Skip to main content

Potential Impacts of Climate Change on the Sustainability of Crop Production in the West Bengal, India

  • Chapter
  • First Online:
Climate Change Impacts in India

Abstract

Since the earth’s creation, there has been a constant shift in the climate. Over the past ten years, there has been a lot of political and scientific interest in climate change. Even though the earth’s climate has always had distinct hot and cold cycles, these changes have been seen to happen relatively swiftly over the past 150–200 years everywhere on Earth. In order to address the worldwide concern about food and fibre for the growing people from inadequate soil resources, soil seems to be more significant for current human cultures than ever before. Climate change is putting the world’s food security in jeopardy. Countries like India are more defenceless as a result of the harsh tropical environment and the poor adaptation of small and marginal farmers. Agriculture is most likely to be significantly impacted by the direct and indirect effects of climate change on crops, soil flora and fauna, animals, and pests. Despite being a slow-moving process with relatively small changes in temperature and precipitation over a long period of time, climate change has an impact on a number of soil processes, including soil fertility, soil structure, and stability, nutrient availability, top soil water holding capacity, and erosion. Changes in soil moisture conditions, an increase in soil temperature, and a rise in CO2 levels are all anticipated climate change effect on soils. Depending on the processes and characteristics of the soil that are crucial for recovering soil fertility and production, the consequences of global climate change are expected to differ. Heat waves and rising CO2 levels are the primary indicators of climate change. In conclusion, increased output frequently causes the soil to accumulate more carbon, which raises the level of organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi H, Jamil M, Haq A, Ali S, Ahmad R, MaliK Z (2016) Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agricul 103:229–238. https://doi.org/10.13080/z-a.2016.103.030

    Article  Google Scholar 

  2. Abro SA, Mahar AR, Talpur KH (2007) Effective use of brackish water on saline-sodic soils for rice and wheat production. Pak J Bot 39:2601–2606

    Google Scholar 

  3. Aggarwal PK, Jarvis A, Campbell BM, Zougmoré RB, Khatri-Chhetri, Vermeulen SJ, Loboguerrero A, Sebastian LS, Kinyangi J, Bonilla-Findji O, Radeny M, Recha J, Martinez-Baron D, Ramirez-Villegas J, Huyer S, Thornton P, Wollenberg E, Hansen J, Alvarez-Toro P, Aguilar-Ariza A, Arango-Londoño D, Patiño-Bravo V, Rivera O, Ouedraogo M, Tan Yen B (2018) The climate-smart village approach: framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol Soc 23(1):14

    Google Scholar 

  4. An Y, Wan S, Zhou X, Subedar AA, Wallace LA, Luo Y (2005) Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Glob Change Biol 11:1733–1744

    Article  Google Scholar 

  5. Anawar HM (2013) Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas. Phys Chem Earth Parts A/B/C 58:13–21

    Article  Google Scholar 

  6. Anawar HM (2015) Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J Environ Manag 158:111–121

    Article  CAS  Google Scholar 

  7. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  Google Scholar 

  8. Ashraf MY, Akhtar K, Sarwar G, Ashraf M (2002) Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance. J Arid Environ 52:473–482. https://doi.org/10.1006/jare.2002.1017

    Article  Google Scholar 

  9. Ayanlade A, Radeny M, Morton JF, Muchaba T (2018) Rainfall variability and drought characteristics in two agro-climatic zones: an assessment of climate change challenges in Africa. Sci Total Environ 630:728–737. https://doi.org/10.1016/j.scitotenv.2018.02.196

    Article  CAS  Google Scholar 

  10. Bannari A, Al-Ali ZM (2020) Assessing climate change impact on soil salinity dynamics between 1987–2017 in arid landscape using Landsat TM, ETM+ and OLI data. Remote Sens 12:2794. https://doi.org/10.3390/rs12172794

    Article  Google Scholar 

  11. Berkeley Earth (2019) http://www.berkeleyearth.org.data. Accessed on 17 July 2022

  12. Bharti C, Ahmed B, Maurya A (2021) A review on conservation agriculture (CA) and sustainable food production. J Ext Syst 37(1):22–27

    Google Scholar 

  13. Bhuiyan M, Dutta D (2012) Assessing impacts of sea level rise on river salinity in the Gorai river network, Bangladesh. Estuarine Coast Shelf Sci 96:219–227. https://doi.org/10.1016/j.ecss.2011.11.005

    Article  CAS  Google Scholar 

  14. Birthal PS, Negi DS, Kumar S, Agarwal S, Suresh A, Khan MT (2014) How sensitive is Indian agriculture to climate change? India J Agric Econ 69(4):474–487

    Google Scholar 

  15. Bormann H (2012) Assessing the soil texture-specific sensitivity of simulated soil moisture to projected climate change by SVAT modelling. Geoderma 185–186:73–83

    Article  Google Scholar 

  16. Boxall ABA, Hardy A, Beulke S, Boucard T, Burgin L, Falloon PD, Haygarth PM, Hutchinson T, Kovats RS, Leonardi G et al (2009) Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ Health Perspect 117:508–514

    Article  CAS  Google Scholar 

  17. Brady NC, Weil RR (2008) The nature and properties of soils, 14th ed. Pearson Prentice Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  18. Brammer H (2016) Floods, cyclones, drought and climate change in Bangladesh: a reality check. Int J Environ Stud 73(6):865–886

    Article  CAS  Google Scholar 

  19. Brevik EC (2013) An introduction to soil science basics. In: Brevik EC, Burgess LC (eds) Soils and human health. CRC Press, Boca Raton, FL, USA, pp 3–28

    Google Scholar 

  20. Brevik EC (2009) Soil health and productivity. In: Verheye W (ed) Soils, plant growth and crop production. Encyclopedia of life support systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers: Oxford, UK. http://www.eolss.net. Accessed on 10 May 2013

  21. Brown RD, Braaten RO (1998) Spatial and temporal variability of Canadian monthly snow depths, carbon balance of Arctic tundra ecosystems. Bioscience 55:408–415

    Google Scholar 

  22. Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Biol Sci 104(12):4990–4995

    CAS  Google Scholar 

  23. Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6. https://doi.org/10.1590/1678-4685-GMB-2015-0109

    Article  CAS  Google Scholar 

  24. Chakrabarty M (2016) Climate change and food security in India. Observer Research Foundation (ORF), New Delhi, India

    Google Scholar 

  25. Chakrapani V, Patra SK, Panda RP, Rasal KD, Jayasankar P, Barman HK (2016) Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev Comp Immunol 61:242–247. Change Biol 17:1394–1407

    Google Scholar 

  26. Chapagain PS, Ghimire M, Shrestha S (2019) Status of natural springs in the Melamchi region of the Nepal Himalayas in the context of climate change. Environ Dev Sustain 21(1):263–280

    Article  Google Scholar 

  27. Chatterjee R, Acharya SK, Biswas A, Mandal A, Biswas T, Das S, Mandal B (2021) Conservation agriculture in new alluvial agro-ecology: differential perception and adoption. J Rural Stud 88:14–27

    Article  Google Scholar 

  28. Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34. https://doi.org/10.1007/s13562-012-0107-4

    Article  CAS  Google Scholar 

  29. Chen J, Zhou HC, Pan Y, Shyla FS, Tam NF-Y (2016) Effects of polybrominated diphenyl ethers and plant species on nitrification, denitrification and anammox in mangrove soils. Sci Total Environ 553:60–70

    Article  CAS  Google Scholar 

  30. De Paz JM, Viscontia F, Molina MJ, Ingelmo F, Martinez D, Sanchezb J (2012) Prediction of the effects of climate change on the soil salinity of an irrigated area under Mediterranean conditions. J Environ Manag 95:53783

    Google Scholar 

  31. Dev SM, Sharma AN (2010) Food security in India: performance, challenges and policies

    Google Scholar 

  32. Dhankher OP, Foyer CH (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41:877–884. https://doi.org/10.1111/pce.13207

  33. Dhawan V (2017) Water and agriculture in India—Background paper for the South Asia expert panel during the Global Forum for Food and Agriculture (GFFA). German Asia-Pacific Business Association, German Agri-Business alliance, TERI. https://www.oav.de/fileadmin/user_upload/5_Publikationen/5_Studien/170118_Study_Water_Agriculture_India.pdf. Accessed on 7 July 2022

  34. Duchenne-Moutien RA, Neetoo H (2021) Climate change and emerging food safety issues: a review. J Food Prot 84(11):1884–1897

    Google Scholar 

  35. Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571. https://doi.org/10.1007/s00374-009-0366-y

  36. Eglin T, Ciasis P, Piao SL, Barré P, Belassen V, Cadule P, Chenu C, Gasser T, Reichstein M, Smith (2011) Overview on response of global soil carbon pools to climate and land-use changes

    Google Scholar 

  37. El Sayed HESA (2011) Influence of salinity stress on growth parameters, photosynthetic activity and cytological studies of Zea mays, L. plant using hydrogel polymer. Agric Biol J Am 2:907–920. https://doi.org/10.5251/abjna.2011.2.6.907.920

  38. El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22:243–253. https://doi.org/10.1016/j.eja.2004.03.002

  39. FAO (2008) Land and plant nutrition management service. htpp://www.fao.org/ag/agl/agll/spush. Accessed 17 September 2020

  40. FAO (2019) Conservation agriculture. http://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en/. Accessed on 7 July 2022

  41. FAO F (2017) The future of food and agriculture–trends and challenges. New York, NY

    Google Scholar 

  42. FAOSTAT (2018) Statistical databases and data-sets of the food and agriculture. Organization of the United Nations. http://faostat.fao.org. Accessed on 7 July 2022

  43. FOG K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Google Scholar 

  44. Gathala MK, Timsina J, Islam MS, Krupnik TJ, Bose TR, Islam N, Rahman MM, Hossain MI, Harun-Rashid AR, Ghosh AK, Hasan MMK, Khayer MA, Islam MZ, Tiwari TP, McDonald AJ (2016) Productivity, profitability, and energetics: a multi-criteria and multi-location assessment of farmers’ tillage and crop establishment options in intensively cultivated environments of South Asia. Field Crops Res 186:32–46

    Google Scholar 

  45. Genc Y, Taylor J, Lyons GH, Li Y, Cheong J, Appelbee M et al (2019) Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 10:1280. https://doi.org/10.3389/fpls.2019.01280

  46. Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Indust Crops Prod 64:175–181. https://doi.org/10.1016/j.indcrop.2014.10.058

  47. Ghosh M, Ghosal S (2021) Climate change vulnerability of rural households in flood-prone areas of Himalayan foothills, West Bengal, India. Environ Dev Sustain 23(2):2570–2595

    Google Scholar 

  48. Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002) Nonlinear grassland responses to past and future atmospheric CO2. Nature 417:279–282

    Google Scholar 

  49. GoI (2018) National action plan on climate change. Prime Minister’s Council on Climate Change, Ministry of Environment, Forest, and Climate Change, Government of India, New Delhi. Accessed on 6 July, 2022

    Google Scholar 

  50. Gorissen A, Tietema A, Joosten NN, Estiarte M, Peñuelas J, Sowerby A, Emmett BA, Beier C (2004) Climate change affects carbon allocation to the soil in shrublands. Ecosystems 7:650–661

    Google Scholar 

  51. Grace PR, Colunga-Garcia M, Gage SH, Robertson GP, Safir GR (2006) The potential impact of agricultural management and climate change on soil organic carbon of the north central region of the United States. Ecosystems 9:816–827

    Google Scholar 

  52. Harikrishna YV, Naberia S, Pradhan S, Hansdah P (2019) Agro-economic impact of climate resilient practices on farmers in Anantapur District of Andhra Pradesh. Indian J Ext Educ 55(4):91–95

    Google Scholar 

  53. Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D et al (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009

  54. Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremed 19:522–529. https://doi.org/10.1080/15226514.2016.1267696

  55. Hillel D (1973) Soil and physical principles and processes, 3rd ed. Academic Press, New York

    Google Scholar 

  56. Holland EA (2011) The Role of soils and biogeochemistry in the climate and earth system. In: Sauer TJ, Norman JM, Sivakumar MVK (eds) Sustaining soil productivity in response to global climate change: science, policy, and ethics. Wiley, Oxford, UK, pp 155–168

    Google Scholar 

  57. Hong CO, Lee DK, Chung DY, Kim PJ (2007) Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Arch Environ Contam Toxicol 52:496–502

    Google Scholar 

  58. Horel A, Lichner L, Alaoui A, Czachor H, Nagy V, Tóth E (2014) Transport of iodide in structured clay-loam soil under maize during irrigation experiments analyzed using HYDRUS model. Biologia 69:1531–1538

    Google Scholar 

  59. Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513

    Google Scholar 

  60. Hussain HA, Men S, Hussain S, Chen Y, Ali S, Zhang S et al (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-40362-7

  61. ICAR (2018) National innovations in climate resilient agriculture. http://www.nicra-icar.in/nicrarevised/index.php/home1. Accessed on 6 July 2022

  62. IPCC (2007) Summary for policymakers. In: Climate change 2007: impacts, adaptation and vulnerability

    Google Scholar 

  63. Isla R, Aragüés R (2010) Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations. Field Crops Res 116:175–183. https://doi.org/10.1016/j.fcr.2009.12.008

  64. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. CRC Crit Rev Plant Sci 30:435–458. https://doi.org/10.1080/07352689.2011.605739

  65. Jat ML, Dagar JC, Sapkota TB, Govaerts B, Ridaura SL, Saharawat YS, Sharma RK, Tetarwal JP, Jat RK, Hobbs H, Stirling C (2016) Chapter three climate change and agriculture: adaptation strategies and mitigation opportunities for food security in South Asia and Latin America. Adv Agron 137:127–235. https://doi.org/10.1016/bs.agron.2015.12.005

  66. Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Özen A et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Google Scholar 

  67. Jesus JM, Danko AS, Fiúza A, Borges M-T (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22:6511–6525

    Google Scholar 

  68. Joshi AB, Vann DR, Johnson AH (2005) Litter quality and climate decouple nitrogen mineralization and productivity in Chilean temperate rainforests. Soil Sci Soc Am J 70:153–162

    Google Scholar 

  69. Kalhoro NA, Rajpar I, Kalhoro SA, Ali A, Raza S, Ahmed M et al (2016) Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). Am J Plant Sci 7:2257. https://doi.org/10.4236/ajps.2016.715199

  70. Kanagaraj G, Desingh R (2017) Salinity influences physiological traits of seven Sesame (Sesamum indicum L.) varieties. J Sci Agri 1:188–196. https://doi.org/10.25081/jsa.2017.v1.59

  71. Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review

    Google Scholar 

  72. Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130. https://doi.org/10.1007/s00344-012-9283-7

  73. Kasliwal R (2021) The new green revolution: a just transition to climate-smart crops. ORF Issue Brief 433:8–9

    Google Scholar 

  74. Kaur N, Alok A, Shivani, Kaur N, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoenedesaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genom 18(1):89–99

    Google Scholar 

  75. Kaushik G, Sharma KC (2015) Climate change and rural livelihoods-adaptation and vulnerability in Rajasthan. Global NEST J 17(1):41–49

    Google Scholar 

  76. Kelkar N (2016) Digging our rivers’ graves. Dams, Rivers, People Newsl 14:1–6

    Google Scholar 

  77. Keutgen AJ, Pawelzi KE (2009) Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ Exp Bot 65:170–176. https://doi.org/10.1016/j.envexpbot.2008.08.002

  78. Khan MA, Hussain N, Abid M, Imran T (2004) Screening of wheat (Triticum aestivum L.) cultivars for saline conditions under irrigated arid environment. J Res 11:471–477

    Google Scholar 

  79. Khatri-Chhetri A, Aryal JP, Sapkota TB, Khurana R (2016) Economic benefits of climate-smart agricultural practices to smallholder farmers in the Indo-Gangetic Plains of India. Curr Sci 110(7):1251–1256

    Google Scholar 

  80. Kirkham MB (2011) Elevated carbon dioxide. CRC Press, Boca Raton, FL

    Google Scholar 

  81. Krupnik TJ, Schulthess U, Ahmed ZU, McDonald AJ (2017) Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential. Land Use Policy 60:206–222

    Google Scholar 

  82. Kulkarni A, Sabin TP, Chowdary JS, Rao KK, Priya P, Gandhi N, Bhaskar P, Buri VK, Sabade SS, Pai DS, Ashok K (2020) Precipitation changes in India. In: Assessment of climate change over the Indian Region. Springer, Singapore, pp 47–72

    Google Scholar 

  83. Kumar S, Thombare P, Kale P (2019) Climate smart agriculture: Challenges, implications, innovations for achieving food and nutrition security. Agric Food e-Newsl 1(9):267–271

    Google Scholar 

  84. Lan P, Li W, Wen TN, Shiau JY, Wu YC, Lin W et al (2011) iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant Physiol 155:821–834. https://doi.org/10.1104/pp.110.169508

  85. Li Z, Lui W-Z, Zhang X-C, Zheng F-L (2011) Assessing the site-specific impacts of climate change on hydrology, soil erosion, and crop yields in the Loess Plateau of China. Clim Change 105:223–242

    Google Scholar 

  86. Lin Y, Feng Z, Wu W, Yang Y, Zhou Y, Xu C (2017) Potential impacts of climate change and adaptation on maize in northeast China. Agron J 109:1476–1490. https://doi.org/10.2134/agronj2016.05.0275

  87. Link SO, Smith JL, Halverson JJ, Bolton H Jr (2003) A reciprocal transplant experiment within a climatic gradient in a semiarid shrub-steppe ecosystem: effects on bunchgrass growth and reproduction, soil carbon, and soil nitrogen. Global Change Biol 9(7):1097–1105. https://doi.org/10.1046/j.1365-2486.2003.00647.x

  88. Lu X, Mao Q, Gilliam FS, Luo Y, Mo J (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob Chang Biol 20:3790–3801

    Article  Google Scholar 

  89. Macrae ML, Devito KJ, Strack M, Waddington JM (2013) Effect of water table drawdown on peatland nutrient dynamics: implications for climate change. Biogeochemistry 112:661–676. https://doi.org/10.1007/s10533-012-9730-3

    Article  Google Scholar 

  90. Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca

    Google Scholar 

  91. Mai NC (2022) Measuring and mapping food security status of Rajasthan, India: a district-level analysis

    Google Scholar 

  92. Malhotra SK (2017) Horticultural crops and climate change: a review. Indian J Agric Sci 87(1):12–22

    Google Scholar 

  93. Martinez-Beltran J (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: Managing saline soils and water: science, technology and social issues. Proceedings of the international salinity forum, Riverside, CA

    Google Scholar 

  94. Mazumdar S, Quick WP, Bandyopadhyay A (2016) CRISPR-Cas9 mediated genome editing in rice, advancements and future possibilities. Indian J Plant Physiol 21(4):437–445

    Article  Google Scholar 

  95. McGowen SL, Basta NT, Brown GO (2001) Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual 30:493–500

    Article  CAS  Google Scholar 

  96. Mills RTE, Gavazov KS, Spiegelberger T, Johnson D, Buttler A (2014) Diminished soil functions occur under simulated climate change in a sup-alpine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Sci Total Environ 473–474:465–472. https://doi.org/10.1016/j.scitotenv.2013.12.071

    Article  CAS  Google Scholar 

  97. Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577. https://doi.org/10.1007/s00709-010-0210-0

    Article  CAS  Google Scholar 

  98. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

    Article  CAS  Google Scholar 

  99. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  Google Scholar 

  100. Naidu R, Kookana RS, Sumner ME, Harter RD, Tiller KG (1997) Cadmium sorption and transport in variable charge soils: a review. J Environ Qual 26:602–617

    Article  CAS  Google Scholar 

  101. Naresh KS, Aggarwal PK, Swaroopa Rani DN, Saxena R, Chauhan N, Jain S (2014) Vulnerability of wheat production to climate change in India. Clim Res 59(173–187):5–187

    Google Scholar 

  102. Natali SM, Schuur EA, Trucco C, Hicks Pries CE, Crummer KG, Baron Lopez AF (2011) Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob Change Biol 17(3):1394–1407

    Article  Google Scholar 

  103. Niklińska M, Maryański M, Laskowski R (1999) Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change. Biogeochemistry 44:239–257

    Article  Google Scholar 

  104. Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293

    Article  Google Scholar 

  105. Ok YS, Oh S-E, Ahmad M, Hyun S, Kim K-R, Moon DH, Lee SS, Lim KJ, Jeon W-T, Yang JE (2010) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ Earth Sci 61:1301–1308

    Article  CAS  Google Scholar 

  106. Okur B, Örçen N (2020) Soil salinization and climate change. In: Prasad MNV, Pietrzykowski M (eds) Climate change and soil interactions

    Google Scholar 

  107. Omoto E, Taniguchi M, Mayake H (2012) Adaptation responses in C4 photosynthesis of maize under salinity. J Plant Physiol 169:469–477. https://doi.org/10.1016/j.jplph.2011.11.009

    Article  CAS  Google Scholar 

  108. Pal BD, Joshi PK, Tyagi NK (2019) Two-way association between agriculture and climate change. In: Climate smart agriculture in South Asia. Springer, Singapore, pp 1–16

    Google Scholar 

  109. Palanisami K, Kakumanu KR, Khanna M, Aggarwal PK (2013) Climate change and food security of India: adaptation strategies for the irrigation sector. World Agric 3:20–26

    Google Scholar 

  110. Palanisami K, Kumar DS, Malik RPS, Raman S, Kar G, Monhan K (2015) Managing water management research: analysis of four decades of research and outreach programmes in India. Econ Pol Wkly I(26&27):33–43

    Google Scholar 

  111. Porter JR, Xie L, Challinor AJ, Cochrane K et al (2014). Food security and food production systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 485–533

    Google Scholar 

  112. Pradhan A, Chan C, Roul PK, Halbrendt J, Sipes B (2018) Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: a transdisciplinary approach. Agric Syst 163:27–35

    Article  Google Scholar 

  113. Price DT, Peng CH, Apps MJ, Halliwell DH (1999) Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J Biogeogr 26:1237–1248

    Article  Google Scholar 

  114. Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247. https://doi.org/10.1016/S0065-2113(07)96006-X

    Article  CAS  Google Scholar 

  115. Rabhi M, Talbi O, Atia A, Abdelly C, Smaoui A (2008) Selection of a halophyte that could be used in the bioreclamation of salt-affected soils in arid and semi-arid regions. In: Abdelly C, Öztürk M, Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance, BirKhäuser, Basel, pp 241–246. https://doi.org/10.1007/978-3-7643-8554-5_22

  116. Rahman AKMM, Ahmed KM, Butler AP, Hoque MA (2018) Influence of surface geology and micro-scale land use on the shallow subsurface salinity in deltaic coastal areas: a case from southwest Bangladesh. Environ Earth Sci 77:423. https://doi.org/10.1007/s12665-018-7594-0

    Article  Google Scholar 

  117. Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK et al (2016) CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnolnol Lett 38(12):1991–2006

    Article  CAS  Google Scholar 

  118. Rattani V (2018) Coping with climate change: an analysis of India’s national action plan on climate change. Centre for Science and Environment, New Delhi.

    Google Scholar 

  119. Ravi S, Breshears DD, Huxman TE, D’Odorico P (2010) Land degradation in drylands: interactions among hydraulic-aeolian erosion and vegetation dynamics. Geomorphology 116:236–245

    Article  Google Scholar 

  120. Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    Article  CAS  Google Scholar 

  121. Ray K, Hasan SS, Goswami R (2018) Techno-economic and environmental assessment of different rice-based cropping systems in an inceptisol of West Bengal, India. J Clean Prod 205:350–363

    Article  Google Scholar 

  122. Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  CAS  Google Scholar 

  123. Reich PB, Hungate BA, Luo Y (2006) Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Evol Syst 37:611–636

    Article  Google Scholar 

  124. Reth S, Reichstein M, Falge E (2005) The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux – A modified model. Plant Soil 268:21–33

    Google Scholar 

  125. Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402

    Google Scholar 

  126. Roul PK, Pradhan A, Ray P, Mishra KN, Dash SN, Chan C (2015) Influence of maize-based conservation agricultural production systems (CAPS) on crop yield, profit and soil fertility in rainfed uplands of Odisha, India in conservation agriculture. In: Chan C, Fantle-Lepczyk K (eds) Subsistence farming: case studies from South Asia and beyond. CABI, Wallingford, UK, pp 95–108

    Google Scholar 

  127. Rounsevell M, Evans SP, Bullock P (1999) Climate change and agricultural soils: impacts and adaptation. Clim Change 43:683–709

    Google Scholar 

  128. Roy S (2011) Flood hazards in Jalpaiguri District. Unpublished PhD.Thesis, Department of Applied Geography, University of North Bengal, Siliguri

    Google Scholar 

  129. Rudra K, Mukherjee S, Mukhopadhayay UK, Gupta D (2017) State of environmental report: West Bengal. Saraswaty Press, Kolkata

    Google Scholar 

  130. Rustad LE, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4):543–562. https://doi.org/10.1007/s004420000544

    Article  CAS  Google Scholar 

  131. Sadale AN, Karadge BA (2013) Effect of salinity and water stress on nitrogen metabolism in Sesbania grandiflora (L.) Poir. Bioinfolet-A Q J Life Sci 10:814–818

    Google Scholar 

  132. Sardans J, Peñuelas J, Estiarte M (2008) Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a mediterranean shrubland. Appl Soil Ecol 39:223–235

    Article  Google Scholar 

  133. Sarkar S, Padaria RN, Das S, Das B, Biswas G, Roy D, Sarkar A (2022) Conceptualizing and validating a framework of climate smart village in flood affected ecosystem of West Bengal. Indian J Ext Educ 58(2):1–7

    Article  Google Scholar 

  134. Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36(2):217–227

    Article  CAS  Google Scholar 

  135. Schofield RV, Kirkby MJ (2003) Application of salinization indicators and initial development of sensitivity indicates microbial resilience. Sci Total Environ 473:465–472

    Google Scholar 

  136. Schofield RV, Kirkby MJ (2003) Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Glob Biogeochem Cycles 17(3):1078. https://doi.org/10.1029/2002GB001935,2003

    Article  Google Scholar 

  137. Serpa D, Nunes JP, Keizer JJ, Abrantes N (2017) Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture. Environ Pollut 224:454–465

    Article  CAS  Google Scholar 

  138. Seshadri B, Bolan N, Wijesekara H, Kunhikrishnan A, Thangarajan R, Qi F, Matheyarasu R, Rocco C, Mbene K, Naidu R (2016) Phosphorus–cadmium interactions in paddy soils. Geoderma 270:43–59

    Article  CAS  Google Scholar 

  139. Setia R, Gottschalk P, Smith P, Marschner P, Baldock J, Setia D et al (2013) Soil salinity decreases global soil organic carbon stocks. Sci Total Environ 465:267–272. https://doi.org/10.1016/j.scitotenv.2012.08.028

    Article  CAS  Google Scholar 

  140. Shafi M, Bakhat J, Khan MJ, Khan MA, Anwar S (2010) Effect of salinity on yield and ion accumulation of wheat genotypes. Pak J Bot 42:4113–4121

    Google Scholar 

  141. Sharma BC, Kumar R, Slathia PS, Puniya R, Vaid A (2022) Evaluation of refresher training programme on conservation agriculture practices. Indian J Ext Educ 58(1):49–52

    Article  Google Scholar 

  142. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  143. Shiferaw B, Sahoo A, Sika G, Ghosh J (2016) A CGE analysis of the implications of technological change in Indian agriculture

    Google Scholar 

  144. Shrestha S (2019) Effects of climate change in agricultural insect pest. Acta Sci Agric 3:74–80. https://doi.org/10.31080/ASAG.2019.03.0727

    Article  Google Scholar 

  145. Singh BP, Cowie AL, Chan KY (eds) (2011) Soil health and climate change, soil biology. Springer

    Google Scholar 

  146. Singh N, Sharma DP, Chand H (2016) Impact of climate change on apple production in India: a review. Current World Environ 11(1):251

    Article  Google Scholar 

  147. Sivakumar MVK (2011) Climate and land degradation. In: Sauer TJ, Norman JM, Sivakumar MVK (eds) Sustaining soil productivity in response to global climate change: science, policy, and ethics. Wiley, Oxford, UK, pp 141–154

    Chapter  Google Scholar 

  148. Smith JL, Halvorson JJ, Bolton H Jr (2002) Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biol Biochem 34(11):1749–1757. https://doi.org/10.1016/S0038-0717(02)00162-1

  149. Spiegal S, Bestelmeyer BT, Archer DW, Augustine DJ, Boughton EH, Boughton RK, Cavigelli MA, Clark PE, Derner JD, Duncan EW, Hapeman CJ (2018) Evaluating strategies for sustainable intensification of US agriculture through the long-term agroecosystem research network. Environ Res Lett 13(3):034031

    Article  Google Scholar 

  150. Srivastava D, Shamim M, Kumar M, Mishra A, Pandey P, Kumar D et al (2017) Current status of conventional and molecular interventions for blast resistance in rice. Rice Sci 24(6):299–321

    Article  Google Scholar 

  151. Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of Key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16. https://doi.org/10.1007/s10725-010-9526-1

    Article  CAS  Google Scholar 

  152. Sumer A (2004) Evidence of sodium toxicity for the vegetative growth of maize during the first phase of salt stress. J Appl Bot 78:135–139

    Google Scholar 

  153. Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281. https://doi.org/10.1016/j.envexpbot.2008.09.005

    Article  CAS  Google Scholar 

  154. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203. https://doi.org/10.1093/jxb/erq422

    Article  CAS  Google Scholar 

  155. Teller AS (2016) Moving the conversation on climate change and inequality to the local: socio-ecological vulnerability in agricultural Tanzania. Sociol Dev 2:25–50. https://doi.org/10.1525/sod.2016.2.1.25

    Article  Google Scholar 

  156. Temple J (2017) Reinventing source: rice for a world transformed by climate change. MIT Technology. https://www.technologyreview.com/s/604213/reinventing-rice-for-a-world-transformed-by-climate-change/. Accessed on 7 July 2022

  157. Thurston JM, Williams E, Johnston A (1976) Modern developments in an experiment on permanent grassland started in 1856: effects of fertilisers and lime on botanical composition and crop and soil analyses. Ann Agron (Fr) 27:1043–1082

    CAS  Google Scholar 

  158. Ullah A, Bano A (2019) Role of PGPR in the reclamation and revegetation of saline land. Pak J Bot 51:27–35. https://doi.org/10.30848/PJB2019-1(43)

    Article  CAS  Google Scholar 

  159. Umamaheswari S, Sreeram S, Kritika N, Prasanth DJ (2019) Biot: blockchain based IoT for agriculture. In: 2019 11th international conference on advanced computing (ICoAC). IEEE, pp 324–327

    Google Scholar 

  160. Van der Stelt B, Temminghoff EJM, Van Vliet PCJ, Van Riemsdijk WH (2007) Volatilization of ammonia from manure as affected by manure additives, temperature and mixing. Bioresour Technol 98(18):3449–3455

    Google Scholar 

  161. Várallyay G (2010) The impact of climate change on soils and on their water management. Agron

    Google Scholar 

  162. Vengosh V (2005) Salinization and saline environments. Ben Gurion University of the Negev, Beer

    Google Scholar 

  163. Venkatramanan V (2017) Climate change and food security. UGC ePGPathshala. http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000017GE/P001781/M025271/ET/1512451985Module36,VVRamanan,ClimateChangeandFoodSecurity.pdf. Accessed on 7th July 2022

  164. Venkatramanan V, Shah S (2019) Climate smart agriculture technologies for environmental management: the intersection of sustainability, resilience, wellbeing and development. In: Sustainable green technologies for environmental management. Springer, Singapore, pp 29–51

    Google Scholar 

  165. Voothuluru P, Sharp RE (2012) Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. Increased levels are specific to the apical region of growth maintenance. J Exp Bot 64:1223–1233. https://doi.org/10.1093/jxb/ers277

    Article  CAS  Google Scholar 

  166. Wakeel A, Sümer A, Hanstein S, Yan F, Schubert S (2011) In vitro effect of different Na+/K+ ratios on plasma membrane H+-ATPase activity in maize and sugar beet shoot. Plant Physiol Biochem 49:341–345. https://doi.org/10.1016/j.plaphy.2011.01.006

    Article  CAS  Google Scholar 

  167. Wan Y, Lin E, Xiong W, Li Y, Guo L (2011) Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric Ecosyst Environ 141(1):23–31. https://doi.org/10.1016/j.agee.2011.02.004

  168. Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7:e52565. https://doi.org/10.1371/journal.pone.0052565

  169. Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67(1):75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007

  170. Wassmann R, Villanueva J, Khounthavong M, Okumu BO, Vo TBT, Sander BO (2019) Adaptation, mitigation and food security: multi-criteria ranking system for climate-smart agriculture technologies illustrated for rainfed rice in Laos. Glob Food Sec 23:33–40

    Google Scholar 

  171. Wedin DA, Tilman D (1996) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274:1720–1723

    Google Scholar 

  172. Westermann O, Förch W, Thornton PK (2015) Reaching more farmers: innovative approaches to scaling up climate smart agriculture. CCAFS Working Paper no. 135. CGIAR research program on climate change, agriculture and food security CCAFS, Copenhagen, Denmark. www.ccafs.cgiar.org. Accessed on 7th July 2022

  173. World Bank (2015) Future of food: shaping a climate-smart global food system. World Bank, Washington, DC. Accessed on 6 July 2022

    Google Scholar 

  174. World Bank (2016) World Bank Group climate change action plan. Washington: IBRD. Accessed on 6 July 2022

    Google Scholar 

  175. Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das A, Layek J, Saha P (2017) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Google Scholar 

  176. Yu Y, Xu T, Li X, Tang J, Ma D, Li Z et al (2016) NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.) cultivars exhibit different salt tolerance at adventitious root stage. Environ Exp Bot 129:23–36. https://doi.org/10.1016/j.envexpbot.2015.12

  177. Zhang XC, Nearing MA, Garbrecht JD, Steiner JL (2004) Downscaling monthly forecasts to simulate impacts of climate change on soil erosion and wheat production. Soil Sci Soc Am J 68:1376–1385

    Google Scholar 

  178. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114:9326–9331. https://doi.org/10.1073/pnas

  179. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. https://doi.org/10.1016/S1360-1385(00)01838-0

  180. Zobeck TM, Van Pelt RS (2006) Wind-induced dust generation and transport mechanics on a bare agricultural field. J Hazard Mater 132:26–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksud Hasan Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, M.H. et al. (2023). Potential Impacts of Climate Change on the Sustainability of Crop Production in the West Bengal, India. In: Pande, C.B., Moharir, K.N., Negm, A. (eds) Climate Change Impacts in India. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-42056-6_11

Download citation

Publish with us

Policies and ethics