., Park, T., Isola, P. Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–51. IEEE (2017)

    Google Scholar 

  14. Vorontsov, E., Molchanov, P., Gazda, M., Beckham, C., Kautz, J., Kadoury, S.: Towards annotation-efficient segmentation via image-to-image translation. Med. Image Anal. 82, 102624 (2022)

    Article  Google Scholar 

  15. Liu, X., Niethammer, M., Kwitt, R., Singh, N., McCormick, M., Aylward, S.: Low-rank atlas image analyses in the presence of pathologies. IEEE Trans. Med. Imaging 34(12), 2583–2591 (2015)

    Article  Google Scholar 

  16. Lin, C., Wang, Y., Wang, T., Ni, D.: Low-rank based image analyses for pathological MR image segmentation and recovery. Front. Neurosci. 13(13), 333 (2019)

    Article  Google Scholar 

  17. Changfa, S., Min, X., Xiancheng, Z., Haotian, W., Heng-Da, C.: Multi-slice low-rank tensor decomposition based multi-atlas segmentation: application to automatic pathological liver CT segmentation. Med. Image Anal. 73, 102152 (2021)

    Article  Google Scholar 

  18. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  19. Mok, T.C.W., Chung, A.C.S.: Learning data augmentation for brain tumor segmentation with coarse-to-fine generative adversarial networks. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 70–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_7

    Chapter  Google Scholar 

  20. Kim, S., Kim, B., Park, H.: Synthesis of brain tumor multicontrast MR images for improved data augmentation. Med. Phys. 48(5), 2185–2198 (2021)

    Article  Google Scholar 

  21. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA 2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  22. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (2018)

    Google Scholar 

  23. Bakas, S., Reyes, M., Jakab, A., Bauer, S.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge (2018)

    Google Scholar 

  24. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017)

    Article  Google Scholar 

  25. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  26. Yuan, W., Wei, J., Wang, J., Ma, Q., Tasdizen, T.: Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 229–237. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malo Alefsen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 78 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alefsen, M., Vorontsov, E., Kadoury, S. (2023). M-GenSeg: Domain Adaptation for Target Modality Tumor Segmentation with Annotation-Efficient Supervision. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics