Skip to main content

Effect of Urbanization on Water Resources: Challenges and Prospects

  • Chapter
  • First Online:
Groundwater in Arid and Semi-Arid Areas

Abstract

Rapid urbanization due to population migration to cities has led to various natural hazards in recent decades. Urbanization has various consequences such as flooding, reduced recharge surface due to construction, pollution of water resources, etc. In this study, we investigated the effects of urbanization on water resources globally. Here, we documented the effects of urbanization on hydrological processes. The result shows that urbanization enhances flooding, over-extraction of groundwater, increase in impervious surfaces due to construction, water pollution, and the degradation of water quality due to the accumulation of pollutants derived from industrial and agricultural activities, waste disposal, and sewage. This study mainly highlights the importance of sustainable water management to protect and conserve water resources in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AA (2021) The intensity of the flood disaster in Bozkurt was revealed in the morning twilight-Kastamonu News. Sabah Gazetesi, Anadolu Agency (AA). https://www.sabah.com.tr/kastamonu/2021/08/12/bozkurttaki-sel-felaketinin-boyutu-gun-agarinca-ortaya-cikti (in Turkish). Accessed 22 November 2022

  2. AH (2021) Izmir under flood waters: more severe than the 1995 disaster. a3haber.com (AH). https://www.a3haber.com/2021/02/02/izmir-sel-sulari-altinda-1995-felaketinden-daha-agir/, A News (AH) (in Turkish). Accessed 22 November 2022

  3. Akpan AE, Ilori AO, Essien NU (2015) Geophysical investigation of Obot Ekpo landslide site, cross river state, Nigeria. J Afr Earth Sci 109:154–167. https://doi.org/10.1016/j.jafrearsci.2015.05.015

  4. Al-Kouri O, Al-Fugara A, Al-Rawashdeh S, Sadoun B, Pradhan B (2013) Geospatial modeling for sinkholes hazard map based on GIS and RS data. J Geogr Inf Syst 5(6):584–592. https://doi.org/10.4236/jgis.2013.56055

    Article  Google Scholar 

  5. Alaghmand S, Abdullah RB, Abustan I, Vosoogh B (2010) GIS-based river flood hazard mapping in urban area (a case study in Kayu Ara River Basin, Malaysia). Int J Eng Technol 2:488–500. ISSN: 0975-4024

    Google Scholar 

  6. Anderson DG (1970) Effects of urban development on floods in northern Virginia. Water Supply Paper. https://doi.org/10.3133/WSP01C

    Article  Google Scholar 

  7. Angelakis AN, Antoniou G, Voudouris K, Kazakis N, Dalezios N, Dercas N (2020) History of floods in Greece: causes and measures for protection. Nat Hazards 101:833–852. https://doi.org/10.1007/s11069-020-03898-w

    Article  Google Scholar 

  8. Angelidis P, Maris F, Kopasakis K, Vasileiou A, Kotsovinos N (2018) Overflow discharges and flooding areas from flood hydrographs routing in Arda River, Greece. Hydrology 5(3):31. https://doi.org/10.3390/hydrology5030031

    Article  Google Scholar 

  9. Arnold CL, Gibbons CJ (1996) Impervious surface coverage: the emergence of a key environmental indicator. J Am Plann Assoc 62(2):243–258. https://doi.org/10.1080/01944369608975688

    Article  Google Scholar 

  10. Ashley W, Bentley M, Stallins J (2012) Urban-induced thunderstorm modification in the Southeast United States. Clim Change 113(2):481–498. https://doi.org/10.1007/s10584-011-0324-1

    Article  Google Scholar 

  11. Avashia V, Garg A (2020) Implications of land use transitions and climate change on local flooding in urban areas: an assessment of 42 Indian cities. Land Use Policy 95:104571. https://doi.org/10.1016/j.landusepol.2020.104571

    Article  Google Scholar 

  12. Bao C, Fang CL (2011) Water resources flows related to urbanization in China: challenges and perspectives for water management and urban development. Water Resour Manag 26(2):531–552. https://doi.org/10.1007/s11269-011-9930-y

    Article  Google Scholar 

  13. Barron OV, Donn MJ, Barr AD (2013) Urbanisation and shallow groundwater: predicting changes in catchment hydrological responses. Water Resour Manag 27(1):95–115. https://doi.org/10.1007/s11269-012-0168-0

    Article  Google Scholar 

  14. Bentley ML, Ashley WS, Stallins AJ (2010) Climatological radar delineation of urban convection for Atlanta, Georgia. Int J Climatol 30(11):1589–1594. https://doi.org/10.1002/joc.2020

    Article  Google Scholar 

  15. Blocken B, Derome D, Carmeliet J (2013) Rainwater runoff from building facades: a review. Build Environ 60:339–361. https://doi.org/10.1016/j.buildenv.2012.10.008

    Article  Google Scholar 

  16. Booth D (1991) Urbanization and the natural drainage system – impacts, solutions, and prognoses. Northwest Environ J 7:93–118. ISSN: 07497962

    Google Scholar 

  17. Bornstein RD, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34:507–516. https://doi.org/10.1016/S1352-2310(99)00374-X

    Article  Google Scholar 

  18. Bourdin DR, Fleming SW, Stull RB (2012) Streamflow modelling: a primer on applications, approaches and challenges. Atmos Ocean 50(4):507–536. https://doi.org/10.1080/07055900.2012.734276

    Article  Google Scholar 

  19. Broadhead A, Horn R, Lerner DN (2013) Captured streams and springs in combined sewers: a review of the evidence, consequences and opportunities. Water Res 47(13):4752–4766. https://doi.org/10.1016/j.watres.2013.05.020

    Article  Google Scholar 

  20. Campo M, Esteller M, Expósito JL, Hirata R (2014) Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ Monit Assess 186:2979–2999. https://doi.org/10.1007/s10661-013-3595-3

    Article  Google Scholar 

  21. Chatterji PC, Singh S, Qureshi ZH (1978) Hydrogeomorphology of the central Luni basin, Western Rajasthan, (India). Geoforum 9:211–224. https://doi.org/10.1016/0016-7185(78)90011-8

    Article  Google Scholar 

  22. Cohen S, Brakenridge GR, Kettner A, Bates B, Nelson JM et al (2018) Estimating floodwater depths from flood inundation maps and topography. J Am Water Resour Assoc 54(4):847–858. https://doi.org/10.1111/1752-1688.12609

    Article  Google Scholar 

  23. Cook A, Merwade V (2009) Effect of topographic data, geometric configuration, and modelling approach on flood inundation mapping. J Hydrol 377(1):131–142. https://doi.org/10.1016/j.jhydrol.2009.08.015

  24. Coskun HG, Alganci U, Usta G (2008) Analysis of land use change and urbanization in the Kücükçekmece water basin (İstanbul, Türkiye) with temporal satellite data using remote sensing and GIS. Sensors 8(11):7213–7223. https://doi.org/10.3390/s8117213

    Article  Google Scholar 

  25. DHA (2018) Flood disaster in Ankara: 6 injured. NTV Haber, Demirören News Agency (DHA). https://www.ntv.com.tr/galeri/turkiye/ankarada-sel-felaketi-6-yarali,FUacrbMh4E2Hfxu_btslFA/8l3YOnkpXEuFVWnvGSm4zw (in Turkish). Accessed 22 November 2022

  26. Erickson TO, Stefan HG (2009) Natural groundwater recharge response to urbanization: Vermillion River watershed, Minnesota. J Water Resour Plan Manag 135:512–520. https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(512)

    Article  Google Scholar 

  27. Ertürk E, Kaya N (2019) Taşkın tehlike alanlarının oluşturulması: Trabzon ili Vakfıkebir ilçesi Kirazlı Deresi örneği. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31(2):337–344. https://doi.org/10.35234/fumbd.613291 (inTurkish)

  28. Eshtawi T, Evers M, Tischbein B (2016) Quantifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrol Sci J 61(5):826–843. https://doi.org/10.1080/02626667.2014.1000916

    Article  Google Scholar 

  29. Fletcher TD, Andrieu H, Hamel P (2013) Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Adv Water Resour 51:261–279. https://doi.org/10.1016/j.advwatres.2012.09.001

  30. Foster SSD (1988) Impacts of urbanisation on groundwater. CEPIS, pp D1–D24

    Google Scholar 

  31. Foster SSD (2001) The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water 3(3):185–192. https://doi.org/10.1016/S1462-0758(01)00043-7

  32. Garcia-Fresca B (2007) Urban-enhanced groundwater recharge: review and case study of Austin, Texas, USA. In: Urban groundwater, meeting the challenge. CRC Press, pp 19–34. eBook ISBN: 9780429224386

    Google Scholar 

  33. Gash JHC, Rosier PTW, Ragab R (2008) A note on estimating urban roof runoff with a forest evaporation model. Hydrol Process 22(8):1230–1233. https://doi.org/10.1002/hyp.6683

  34. Gaughan AE, Waylen PR (2012) Spatial and temporal precipitation variability in the Okavango–Kwando–Zambezi catchment, southern Africa. J Arid Environ 82:19–30. https://doi.org/10.1016/j.jaridenv.2012.02.007

  35. Ghalib H, El-Khorazaty MT, Serag Y (2021) New capital cities as tools of development and nation-building: review of Astana and Egypt’s new administrative capital city. Ain Shams Eng J 12(3):3405–3409. https://doi.org/10.1016/j.asej.2020.11.014

    Article  Google Scholar 

  36. Ghimire E, Sharma S, Lamichhane N (2022) Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system. ISH J Hydraul Eng 28(1):110–126. https://doi.org/10.1080/09715010.2020.1824621

    Article  Google Scholar 

  37. Graniel CE, Morris LB, Carrillo-Rivera JJ (1999) Effects of urbanization on groundwater resources of Merida, Yucatan, Mexico. Environ Geol 37(4):303–312. https://doi.org/10.1007/s002540050388

    Article  Google Scholar 

  38. Gregory JH, Dukes M, Jones P, Miller G (2006) Effect of urban soil compaction on infiltration rate. J Soil Water Conserv 61(3):117–124. Online ISSN: 1941-3300

    Google Scholar 

  39. Grischek T, Nestler W, Piechniczek D, Fischer T (1996) Urban groundwater in Dresden, Germany. Hydrogeol J 4(1):48–63. https://doi.org/10.1007/s100400050088

    Article  Google Scholar 

  40. Groffman PM, BainDJ, Band LE, Belt KT, Brush GS et al (2003) Down by the riverside: urban riparian ecology. Front Ecol Environ 1(6):315–321. https://doi.org/10.1890/1540-9295(2003)001[0315:DBTRUR]2.0.CO;2

  41. Hardison EC, O’Driscoll MA, DeLoatch JP, Howard RJ, Brinson MM (2009) Urban land use, channel ıncision, and water table decline along coastal plain streams, North Carolina1. JAWRA J Am Water Resour Assoc 45(4):1032–1046. https://doi.org/10.1111/j.1752-1688.2009.00345.x

  42. Hession WC, Pizzuto JE, Johnson TE, Horwitz RJ (2003) Influence of bank vegetation on channel morphology in rural and urban watersheds. Geology 31(2):147–150. https://doi.org/10.1130/0091-7613(2003)031%3c0147:IOBVOC%3e2.0.CO;2

    Article  Google Scholar 

  43. Heywood H (1997) Accounting for infiltration: a more explicit approach. In: Paper presented at CIWEM metropolitan branch meeting. Chartered Institution of Water Environmental Management, London, UK

    Google Scholar 

  44. Hu S, Fan Y, Zhang T (2020) Assessing the effect of land use change on surface runoff in a rapidly urbanized city: a case study of the central area of Beijing. Land 9(1):17. https://doi.org/10.3390/land9010017

    Article  Google Scholar 

  45. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Reisinger A (eds)]. IPCC, Geneva, Switzerland, p 104

    Google Scholar 

  46. Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, Switzerland, p 151

    Google Scholar 

  47. Jacobson CR (2011) Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review. J Environ Manag 92(6):1438–1448. https://doi.org/10.1016/j.jenvman.2011.01.018

  48. Jasechko S (2019) Global isotope hydrogeology-review. Rev Geophys 57:835–965. https://doi.org/10.1029/2018RG000627

    Article  Google Scholar 

  49. Jeppesen J, Christensen S, Ladekarl UL (2011) Modelling the historical water cycle of the Copenhagen area 1850–2003. J Hydrol 404(3):117–129. https://doi.org/10.1016/j.jhydrol.2010.12.022

  50. Kauffeldt A, Wetterhall F, Pappenberger F, Salamon P, Thielen J (2016) Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environ Model Softw 75:68–76. https://doi.org/10.1016/j.envsoft.2015.09.009

  51. Kidmose J, Troldborg L, Refsgaard JC, Bischoff N (2015) Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration. J Hydrol 525:506–520. https://doi.org/10.1016/j.jhydrol.2015.04.007

    Article  Google Scholar 

  52. Kim YY, Lee KK, Sung I (2001) Urbanization and the groundwater budget, metropolitan Seoul area, Korea. Hydrogeol J 9(4):401–412. https://doi.org/10.1007/s100400100139

    Article  Google Scholar 

  53. Konrad CP (2003) Effects of urban development on floods. US Department of the Interior, US Geological Survey Tacoma, WA, USA

    Google Scholar 

  54. Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Jiménez B et al (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53(1):3–10. https://doi.org/10.1623/hysj.53.1.3

    Article  Google Scholar 

  55. Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10(1):143–152. https://doi.org/10.1007/s10040-001-0177-1

    Article  Google Scholar 

  56. Lerner DN (1986) Leaking pipes recharge groundwater. Groundwater 24(5):654–662. https://doi.org/10.1111/j.1745-6584.1986.tb03714.x

  57. Lerner DN (1990) Groundwater recharge in urban areas. Atmos Environ Part B: Urban Atmos 24(1):29–33. https://doi.org/10.1016/0957-1272(90)90006-G

  58. Li E, Endter-Wada J, Li S (2015) Characterizing and contextualizing the water challenges of megacities. JAWRA J Am Water Resour Assoc 51(3):589–613. https://doi.org/10.1111/1752-1688.12310

  59. Ma H, Chou NT, Wang L (2016) Dynamic coupling analysis of urbanization and water resource utilization systems in China. Sustainability 8(11):1–18. https://EconPapers.repec.org/RePEc:gam:jsusta:v:8:y:2016:i:11:p:1176-:d:82879

  60. Mbata RI, Anthony ED (2021) Sustainable mixed-use development: a case study of life hub; daning neighborhood, Zhabei district, Shanghai, China. Glob Sci J 9(2):991–1002

    Google Scholar 

  61. McDonald RI, Green P, Balk D, Fekete BM, Revenga C et al (2011) Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci 108(15):6312–6317

    Article  Google Scholar 

  62. McDonald RI, Weber K, Padowski J, Flörke M, Schneider C et al (2014) Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob Environ Change 27:96–105. https://doi.org/10.1016/j.gloenvcha.2014.04.022

  63. McGrane SJ (2016) Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrol Sci J 61(13):2295–2311. https://doi.org/10.1080/02626667.2015.1128084

    Article  Google Scholar 

  64. Meyer JL, Paul MJ, Taulbee WK (2005) Stream ecosystem function in urbanizing landscapes. J N Am Benthol Soc 24(3):602–612. https://doi.org/10.1899/04-021.1

    Article  Google Scholar 

  65. Miller JD, Kim H, Kjeldsen TR, Packman J, Grebby S et al (2014) Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J Hydrol 515:59–70. https://doi.org/10.1016/j.jhydrol.2014.04.011

  66. Minnig M, Moeck C, RadnyD, Schirmer M (2018) Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland. J Hydrol 563:1135–1146. https://doi.org/10.1016/j.jhydrol.2017.09.058

  67. Moeck C, Radny D, Popp A, Brennwald M, Stoll S et al (2017) Characterization of a managed aquifer recharge system using multiple tracers. Sci Total Environ 609:701–714. https://doi.org/10.1016/j.scitotenv.2017.07.211

  68. Montazeri H, Blocken B (2013) CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Build Environ 60:137–149. https://doi.org/10.1016/j.buildenv.2012.11.012

  69. Moreira AA, Ruhoff AL, Roberti DR, Souza VA, Rocha HR et al (2019) Assessment of terrestrial water balance using remote sensing data in South America. J Hydrol 575:131–147. https://doi.org/10.1016/j.jhydrol.2019.05.021

  70. Morris B, Rueedi J, Cronin AA, Diaper C, DeSilva D (2007) Using linked process models to improve urban groundwater management: an example from Doncaster England. Water Environ J 21(4):229–240. https://doi.org/10.1111/j.1747-6593.2006.00067.x

  71. NADMA (2022) Malaysia–Deadly flash floods in Kedah. Agensi Pengurusan Bencana Negara in Malaysia, National Disaster Management Agency (NADMA) Floodlist.com. https://floodlist.com/asia/malaysia-floods-kedah-july-2022. Accessed 22 November 2022

  72. Nie W, Yuan Y, Kepner W, Nash MS, Jackson M et al (2011) Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. J Hydrol 407(1–4):105–114. https://doi.org/10.1016/j.jhydrol.2011.07.012

    Article  Google Scholar 

  73. Niemczynowicz J (1999) Urban hydrology and water management present and future challenges. Urban Water 1:1–14. https://doi.org/10.1016/S1462-0758(99)00009-6

    Article  Google Scholar 

  74. Onodera S, Saito M, Sawano M, Hosono T, Taniguchi M et al (2008) Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta. Sci Total Environ 404(2):401–410. https://doi.org/10.1016/j.scitotenv.2008.08.003

  75. Oudin L, Salavati B, Furusho-Percot C, Ribstein P, Saadi M (2018) Hydrological impacts of urbanization at the catchment scale. J Hydrol 559:774–786. https://doi.org/10.1016/j.jhydrol.2018.02.064

  76. Özalp D (2009) Dere taşkın risk haritalarının CBS kullanılarak oluşturulması ve CBS ile taşkın risk analizi. Doctoral dissertation, Fen Bilimleri Enstitüsü

    Google Scholar 

  77. Oğuz K, Oguz E, Coşkun M (2016) Coğrafi bilgi sistemleri ile taşkın risk alanlarının belirlenmesi: Artvin ili örneği. In: Conference paper. Conference: 4. Ulusal Taşkın Sempozyumu at: Rize (in Turkish)

    Google Scholar 

  78. O’Driscoll M, Clinton S, Jefferson A, Manda A, McMillan S (2010) Urbanization effects on watershed hydrology and ın-stream processes in the southern United States. Water 2(3):605–648. https://doi.org/10.3390/w2030605

    Article  Google Scholar 

  79. Patra S, Sahoo S, Mishra, P, Mahapatra SC (2018) Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J Urban Manag 7(2):70–84. https://doi.org/10.1016/j.jum.2018.04.006

  80. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32(1):333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040

    Article  Google Scholar 

  81. Paulachok GN (1991) Geohydrology and ground-water resources of Philadelphia, Pennsylvania, U.S. Geological Survey Water

    Google Scholar 

  82. Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global exposure and vulnerability towards natural hazards: the disaster risk index. Nat Hazard 9(4):1149–1159. https://doi.org/10.5194/nhess-9-1149-2009

    Article  Google Scholar 

  83. Price K (2011) Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. Prog Phys Geogr 35:465–492. https://doi.org/10.1177/0309133311402714

    Article  Google Scholar 

  84. Ragab R, Rosier P, Dixon A, Bromley J, Cooper J (2003) Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation. Hydrol Process 17:2423–2437. https://doi.org/10.1002/hyp.1251

    Article  Google Scholar 

  85. Reuters (2021) Flood disaster in Europe: Many deaths in Germany and Belgium, evacuation works started in some cities. BBC News Turkish. https://www.bbc.com/turkce/haberler-dunya-57849860 (in Turkish). Accessed 15 July 2021

  86. Reuters (2022) Sydney faces more rain as the death toll from Australian floods rises. Edition.cnn.com. https://edition.cnn.com/2022/03/06/asia/sydney-australia-flood-intl-hnk/index.html. Accessed 22 November 2022

  87. Ritchie H, Roser M (2018) Urbanization Published online at OurWorldInData.org. https://ourworldindata.org/urbanization

  88. Rose S, Peters NE (2001) Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach. Hydrol Process 15(8):1441–1457. https://doi.org/10.1002/hyp.218

  89. Ruban V, Rodriguez F, Rosant JM, Larrarte F, Joannis C et al (2007) Hydrologic and energetic experimental survey of a small urban watershed. In: Novatech 2007–6ème Conférence sur les techniques et stratégies durables pour la gestion des eaux urbaines par temps de pluie/Sixth international conference on sustainable techniques and strategies in urban water management. GRAIE, Lyon, France. https://hal.archives-ouvertes.fr/hal-03238905

  90. Saksena S, Merwade V (2015) Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. J Hydrol 530:180–194. https://doi.org/10.1016/j.jhydrol.2015.09.069

    Article  Google Scholar 

  91. Saksena S, Merwade V (2017) Integrated modeling of surface-subsurface processes to understand river-floodplain hydrodynamics in the upper Wabash River basin. World Environ Water Resour Congr 2017:60–68. https://doi.org/10.1061/9780784480595.006

    Article  Google Scholar 

  92. Salata S, Velibeyoğlu K, Baba A, Saygin N, Couch VT, Uzelli T (2022) Adapting cities to pluvial flooding: the case of Izmir (Turkey). Sustainability 14(24):16418. https://doi.org/10.3390/su142416418

  93. Sarkar A, Ali S, Kumar S, Shekhar S, Rao SVN (2016) Groundwater environment in Delhi, India. In: Shrestha S, Pandey V, Thatikonda S, Shivakoti B (eds) Groundwater environment in Asian cities. Elsevier, pp 77–108. ISBN: 978-0-12-803166-7. https://doi.org/10.1016/B978-0-12-803166-7.00005-2

  94. Schumann G, Matgen P, Hoffmann L, Hostache R, Pappenberger F et al (2007) Deriving distributed roughness values from satellite radar data for flood inundation modelling. J Hydrol 344(1):96–111. https://doi.org/10.1016/j.jhydrol.2007.06.024

  95. Sharma S (2017) Effects of urbanization on water resources-facts and figures. Int J Sci Eng Res 8(4):433–459. ISSN 2229-5518

    Google Scholar 

  96. Sharp JM (2010) The impacts of urbanization on groundwater systems and recharge. AQUA Mundi 1(3):51–56. https://doi.org/10.4409/Am-004-10-0008

    Article  Google Scholar 

  97. Shaw E (2005) Hydrology in practice. CRC Press

    Google Scholar 

  98. Shem W, Shepherd M (2009) On the impact of urbanization on summertime thunderstorms in Atlanta: two numerical model case studies. Atmos Res 92:172–189. https://doi.org/10.1016/j.atmosres.2008.09.013

    Article  Google Scholar 

  99. Shen Y, Tang C, Xiao J, Oki T, Shinjiro K (2005) Sustainable water management solutions for large cities. In: Proceedings of symposium S2 held during the seventh IAHS scientific assembly at Foz do Iguaçu, Brazil, vol 293. IAHS Publication

    Google Scholar 

  100. Shepherd JM (2005) A review of current ınvestigations of urban-ınduced rainfall and recommendations for the future. Earth Interact 9(12):1–27. https://doi.org/10.1175/EI156.1

    Article  Google Scholar 

  101. Sperotto A, Torresan S, Gallina V, Coppola E, Critto A et al (2016) A multi-disciplinary approach to evaluate pluvial floods risk under changing climate: the case study of the municipality of Venice (Italy). Sci Total Environ 562:1031–1043. https://doi.org/10.1016/j.scitotenv.2016.03.150

  102. Statista (2022) Degree of urbanization 2022, by continent. In: Statista. https://www.statista.com/statistics/270860/urbanization-by-continent/. Accessed 22 November 2022

  103. Statista (2022) Degree of urbanization 2022, by continent. In: Statista. https://www.statista.com/statistics/1226106/urbanization-rate-in-africa/. Accessed 20 December 2022

  104. Statista (2022) Degree of urbanization 2022, by continent. In: Statista. https://www.statista.com/statistics/270162/urbanization-in-china/. Accessed 20 December 2022

  105. Sun G, Caldwell P (2015) Impacts of urbanization on stream water quantity and quality in the United States. Water Resour Impact 17(1):17–20. https://www.fs.usda.gov/treesearch/pubs/47460

  106. Syvitski J, Brakenridge R (2013) Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today 23:4–10. https://doi.org/10.1130/GSATG165A.1

    Article  Google Scholar 

  107. Theobald DM (2001) Land-use dynamics beyond the American urban fringe. Geogr Rev 91(3):544–564. https://doi.org/10.1111/j.1931-0846.2001.tb00240.x

    Article  Google Scholar 

  108. Turkish Statistical Institute (2021) Results of the address-based population registration system, 2020. Ministry of interior, directorate general of population and citizenship affairs. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2020-37210 (in Turkish). Accessed 4 February 2021

  109. Ullah KA, Jiang J, Wang P (2018) Land use impacts on surface water quality by statistical approaches. Glob J Environ Sci Manag 4(2):231–250. https://doi.org/10.22034/gjesm.2018.04.02.010

  110. Vasudevan C, Mahamad S, Palanisamy R, Boopathy V (2017) Impact of urbanization on water bodies using remote sensing techniques-a case study of the shrinking Ambattur Lake, Chennai, Tamilnadu, India, pp 29–35. http://orcid.org/0000-0002-8908-5754

  111. Verbeiren B, van de Voorde T, Canters F, Binard M, Yves C et al (2013) Assessing urbanization effects on rainfall-runoff using a remote sensing supported modeling strategy. Int J Appl Earth Obs Geoinf 21:92–102. https://doi.org/10.1016/j.jag.2012.08.011

    Article  Google Scholar 

  112. Vázquez-Suñé E, Carrera J, Tubau I, Sánchez-Vila X, Soler A (2010) An approach to identify urban groundwater recharge. Hydrol Earth Syst Sci 14(10):2085–2097. https://doi.org/10.5194/hess-14-2085-2010

    Article  Google Scholar 

  113. WB (2022) World Bank based on World Population Prospects—UN Population Division (2018), World Development Indicators, World Bank (WB). https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators

  114. Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM et al (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24(3):706–723. https://doi.org/10.1899/04-028.1

    Article  Google Scholar 

  115. Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64(3):273–284. https://doi.org/10.1006/jema.2001.0509

  116. Worldometers (2023) The world population. https://www.worldometers.info/world-population

  117. Yang Y, Lerner DN, Barrett MH, Tellam JH (1999) Quantification of groundwater recharge in the city of Nottingham, UK. Environ Geol 38(3):183–198. https://doi.org/10.1007/s002540050414

    Article  Google Scholar 

  118. Yılmaz M (2010) Karapınar Çevresinde Yeraltı Suyu Seviye Değisimlerinin Yaratmış Olduğu Çevre Sorunları (Environmental Problems Caused by Groundwater Level Changes Around Karapınar). Ankara Üniversitesi Çevrebilimleri Dergisi (Ankara University J Environ Sci) 2(2):145–163. https://doi.org/10.1501/Csaum_0000000033

  119. Zaryab A, Nassery HR, Alijani F (2022) The effects of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan. Hydrogeol J 30(2):429–443. https://doi.org/10.1007/s10040-021-02445-6

    Article  Google Scholar 

  120. Zhou D, Zhao S, Zhang L, Sun G, Liu Y (2015) The footprint of urban heat island effect in China. Sci Rep 5(1):11160. https://doi.org/10.1038/srep11160

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the editors for their support and for reviewing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Bilgiç .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bilgiç, E., Baba, A. (2023). Effect of Urbanization on Water Resources: Challenges and Prospects. In: Ali, S., Armanuos, A.M. (eds) Groundwater in Arid and Semi-Arid Areas. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-43348-1_4

Download citation

Publish with us

Policies and ethics