Skip to main content

Safety Issues Related to Pluripotent Stem Cell-Based Therapies: Tumour Risk

  • Chapter
  • First Online:
Pluripotent Stem Cell Therapy for Diabetes

Abstract

As the exciting era of regenerative medicine has dawned, considerable efforts aim to further develop human pluripotent stem cell (hPSC)-based therapies for a plethora of diseases, including diabetes mellitus. However, increasing concerns about their safety have been raised, specifically regarding the risk of tumour formation. Since their initial discovery and derivation several decades ago, it has become evident that hPSCs have a propensity to acquire (epi)genetic aberrations prior to and during culture, with concerning similarities to aberrations observed in many cancers. Moreover, efforts aiming to improve directed differentiation protocols are ongoing; however, the risk of undesired cell populations within the final cell product remains problematic, including residual undifferentiated cell types and off-target derivative cell types. A full understanding of the cause and effect of both acquired (epi)genetic aberrations and undesired cell types is still in its infancy, with little knowledge of their impact and what may define the potential malignant transformation of these cells. Fortunately, unravelling the complexity of these issues is underway in full effect due to a growing arsenal of techniques that enable the assessment of the intrinsic properties and functional effects of both hPSCs and their derivatives. Thus, promising data is continuously being obtained that may ultimately ensure the safe application of hPSC-based therapies. In this chapter, we provide an overview of recurrent (epi)genetic aberrations observed in hPSCs and the similarities to those observed in cancer. Moreover, we provide a catalogue of the techniques that are available to identify and characterise both these aberrations and the undesired cell populations that may be present within the final cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995;92(17):7844–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod. 1996;55(2):254–9.

    Article  PubMed  CAS  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  PubMed  CAS  Google Scholar 

  6. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008;135(7):1287–98.

    Article  PubMed  CAS  Google Scholar 

  7. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell. 2008;135(7):1299–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  PubMed  CAS  Google Scholar 

  10. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  PubMed  CAS  Google Scholar 

  11. The Nobel Prize in Physiology or Medicine 2012.2012 07 August 2023.

    Google Scholar 

  12. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17(3):194–200.

    Article  PubMed  CAS  Google Scholar 

  13. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30.

    Article  PubMed  CAS  Google Scholar 

  14. Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, et al. Two decades of embryonic stem cells: a historical overview. Hum Reprod Open. 2019;2019(1):hoy024.

    Google Scholar 

  15. Wiegand C, Banerjee I. Recent advances in the applications of iPSC technology. Curr Opin Biotechnol. 2019;60:250–8.

    Article  PubMed  CAS  Google Scholar 

  16. Yamanaka S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell. 2020;27(4):523–31.

    Article  PubMed  CAS  Google Scholar 

  17. Ji Y, Hu C, Chen Z, Li Y, Dai J, Zhang J, et al. Clinical trials of stem cell-based therapies for pediatric diseases: a comprehensive analysis of trials registered on ClinicalTrials.gov and the ICTRP portal site. Stem Cell Res Ther. 2022;13(1):307.

  18. Kim JY, Nam Y, Rim YA, Ju JH. Review of the Current Trends in Clinical Trials Involving Induced Pluripotent Stem Cells. Stem Cell Rev Rep. 2022;18(1):142–54.

    Article  PubMed  Google Scholar 

  19. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.

    Article  PubMed  Google Scholar 

  20. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52.

    Article  PubMed  CAS  Google Scholar 

  21. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33.

    Article  PubMed  CAS  Google Scholar 

  22. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports. 2015;4(4):591–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH, Harb G, et al. Charting cellular identity during human in vitro beta-cell differentiation. Nature. 2019;569(7756):368–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, et al. Acquisition of Dynamic Function in Human Stem Cell-Derived beta Cells. Stem Cell Reports. 2019;12(2):351–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived beta cells. Nat Cell Biol. 2019;21(2):263–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Barsby T, Ibrahim H, Lithovius V, Montaser H, Balboa D, Vahakangas E, et al. Differentiating functional human islet-like aggregates from pluripotent stem cells. STAR Protoc. 2022;3(4):101711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Balboa D, Barsby T, Lithovius V, Saarimaki-Vire J, Omar-Hmeadi M, Dyachok O, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol. 2022;40(7):1042–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Siehler J, Blochinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov. 2021;20(12):920–40.

    Article  PubMed  CAS  Google Scholar 

  31. Dang HP, Chen H, Dargaville TR, Tuch BE. Cell delivery systems: Toward the next generation of cell therapies for type 1 diabetes. J Cell Mol Med. 2022;26(18):4756–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hogrebe NJ, Ishahak M, Millman JR. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell. 2023;30(5):530–48.

    Article  PubMed  CAS  Google Scholar 

  33. Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, et al. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell. 2022;29(12):1624–36.

    Article  PubMed  CAS  Google Scholar 

  34. Lezmi E, Benvenisty N. The Tumorigenic Potential of Human Pluripotent Stem Cells. Stem Cells Transl Med. 2022;11(8):791–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Halliwell J, Barbaric I, Andrews PW. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat Rev Mol Cell Biol. 2020;21(12):715–28.

    Article  PubMed  CAS  Google Scholar 

  36. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Han L, He H, Yang Y, Meng Q, Ye F, Chen G, et al. Distinctive Clinical and Pathologic Features of Immature Teratomas Arising from Induced Pluripotent Stem Cell-Derived Beta Cell Injection in a Diabetes Patient. Stem Cells Dev. 2022;31(5–6):97–101.

    Article  PubMed  CAS  Google Scholar 

  38. Carlsson PO, Espes D, Sedigh A, Rotem A, Zimerman B, Grinberg H, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas betaAir to patients with type 1 diabetes mellitus. Am J Transplant. 2018;18(7):1735–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ramzy A, Thompson DM, Ward-Hartstonge KA, Ivison S, Cook L, Garcia RV, et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell. 2021;28(12):2047–61 e5.

    Article  PubMed  CAS  Google Scholar 

  40. Shapiro AMJ, Thompson D, Donner TW, Bellin MD, Hsueh W, Pettus J, et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med. 2021;2(12):100466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol. 2011;29(8):750–6.

    Article  PubMed  CAS  Google Scholar 

  42. Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One. 2012;7(5):e37004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kirk K, Hao E, Lahmy R, Itkin-Ansari P. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res. 2014;12(3):807–14.

    Article  PubMed  CAS  Google Scholar 

  45. Cuesta-Gomez N, Verhoeff K, Jasra IT, Pawlick R, Dadheech N, Shapiro AMJ. Characterization of stem-cell-derived islets during differentiation and after implantation. Cell Rep. 2022;40(8):111238.

    Article  PubMed  CAS  Google Scholar 

  46. Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, et al. Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2(+) Human Pancreatic Progenitors. Cell Rep. 2017;19(1):36–49.

    Article  PubMed  CAS  Google Scholar 

  47. Weng C, Xi J, Li H, Cui J, Gu A, Lai S, et al. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab. 2020;2(12):1443–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, et al. Circadian Entrainment Triggers Maturation of Human In Vitro Islets. Cell Stem Cell. 2020;26(1):108–22.e10.

    Article  PubMed  CAS  Google Scholar 

  49. Mahaddalkar PU, Scheibner K, Pfluger S, Ansarullah, Sterr M, Beckenbauer J, et al. Generation of pancreatic beta cells from CD177(+) anterior definitive endoderm. Nat Biotechnol. 2020;38(9):1061–72.

    Article  PubMed  CAS  Google Scholar 

  50. Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Single-Cell Transcriptome Profiling Reveals beta Cell Maturation in Stem Cell-Derived Islets after Transplantation. Cell Rep. 2020;32(8):108067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Velazco-Cruz L, Goedegebuure MM, Millman JR. Advances Toward Engineering Functionally Mature Human Pluripotent Stem Cell-Derived beta Cells. Front Bioeng Biotechnol. 2020;8:786.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, et al. CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells. 2011;29(4):609–17.

    Article  PubMed  CAS  Google Scholar 

  53. Ramond C, Glaser N, Berthault C, Ameri J, Kirkegaard JS, Hansson M, et al. Reconstructing human pancreatic differentiation by mapping specific cell populations during development. Elife. 2017;6.

    Google Scholar 

  54. Cogger KF, Sinha A, Sarangi F, McGaugh EC, Saunders D, Dorrell C, et al. Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun. 2017;8(1):331.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Aghazadeh Y, Sarangi F, Poon F, Nkennor B, McGaugh EC, Nunes SS, et al. GP2-enriched pancreatic progenitors give rise to functional beta cells in vivo and eliminate the risk of teratoma formation. Stem Cell Reports. 2022;17(4):964–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22(1):53–4.

    Article  PubMed  CAS  Google Scholar 

  57. Inzunza J, Sahlen S, Holmberg K, Stromberg AM, Teerijoki H, Blennow E, et al. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol Hum Reprod. 2004;10(6):461–6.

    Article  PubMed  CAS  Google Scholar 

  58. Imreh MP, Gertow K, Cedervall J, Unger C, Holmberg K, Szoke K, et al. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem. 2006;99(2):508–16.

    Article  PubMed  CAS  Google Scholar 

  59. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25(2):207–15.

    Article  PubMed  CAS  Google Scholar 

  60. Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A, Tachdjian G, et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol. 2008;26(12):1364–6.

    Article  PubMed  CAS  Google Scholar 

  61. Wu H, Kim KJ, Mehta K, Paxia S, Sundstrom A, Anantharaman T, et al. Copy number variant analysis of human embryonic stem cells. Stem Cells. 2008;26(6):1484–9.

    Article  PubMed  CAS  Google Scholar 

  62. Yang S, Lin G, Tan YQ, Deng LY, Yuan D, Lu GX. Differences between karyotypically normal and abnormal human embryonic stem cells. Cell Prolif. 2010;43(3):195–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7(4):521–31.

    Article  PubMed  CAS  Google Scholar 

  64. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471(7336):63–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471(7336):58–62.

    Article  PubMed  CAS  Google Scholar 

  66. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. The International Stem Cell Initiative I, Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29(12):1132–44.

    Article  Google Scholar 

  68. Martins-Taylor K, Nisler BS, Taapken SM, Compton T, Crandall L, Montgomery KD, et al. Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol. 2011;29(6):488–91.

    Article  PubMed  CAS  Google Scholar 

  69. Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, et al. Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol. 2011;29(4):313–4.

    Article  PubMed  CAS  Google Scholar 

  70. Avery S, Hirst AJ, Baker D, Lim CY, Alagaratnam S, Skotheim RI, et al. BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Reports. 2013;1(5):379–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Weissbein U, Ben-David U, Benvenisty N. Virtual karyotyping reveals greater chromosomal stability in neural cells derived by transdifferentiation than those from stem cells. Cell Stem Cell. 2014;15(6):687–91.

    Article  PubMed  CAS  Google Scholar 

  72. Narva E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 2010;28(4):371–7.

    Article  PubMed  Google Scholar 

  73. Garitaonandia I, Amir H, Boscolo FS, Wambua GK, Schultheisz HL, Sabatini K, et al. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One. 2015;10(2):e0118307.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Baker D, Hirst AJ, Gokhale PJ, Juarez MA, Williams S, Wheeler M, et al. Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells. Stem Cell Reports. 2016;7(5):998–1012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545(7653):229–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Amir H, Touboul T, Sabatini K, Chhabra D, Garitaonandia I, Loring JF, et al. Spontaneous Single-Copy Loss of TP53 in Human Embryonic Stem Cells Markedly Increases Cell Proliferation and Survival. Stem Cells. 2017;35(4):872–85.

    Article  PubMed  CAS  Google Scholar 

  77. Assou S, Girault N, Plinet M, Bouckenheimer J, Sansac C, Combe M, et al. Recurrent Genetic Abnormalities in Human Pluripotent Stem Cells: Definition and Routine Detection in Culture Supernatant by Targeted Droplet Digital PCR. Stem Cell Reports. 2020;14(1):1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Avior Y, Lezmi E, Eggan K, Benvenisty N. Cancer-Related Mutations Identified in Primed Human Pluripotent Stem Cells. Cell Stem Cell. 2021;28(1):10–1.

    Article  PubMed  CAS  Google Scholar 

  79. Halliwell JA, Baker D, Judge K, Quail MA, Oliver K, Betteridge E, et al. Nanopore Sequencing Indicates That Tandem Amplification of Chromosome 20q11.21 in Human Pluripotent Stem Cells Is Driven by Break-Induced Replication. Stem Cells Dev. 2021;30(11):578–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lezmi E, Benvenisty N. Identification of cancer-related mutations in human pluripotent stem cells using RNA-seq analysis. Nat Protoc. 2021;16(9):4522–37.

    Article  PubMed  CAS  Google Scholar 

  81. Merkle FT, Ghosh S, Genovese G, Handsaker RE, Kashin S, Meyer D, et al. Whole-genome analysis of human embryonic stem cells enables rational line selection based on genetic variation. Cell Stem Cell. 2022;29(3):472–86 e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J. 2019;38(12).

    Google Scholar 

  83. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet. 2005;37(10):1099–103.

    Article  PubMed  CAS  Google Scholar 

  84. Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, et al. Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol. 2005;23(1):19–20.

    Article  PubMed  CAS  Google Scholar 

  85. Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33(9):890–1.

    Article  PubMed  CAS  Google Scholar 

  86. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–77.

    Article  PubMed  CAS  Google Scholar 

  87. Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells. 2019;11(10):729–47.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kosanke M, Osetek K, Haase A, Wiehlmann L, Davenport C, Schwarzer A, et al. Reprogramming enriches for somatic cell clones with small-scale mutations in cancer-associated genes. Mol Ther. 2021;29(8):2535–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, et al. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet. 2005;14(21):3129–40.

    Article  PubMed  CAS  Google Scholar 

  90. Harrison NJ, Baker D, Andrews PW. Culture adaptation of embryonic stem cells echoes germ cell malignancy. Int J Androl. 2007;30(4):275–81; discussion 81.

    Article  PubMed  Google Scholar 

  91. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol. 2009;27(1):91–7.

    Article  PubMed  CAS  Google Scholar 

  92. Olariu V, Harrison NJ, Coca D, Gokhale PJ, Baker D, Billings S, et al. Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res. 2010;4(1):50–6.

    Article  PubMed  Google Scholar 

  93. Na J, Baker D, Zhang J, Andrews PW, Barbaric I. Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein Cell. 2014;5(8):569–79.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Barbaric I, Biga V, Gokhale PJ, Jones M, Stavish D, Glen A, et al. Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation. Stem Cell Reports. 2014;3(1):142–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kim YJ, Go YH, Jeong HC, Kwon EJ, Kim SM, Cheong HS, et al. TPX2 prompts mitotic survival via the induction of BCL2L1 through YAP1 protein stabilization in human embryonic stem cells. Exp Mol Med. 2023;55(1):32–42.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Price CJ, Stavish D, Gokhale PJ, Stevenson BA, Sargeant S, Lacey J, et al. Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Dev Cell. 2021;56(17):2455–70 e10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hindley C, Philpott A. The cell cycle and pluripotency. Biochem J. 2013;451(2):135–43.

    Article  PubMed  CAS  Google Scholar 

  98. Liu L, Michowski W, Kolodziejczyk A, Sicinski P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol. 2019;21(9):1060–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ballabeni A, Park IH, Zhao R, Wang W, Lerou PH, Daley GQ, et al. Cell cycle adaptations of embryonic stem cells. Proc Natl Acad Sci U S A. 2011;108(48):19252–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Nguyen HT, Geens M, Mertzanidou A, Jacobs K, Heirman C, Breckpot K, et al. Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. Mol Hum Reprod. 2014;20(2):168–77.

    Article  PubMed  CAS  Google Scholar 

  101. Fazeli A, Liew CG, Matin MM, Elliott S, Jeanmeure LF, Wright PC, et al. Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. Int J Dev Biol. 2011;55(2):175–80.

    Article  PubMed  CAS  Google Scholar 

  102. Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature. 2012;492(7429):438–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Caisander G, Park H, Frej K, Lindqvist J, Bergh C, Lundin K, et al. Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture. Chromosome Res. 2006;14(2):131–7.

    Article  PubMed  CAS  Google Scholar 

  104. Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, et al. Human ESCs predisposition to karyotypic instability: Is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer. 2008;7:76.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353–6.

    Article  PubMed  CAS  Google Scholar 

  106. Elliott AM, Elliott KA, Kammesheidt A. High resolution array-CGH characterization of human stem cells using a stem cell focused microarray. Mol Biotechnol. 2010;46(3):234–42.

    Article  PubMed  CAS  Google Scholar 

  107. Gertow K, Cedervall J, Unger C, Szoke K, Blennow E, Imreh MP, et al. Trisomy 12 in HESC leads to no selective in vivo growth advantage in teratomas, but induces an increased abundance of renal development. J Cell Biochem. 2007;100(6):1518–25.

    Article  PubMed  CAS  Google Scholar 

  108. Guo CW, Kawakatsu M, Idemitsu M, Urata Y, Goto S, Ono Y, et al. Culture under low physiological oxygen conditions improves the stemness and quality of induced pluripotent stem cells. J Cell Physiol. 2013;228(11):2159–66.

    Article  PubMed  CAS  Google Scholar 

  109. Hasegawa K, Fujioka T, Nakamura Y, Nakatsuji N, Suemori H. A method for the selection of human embryonic stem cell sublines with high replating efficiency after single-cell dissociation. Stem Cells. 2006;24(12):2649–60.

    Article  PubMed  CAS  Google Scholar 

  110. Herszfeld D, Wolvetang E, Langton-Bunker E, Chung TL, Filipczyk AA, Houssami S, et al. CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol. 2006;24(3):351–7.

    Article  PubMed  CAS  Google Scholar 

  111. Kanchan K, Iyer K, Yanek LR, Carcamo-Orive I, Taub MA, Malley C, et al. Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Res. 2020;46:101803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017;546(7658):370–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lagarkova MA, Volchkov PY, Philonenko ES, Pfannkuche K, Prokhorovich MA, Zabotina T, et al. CD 30 is a marker of undifferentiated human embryonic stem cells rather than a biomarker of transformed hESCs. Cell Cycle. 2008;7(22):3610–2.

    Article  PubMed  CAS  Google Scholar 

  114. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185–7.

    Article  PubMed  CAS  Google Scholar 

  115. Luo L, Kawakatsu M, Guo CW, Urata Y, Huang WJ, Ali H, et al. Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells. Sci Rep. 2014;4:3779.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ma H, Morey R, O’Neil RC, He Y, Daughtry B, Schultz MD, et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature. 2014;511(7508):177–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Mills JA, Wang K, Paluru P, Ying L, Lu L, Galvao AM, et al. Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood. 2013;122(12):2047–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol. 2008;26(12):1361–3.

    Article  PubMed  CAS  Google Scholar 

  119. Ware CB, Nelson AM, Blau CA. A comparison of NIH-approved human ESC lines. Stem Cells. 2006;24(12):2677–84.

    Article  PubMed  CAS  Google Scholar 

  120. Russnes HG, Vollan HKM, Lingjaerde OC, Krasnitz A, Lundin P, Naume B, et al. Genomic architecture characterizes tumor progression paths and fate in breast cancer patients. Sci Transl Med. 2010;2(38):38ra47.

    Google Scholar 

  121. Privitera AP, Barresi V, Condorelli DF. Aberrations of Chromosomes 1 and 16 in Breast Cancer: A Framework for Cooperation of Transcriptionally Dysregulated Genes. Cancers (Basel). 2021;13(7).

    Google Scholar 

  122. Schmidt TM, Fonseca R, Usmani SZ. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021;11(4):83.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cortes-Gutierrez EI, Davila-Rodriguez MI, Muraira-Rodriguez M, Said-Fernandez S, Cerda-Flores RM. Association between the stages of cervical cancer and chromosome 1 aneusomy. Cancer Genet Cytogenet. 2005;159(1):44–7.

    Article  PubMed  CAS  Google Scholar 

  124. Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, et al. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis. 2013;34(8):1773–81.

    Article  PubMed  CAS  Google Scholar 

  125. Oosterhuis JW, Looijenga LHJ. Human germ cell tumours from a developmental perspective. Nat Rev Cancer. 2019;19(9):522–37.

    Article  PubMed  CAS  Google Scholar 

  126. Abruzzo LV, Herling CD, Calin GA, Oakes C, Barron LL, Banks HE, et al. Trisomy 12 chronic lymphocytic leukemia expresses a unique set of activated and targetable pathways. Haematologica. 2018;103(12):2069–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Muleris M, Laurent-Puig P, Salmon RJ, Thomas G, Dutrillaux B. Chromosome 12 alterations and c-Ki-ras mutations in colorectal tumors. Cancer Genet Cytogenet. 1993;69(2):161–2.

    Article  PubMed  CAS  Google Scholar 

  128. Ben-David U, Arad G, Weissbein U, Mandefro B, Maimon A, Golan-Lev T, et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun. 2014;5:4825.

    Article  PubMed  CAS  Google Scholar 

  129. Zhao S, Xu J, Liu S, Cui K, Li Z, Liu N. Dppa3 in pluripotency maintenance of ES cells and early embryogenesis. J Cell Biochem. 2019;120(4):4794–9.

    Article  PubMed  CAS  Google Scholar 

  130. Looijenga LH, Zafarana G, Grygalewicz B, Summersgill B, Debiec-Rychter M, Veltman J, et al. Role of gain of 12p in germ cell tumour development. APMIS. 2003;111(1):161–71; discussion 72–3.

    Google Scholar 

  131. Zhang W, Yu Y. The important molecular markers on chromosome 17 and their clinical impact in breast cancer. Int J Mol Sci. 2011;12(9):5672–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lee YK, Lee TS, Song IH, Jeong HY, Kang SJ, Kim MW, et al. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs. Cancer Gene Ther. 2015;22(7):335–43.

    Article  PubMed  CAS  Google Scholar 

  133. Zhang WY, de Almeida PE, Wu JC. Teratoma formation: A tool for monitoring pluripotency in stem cell research. StemBook. Cambridge (MA)2012.

    Google Scholar 

  134. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990;247(4938):49–56.

    Article  PubMed  CAS  Google Scholar 

  135. Tanaka T, Watanabe T, Kazama Y, Tanaka J, Kanazawa T, Kazama S, et al. Chromosome 18q deletion and Smad4 protein inactivation correlate with liver metastasis: A study matched for T- and N- classification. Br J Cancer. 2006;95(11):1562–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ando T, Ishiguro H, Kimura M, Mitsui A, Mori Y, Sugito N, et al. Frequent loss of the long arm of chromosome 18 in esophageal squamous cell carcinoma. Oncol Rep. 2007;17(5):1005–11.

    PubMed  CAS  Google Scholar 

  137. Kluth M, Graunke M, Moller-Koop C, Hube-Magg C, Minner S, Michl U, et al. Deletion of 18q is a strong and independent prognostic feature in prostate cancer. Oncotarget. 2016;7(52):86339–49.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hodgson JG, Chin K, Collins C, Gray JW. Genome amplification of chromosome 20 in breast cancer. Breast Cancer Res Treat. 2003;78(3):337–45.

    Article  PubMed  CAS  Google Scholar 

  139. Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, et al. Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer. 2008;47(9):755–65.

    Article  PubMed  CAS  Google Scholar 

  140. Maffei M, Mongera S, Terpstra L, Donadini A, Voorham QJ, Meijer GA, et al. Chromosome 20 aberrations at the diploid-aneuploid transition in sporadic colorectal cancer. Cytogenet Genome Res. 2014;144(1):9–14.

    Article  PubMed  Google Scholar 

  141. Voutsadakis IA. Chromosome 20q11.21 Amplifications in Colorectal Cancer. Cancer Genomics Proteomics. 2021;18(3 Suppl):487–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Zhang J, Hirst AJ, Duan F, Qiu H, Huang R, Ji Y, et al. Anti-apoptotic Mutations Desensitize Human Pluripotent Stem Cells to Mitotic Stress and Enable Aneuploid Cell Survival. Stem Cell Reports. 2019;12(3):557–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Markouli C, Couvreu De Deckersberg E, Regin M, Nguyen HT, Zambelli F, Keller A, et al. Gain of 20q11.21 in Human Pluripotent Stem Cells Impairs TGF-beta-Dependent Neuroectodermal Commitment. Stem Cell Reports. 2019;13(1):163–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Poh AR, O’Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget. 2015;6(18):15752–71.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Di Oto E, Monti V, Cucchi MC, Masetti R, Varga Z, Foschini MP. X chromosome gain in male breast cancer. Hum Pathol. 2015;46(12):1908–12.

    Article  PubMed  Google Scholar 

  146. Ropke A, Erbersdobler A, Hammerer P, Palisaar J, John K, Stumm M, et al. Gain of androgen receptor gene copies in primary prostate cancer due to X chromosome polysomy. Prostate. 2004;59(1):59–68.

    Article  PubMed  Google Scholar 

  147. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  148. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

    Google Scholar 

  149. Friedman NB, Moore RA. Tumors of the testis; a report on 922 cases. Mil Surg. 1946;99(5):573–93.

    PubMed  CAS  Google Scholar 

  150. Kleinsmith LJ, Pierce GB, Jr. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res. 1964;24:1544–51.

    PubMed  CAS  Google Scholar 

  151. Damjanov I, Solter D. Experimental teratoma. Curr Top Pathol. 1974;59:69–130.

    Article  PubMed  CAS  Google Scholar 

  152. Andrews PW. From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci. 2002;357(1420):405–17.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans. 2005;33(Pt 6):1526–30.

    Article  PubMed  CAS  Google Scholar 

  154. Zwaka TP, Thomson JA. A germ cell origin of embryonic stem cells? Development. 2005;132(2):227–33.

    Article  PubMed  CAS  Google Scholar 

  155. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet. 2006;7(4):319–27.

    Article  PubMed  CAS  Google Scholar 

  156. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LH. Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol. 2012;30(9):849–57.

    Article  PubMed  CAS  Google Scholar 

  157. Stevens LC, Little CC. Spontaneous Testicular Teratomas in an Inbred Strain of Mice. Proc Natl Acad Sci U S A. 1954;40(11):1080–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Pierce GB. Teratocarcinoma: model for a developmental concept of cancer. Curr Top Dev Biol. 1967;2:223–46.

    Article  PubMed  CAS  Google Scholar 

  159. Stevens LC. The biology of teratomas. Adv Morphog. 1967;6:1–31.

    PubMed  CAS  Google Scholar 

  160. Stevens LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol. 1970;21(3):364–82.

    Article  PubMed  CAS  Google Scholar 

  161. Solter D, Skreb N, Damjanov I. Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature. 1970;227(5257):503–4.

    Article  PubMed  CAS  Google Scholar 

  162. Brinster RL. Embryo development. J Anim Sci. 1974;38(5):1003–12.

    Article  PubMed  CAS  Google Scholar 

  163. Finch BW, Ephrussi B. Retention of multiple developmental potentialities by cells of a mouse terticular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc Natl Acad Sci U S A. 1967;57(3):615–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Kahan BW, Ephrussi B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J Natl Cancer Inst. 1970;44(5):1015–36.

    PubMed  CAS  Google Scholar 

  165. Martin GR, Evans MJ. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell. 1974;2(3):163–72.

    Article  PubMed  CAS  Google Scholar 

  166. Evans MJ. The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J Embryol Exp Morphol. 1972;28(1):163–76.

    PubMed  CAS  Google Scholar 

  167. Damjanov I, Andrews PW. Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice - a histopathology atlas. Int J Dev Biol. 2016;60(10-11-12):337–419.

    Google Scholar 

  168. Damjanov I, Andrews PW. The terminology of teratocarcinomas and teratomas. Nat Biotechnol. 2007;25(11):1212; discussion

    Google Scholar 

  169. Atkin NB, Baker MC. Specific chromosome change, i(12p), in testicular tumours? Lancet. 1982;2(8311):1349.

    Article  PubMed  CAS  Google Scholar 

  170. Cheng L, Albers P, Berney DM, Feldman DR, Daugaard G, Gilligan T, et al. Testicular cancer. Nat Rev Dis Primers. 2018;4(1):29.

    Article  PubMed  Google Scholar 

  171. Sillars-Hardebol AH, Carvalho B, van Engeland M, Fijneman RJ, Meijer GA. The adenoma hunt in colorectal cancer screening: defining the target. J Pathol. 2012;226(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  172. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6880):552–6.

    Article  PubMed  CAS  Google Scholar 

  173. Hu XM, Lin T, Huang XY, Gan RH, Zhao Y, Feng Y, et al. ID1 contributes to cell growth invasion and migration in salivary adenoid cystic carcinoma. Mol Med Rep. 2017;16(6):8907–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Hsu CW, Chen YC, Su HH, Huang GJ, Shu CW, Wu TT, et al. Targeting TPX2 Suppresses the Tumorigenesis of Hepatocellular Carcinoma Cells Resulting in Arrested Mitotic Phase Progression and Increased Genomic Instability. J Cancer. 2017;8(8):1378–94.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Jeong HC, Go YH, Shin JG, Kim YJ, Cho MG, Gwon D, et al. TPX2 Amplification-Driven Aberrant Mitosis in Culture Adapted Human Embryonic Stem Cells with gain of 20q11.21. Stem Cell Rev Rep. 2023.

    Google Scholar 

  176. Zhao L, Liu J, Chen S, Fang C, Zhang X, Luo Z. Prognostic significance of NANOG expression in solid tumors: a meta-analysis. Onco Targets Ther. 2018;11:5515–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Kubara K, Yamazaki K, Ishihara Y, Naruto T, Lin HT, Nishimura K, et al. Status of KRAS in iPSCs Impacts upon Self-Renewal and Differentiation Propensity. Stem Cell Reports. 2018;11(2):380–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Keller A, Spits C. The Impact of Acquired Genetic Abnormalities on the Clinical Translation of Human Pluripotent Stem Cells. Cells. 2021;10(11).

    Google Scholar 

  179. Bouma MJ, van Iterson M, Janssen B, Mummery CL, Salvatori DCF, Freund C. Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays. Stem Cell Reports. 2017;8(5):1340–53.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Ursule L, et al. Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res. 2004;64(18):6453–60.

    Article  PubMed  CAS  Google Scholar 

  181. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.

    Google Scholar 

  182. Shaw PH. The role of p53 in cell cycle regulation. Pathol Res Pract. 1996;192(7):669–75.

    Article  PubMed  CAS  Google Scholar 

  183. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med. 2016;6(3):a026104.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9.

    Article  PubMed  CAS  Google Scholar 

  186. Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25(1):154–60.

    Article  PubMed  CAS  Google Scholar 

  187. Stein Y, Aloni-Grinstein R, Rotter V. Mutant p53 oncogenicity: dominant-negative or gain-of-function? Carcinogenesis. 2020;41(12):1635–47.

    Article  PubMed  CAS  Google Scholar 

  188. Azuhata T, Scott D, Takamizawa S, Wen J, Davidoff A, Fukuzawa M, et al. The inhibitor of apoptosis protein survivin is associated with high-risk behavior of neuroblastoma. J Pediatr Surg. 2001;36(12):1785–91.

    Article  PubMed  CAS  Google Scholar 

  189. Blum B, Bar-Nur O, Golan-Lev T, Benvenisty N. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol. 2009;27(3):281–7.

    Article  PubMed  CAS  Google Scholar 

  190. Rouhani FJ, Zou X, Danecek P, Badja C, Amarante TD, Koh G, et al. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nat Genet. 2022;54(9):1406–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. International Society for Stem Cell Research I. Guidelines for Stem Cell Research and Clinical Translation. Internet]. ISSCR; June 05 2023, Available from: https://www.isscr.org/standards-document.

  192. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47(D1):D941–D7.

    Article  PubMed  CAS  Google Scholar 

  193. Astolfi A, Fiore M, Melchionda F, Indio V, Bertuccio SN, Pession A. BCOR involvement in cancer. Epigenomics. 2019;11(7):835–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Wang Z, Gearhart MD, Lee YW, Kumar I, Ramazanov B, Zhang Y, et al. A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs in Human ESCs. Cell Stem Cell. 2018;22(2):235–51 e9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, et al. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet. 2011;7(5):e1002085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471(7336):68–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Lund RJ, Narva E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet. 2012;13(10):732–44.

    Article  PubMed  CAS  Google Scholar 

  198. Weissbein U, Plotnik O, Vershkov D, Benvenisty N. Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells. PLoS Genet. 2017;13(8):e1006979.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Poetsch MS, Strano A, Guan K. Human Induced Pluripotent Stem Cells: From Cell Origin, Genomic Stability, and Epigenetic Memory to Translational Medicine. Stem Cells. 2022;40(6):546–55.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Tompkins JD, Hall C, Chen VC, Li AX, Wu X, Hsu D, et al. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A. 2012;109(31):12544–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Hu Q, Rosenfeld MG. Epigenetic regulation of human embryonic stem cells. Front Genet. 2012;3:238.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285–90.

    Google Scholar 

  203. Simpson DJ, Olova NN, Chandra T. Cellular reprogramming and epigenetic rejuvenation. Clin Epigenetics. 2021;13(1):170.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bhattacharjee D, Shenoy S, Bairy KL. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics. Scientifica (Cairo). 2016;2016:6072357.

    PubMed  PubMed Central  Google Scholar 

  205. French R, Pauklin S. Epigenetic regulation of cancer stem cell formation and maintenance. Int J Cancer. 2021;148(12):2884–97.

    Article  PubMed  CAS  Google Scholar 

  206. Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: Moving forward. PLoS Genet. 2018;14(6):e1007362.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Kim I, Park JW. Hypoxia-driven epigenetic regulation in cancer progression: A focus on histone methylation and its modifying enzymes. Cancer Lett. 2020;489:41–9.

    Article  PubMed  CAS  Google Scholar 

  208. Nishizawa M, Chonabayashi K, Nomura M, Tanaka A, Nakamura M, Inagaki A, et al. Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. Cell Stem Cell. 2016;19(3):341–54.

    Article  PubMed  CAS  Google Scholar 

  209. Keller A, Dziedzicka D, Zambelli F, Markouli C, Sermon K, Spits C, et al. Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Hum Reprod Update. 2018;24(2):162–75.

    Article  PubMed  CAS  Google Scholar 

  210. Liu LP, Zheng YW. Predicting differentiation potential of human pluripotent stem cells: Possibilities and challenges. World J Stem Cells. 2019;11(7):375–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. de Boni L, Gasparoni G, Haubenreich C, Tierling S, Schmitt I, Peitz M, et al. DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clin Epigenetics. 2018;10:13.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Diaz Perez SV, Kim R, Li Z, Marquez VE, Patel S, Plath K, et al. Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin. Hum Mol Genet. 2012;21(4):751–64.

    Article  PubMed  CAS  Google Scholar 

  213. Wainwright EN, Scaffidi P. Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, and Restricting Cellular Plasticity. Trends Cancer. 2017;3(5):372–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    Article  PubMed  CAS  Google Scholar 

  215. Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T, et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell. 2013;23(1):9–22.

    Article  PubMed  CAS  Google Scholar 

  216. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775(1):138–62.

    PubMed  CAS  Google Scholar 

  217. Ehrlich M, Lacey M. DNA hypomethylation and hemimethylation in cancer. Adv Exp Med Biol. 2013;754:31–56.

    Article  PubMed  CAS  Google Scholar 

  218. Hur K, Cejas P, Feliu J, Moreno-Rubio J, Burgos E, Boland CR, et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2014;63(4):635–46.

    Article  PubMed  CAS  Google Scholar 

  219. Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update. 2017;23(5):520–32.

    Article  PubMed  CAS  Google Scholar 

  220. Kim JS, Choi HW, Arauzo-Bravo MJ, Scholer HR, Do JT. Reactivation of the inactive X chromosome and post-transcriptional reprogramming of Xist in iPSCs. J Cell Sci. 2015;128(1):81–7.

    PubMed  CAS  Google Scholar 

  221. Brenes AJ, Yoshikawa H, Bensaddek D, Mirauta B, Seaton D, Hukelmann JL, et al. Erosion of human X chromosome inactivation causes major remodeling of the iPSC proteome. Cell Rep. 2021;35(4):109032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Bar S, Seaton LR, Weissbein U, Eldar-Geva T, Benvenisty N. Global Characterization of X Chromosome Inactivation in Human Pluripotent Stem Cells. Cell Rep. 2019;27(1):20–9 e3.

    Article  PubMed  CAS  Google Scholar 

  223. Looijenga LH, Gillis, A. J., van Gurp, R. J., Verkerk, A. J., Oosterhuis, J. W. X inactivation in human testicular tumors. XIST expression and androgen receptor methylation status. The American journal of pathology. 1997;151(2):581–90.

    Google Scholar 

  224. Lobo J, Nunes SP, Gillis AJM, Barros-Silva D, Miranda-Goncalves V, Berg AVD, et al. XIST-Promoter Demethylation as Tissue Biomarker for Testicular Germ Cell Tumors and Spermatogenesis Quality. Cancers (Basel). 2019;11(9).

    Google Scholar 

  225. Kawakami T, Okamoto K, Ogawa O, Okada Y. XIST unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet. 2004;363(9402):40–2.

    Article  PubMed  CAS  Google Scholar 

  226. Cloutier M, Kumar S, Buttigieg E, Keller L, Lee B, Williams A, et al. Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nat Commun. 2022;13(1):2516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Barakat TS, Ghazvini M, de Hoon B, Li T, Eussen B, Douben H, et al. Stable X chromosome reactivation in female human induced pluripotent stem cells. Stem Cell Reports. 2015;4(2):199–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell. 2010;141(5):872–83.

    Article  PubMed  CAS  Google Scholar 

  229. Xie P, Ouyang Q, Leng L, Hu L, Cheng D, Tan Y, et al. The dynamic changes of X chromosome inactivation during early culture of human embryonic stem cells. Stem Cell Res. 2016;17(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  230. Park H, Kim D, Kim CH, Mills RE, Chang MY, Iskow RC, et al. Increased genomic integrity of an improved protein-based mouse induced pluripotent stem cell method compared with current viral-induced strategies. Stem Cells Transl Med. 2014;3(5):599–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol. 2015;33(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  232. Kang X, Yu Q, Huang Y, Song B, Chen Y, Gao X, et al. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells. PLoS One. 2015;10(7):e0131128.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Bhutani K, Nazor KL, Williams R, Tran H, Dai H, Dzakula Z, et al. Whole-genome mutational burden analysis of three pluripotency induction methods. Nat Commun. 2016;7:10536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Turinetto V, Orlando L, Giachino C. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. Int J Mol Sci. 2017;18(9).

    Google Scholar 

  235. Forsyth NR, Musio A, Vezzoni P, Simpson AH, Noble BS, McWhir J. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells. 2006;8(1):16–23.

    Article  PubMed  CAS  Google Scholar 

  236. Lim HJ, Han J, Woo DH, Kim SE, Kim SK, Kang HG, et al. Biochemical and morphological effects of hypoxic environment on human embryonic stem cells in long-term culture and differentiating embryoid bodies. Mol Cells. 2011;31(2):123–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z, et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. 2014;14(5):592–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Thompson O, von Meyenn F, Hewitt Z, Alexander J, Wood A, Weightman R, et al. Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nat Commun. 2020;11(1):1528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Nakamura N, Shi X, Darabi R, Li Y. Hypoxia in Cell Reprogramming and the Epigenetic Regulations. Front Cell Dev Biol. 2021;9:609984.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Millman JR, Tan JH, Colton CK. Mouse Pluripotent Stem Cell Differentiation Under Physiological Oxygen Reduces Residual Teratomas. Cell Mol Bioeng. 2021;14(6):555–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Molina-Ruiz FJ, Introna C, Bombau G, Galofre M, Canals JM. Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells. 2022;11(13).

    Google Scholar 

  242. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2(3):198–210.

    Article  PubMed  Google Scholar 

  243. International Stem Cell Banking Initiative I. Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev Rep. 2009;5(4):301–14.

    Google Scholar 

  244. The International Stem Cell Initiative I. Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nat Commun. 2018;9(1):1925.

    Google Scholar 

  245. Wesselschmidt RL. The teratoma assay: an in vivo assessment of pluripotency. Methods Mol Biol. 2011;767:231–41.

    Article  PubMed  CAS  Google Scholar 

  246. Bulic-Jakus F, Katusic Bojanac A, Juric-Lekic G, Vlahovic M, Sincic N. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. Wiley Interdiscip Rev Dev Biol. 2016;5(2):186–209.

    Article  PubMed  Google Scholar 

  247. The International Stem Cell Initiative I, Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25(7):803–16.

    Article  Google Scholar 

  248. Buta C, David R, Dressel R, Emgard M, Fuchs C, Gross U, et al. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res. 2013;11(1):552–62.

    Article  PubMed  Google Scholar 

  249. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Muller FJ, Goldmann J, Loser P, Loring JF. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell. 2010;6(5):412–4.

    Article  PubMed  CAS  Google Scholar 

  251. Montilla-Rojo J, Bialecka M, Wever KE, Mummery CL, Looijenga LHJ, Roelen BAJ, et al. Teratoma Assay for Testing Pluripotency and Malignancy of Stem Cells: Insufficient Reporting and Uptake of Animal-Free Methods-A Systematic Review. Int J Mol Sci. 2023;24(4).

    Google Scholar 

  252. Gropp M, Shilo V, Vainer G, Gov M, Gil Y, Khaner H, et al. Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS One. 2012;7(9):e45532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.

    Article  PubMed  CAS  Google Scholar 

  255. Dressel R. Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol. 2011;33(6):573–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Zeevaert K, Elsafi Mabrouk MH, Wagner W, Goetzke R. Cell Mechanics in Embryoid Bodies. Cells. 2020;9(10).

    Google Scholar 

  257. Pekkanen-Mattila M, Pelto-Huikko M, Kujala V, Suuronen R, Skottman H, Aalto-Setala K, et al. Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochem Cell Biol. 2010;133(5):595–606.

    Article  PubMed  CAS  Google Scholar 

  258. Hidalgo Aguilar A, Smith L, Owens D, Quelch R, Przyborski S. Recreating Tissue Structures Representative of Teratomas In Vitro Using a Combination of 3D Cell Culture Technology and Human Embryonic Stem Cells. Bioengineering (Basel). 2022;9(5).

    Google Scholar 

  259. Sheridan SD, Surampudi V, Rao RR. Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cells Int. 2012;2012:738910.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Du F, Zhao X, Fan D. Soft Agar Colony Formation Assay as a Hallmark of Carcinogenesis. Bio Protoc. 2017;7(12):e2351.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, et al. The soft agar colony formation assay. J Vis Exp. 2014(92):e51998.

    Google Scholar 

  262. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197(4302):461–3.

    Article  PubMed  CAS  Google Scholar 

  263. Kuroda T, Yasuda S, Kusakawa S, Hirata N, Kanda Y, Suzuki K, et al. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One. 2012;7(5):e37342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  265. Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet. 2018;9:623.

    Article  PubMed  CAS  Google Scholar 

  266. McIntire E, Taapken S, Leonhard K, Larson AL. Genomic Stability Testing of Pluripotent Stem Cells. Curr Protoc Stem Cell Biol. 2020;52(1):e107.

    Article  PubMed  CAS  Google Scholar 

  267. Tokunaga K, Saitoh N, Goldberg IG, Sakamoto C, Yasuda Y, Yoshida Y, et al. Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells. Sci Rep. 2014;4:6996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Nishimura K, Ishiwata H, Sakuragi Y, Hayashi Y, Fukuda A, Hisatake K. Live-cell imaging of subcellular structures for quantitative evaluation of pluripotent stem cells. Sci Rep. 2019;9(1):1777.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Issa J, Abou Chaar M, Kempisty B, Gasiorowski L, Olszewski R, Mozdziak P, et al. Artificial-Intelligence-Based Imaging Analysis of Stem Cells: A Systematic Scoping Review. Biology (Basel). 2022;11(10).

    Google Scholar 

  270. Coronnello C, Francipane MG. Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning. Stem Cell Rev Rep. 2022;18(2):559–69.

    Article  PubMed  Google Scholar 

  271. D’Hulst C, Parvanova I, Tomoiaga D, Sapar ML, Feinstein P. Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells. Stem Cell Reports. 2013;1(4):350–9.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Wang R, Carter J, Lench N. Evaluation of real-time quantitative PCR as a standard cytogenetic diagnostic tool for confirmation of microarray (aCGH) results and determination of inheritance. Genet Test Mol Biomarkers. 2013;17(11):821–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Weissbein U, Schachter M, Egli D, Benvenisty N. Analysis of chromosomal aberrations and recombination by allelic bias in RNA-Seq. Nat Commun. 2016;7:12144.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Wang N. Methodologies in cancer cytogenetics and molecular cytogenetics. Am J Med Genet. 2002;115(3):118–24.

    Article  PubMed  Google Scholar 

  275. Dal Cin P. Metaphase harvest and cytogenetic analysis of malignant hematological specimens. Curr Protoc Hum Genet. 2003;Chapter 10:Unit 10 2.

    Google Scholar 

  276. Huang H, Chen J. Chromosome Bandings. Methods Mol Biol. 2017;1541:59–66.

    Article  PubMed  CAS  Google Scholar 

  277. Hu Q, Maurais EG, Ly P. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res. 2020;28(1):19–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Imataka G, Arisaka O. Chromosome analysis using spectral karyotyping (SKY). Cell Biochem Biophys. 2012;62(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  279. Ben-David U, Mayshar Y, Benvenisty N. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat Protoc. 2013;8(5):989–97.

    Article  PubMed  Google Scholar 

  280. Valli R, Marletta C, Pressato B, Montalbano G, Lo Curto F, Pasquali F, et al. Comparative genomic hybridization on microarray (a-CGH) in constitutional and acquired mosaicism may detect as low as 8% abnormal cells. Mol Cytogenet. 2011;4:13.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Li D, Liu J, Yang X, Zhou C, Guo J, Wu C, et al. Chromatin Accessibility Dynamics during iPSC Reprogramming. Cell Stem Cell. 2017;21(6):819–33 e6.

    Article  PubMed  CAS  Google Scholar 

  282. J Borstlap AK, G Stacey, A Elstner, A Damaschun, B Arán, J C Gerlach, J C Izpisúa, A Veiga. Development of a European human embryonic stem cell registry. Regen Med. 2008;3(6):945–51.

    Article  PubMed  CAS  Google Scholar 

  283. Seltmann S, Lekschas F, Muller R, Stachelscheid H, Bittner MS, Zhang W, et al. hPSCreg--the human pluripotent stem cell registry. Nucleic Acids Res. 2016;44(D1):D757–63.

    Google Scholar 

  284. Danecek P, McCarthy SA, HipSci C, Durbin R. A Method for Checking Genomic Integrity in Cultured Cell Lines from SNP Genotyping Data. PLoS One. 2016;11(5):e0155014.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Muller FJ, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP, et al. A bioinformatic assay for pluripotency in human cells. Nat Methods. 2011;8(4):315–7.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144(3):439–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Tsankov AM, Akopian V, Pop R, Chetty S, Gifford CA, Daheron L, et al. A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol. 2015;33(11):1182–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Kirkegaard JS, inventor; Novo Nordisk A/S, assignee. Enrichment of NKX6.1 and C-peptide co-expressing cells derived in vitro from stem cells2020.

    Google Scholar 

  289. Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol. 2021;51(12):2708–3145.

    Google Scholar 

  290. Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, et al. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res. 2020;10(4):1147–69.

    Article  PubMed  Google Scholar 

  291. Ben-David U, Benvenisty N. Chemical ablation of tumor-initiating human pluripotent stem cells. Nat Protoc. 2014;9(3):729–40.

    Article  PubMed  CAS  Google Scholar 

  292. Lee MO, Moon SH, Jeong HC, Yi JY, Lee TH, Shim SH, et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A. 2013;110(35):E3281–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Ben-David U, Gan QF, Golan-Lev T, Arora P, Yanuka O, Oren YS, et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell. 2013;12(2):167–79.

    Article  PubMed  CAS  Google Scholar 

  294. Halliwell JA, Frith TJR, Laing O, Price CJ, Bower OJ, Stavish D, et al. Nucleosides Rescue Replication-Mediated Genome Instability of Human Pluripotent Stem Cells. Stem Cell Reports. 2020;14(6):1009–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Zhong C, Liu M, Pan X, Zhu H. Tumorigenicity risk of iPSCs in vivo: nip it in the bud. Precis Clin Med. 2022;5(1):pbac004.

    Google Scholar 

  296. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8(3):673–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Bedel A, Beliveau F, Lamrissi-Garcia I, Rousseau B, Moranvillier I, Rucheton B, et al. Preventing Pluripotent Cell Teratoma in Regenerative Medicine Applied to Hematology Disorders. Stem Cells Transl Med. 2017;6(2):382–93.

    Article  PubMed  CAS  Google Scholar 

  298. Liang Q, Monetti C, Shutova MV, Neely EJ, Hacibekiroglu S, Yang H, et al. Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature. 2018;563(7733):701–4.

    Article  PubMed  CAS  Google Scholar 

  299. Martin RM, Fowler JL, Cromer MK, Lesch BJ, Ponce E, Uchida N, et al. Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards. Nat Commun. 2020;11(1):2713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leendert H. J. Looijenga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hillenius, S., Montilla-Rojo, J., Eleveld, T.F., Salvatori, D.C.F., Looijenga, L.H.J. (2023). Safety Issues Related to Pluripotent Stem Cell-Based Therapies: Tumour Risk. In: Piemonti, L., Odorico, J., Kieffer, T.J..., Sordi, V., de Koning, E. (eds) Pluripotent Stem Cell Therapy for Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-031-41943-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41943-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41942-3

  • Online ISBN: 978-3-031-41943-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics