Skip to main content

Advertisement

Log in

Mouse Pluripotent Stem Cell Differentiation Under Physiological Oxygen Reduces Residual Teratomas

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Residual pluripotent stem cells (PSC) within differentiated populations are problematic because of their potential to form tumors. Simple methods to reduce their occurrence are needed.

Methods

Here, we demonstrate that control of the oxygen partial pressure (pO2) to physiological levels typical of the developing embryo, enabled by culture on a highly oxygen permeable substrate, reduces the fraction of PSC within and the tumorigenic potential of differentiated populations.

Results

Differentiation and/or extended culture at low pO2 reduced measured pluripotency markers by up to four orders of magnitude for mouse PSCs (mPSCs). Combination with cell sorting increased the reduction to as much as six orders of magnitude. Upon implantation into immunocompromised mice, mPSCs differentiated at low pO2 either did not form tumors or formed tumors at a slower rate than at high pO2.

Conclusions

Low pO2 culture alone or in combination with other methods is a potentially straightforward method that could be applied to future cell therapy protocols to minimize the possibility of tumor formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Amariglio, N., A. Hirshberg, B. W. Scheithauer, Y. Cohen, R. Loewenthal, L. Trakhtenbrot, N. Paz, M. Koren-Michowitz, D. Waldman, L. Leider-Trejo, A. Toren, S. Constantini, and G. Rechavi. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6:2009.

    Article  Google Scholar 

  2. Augsornworawat, P., L. Velazco-Cruz, J. Song, and J. R. Millman. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater. 97:272–280, 2019.

    Article  Google Scholar 

  3. Blum, B., O. Bar-Nur, T. Golan-Lev, and N. Benvenisty. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat. Biotechnol. 27:281–287, 2009.

    Article  Google Scholar 

  4. Brederlau, A., A. S. Correia, S. V. Anisimov, M. Elmi, G. Paul, L. Roybon, A. Morizane, F. Bergquist, I. Riebe, U. Nannmark, M. Carta, E. Hanse, J. Takahashi, Y. Sasai, K. Funa, P. Brundin, P. S. Eriksson, and J. Y. Li. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24:1433–1440, 2006.

    Article  Google Scholar 

  5. Brusselmans, K., F. Bono, D. Collen, J. M. Herbert, P. Carmeliet, and M. Dewerchin. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J. Biol. Chem. 280:3493–3499, 2005.

    Article  Google Scholar 

  6. Chong, J. J., X. Yang, C. W. Don, E. Minami, Y. W. Liu, J. J. Weyers, W. M. Mahoney, B. Van Biber, S. M. Cook, N. J. Palpant, J. A. Gantz, J. A. Fugate, V. Muskheli, G. M. Gough, K. W. Vogel, C. A. Astley, C. E. Hotchkiss, A. Baldessari, L. Pabon, H. Reinecke, E. A. Gill, V. Nelson, H. P. Kiem, M. A. Laflamme, and C. E. Murry. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277, 2014.

    Article  Google Scholar 

  7. Choo, A. B., H. L. Tan, S. N. Ang, W. J. Fong, A. Chin, J. Lo, L. Zheng, H. Hentze, R. J. Philp, S. K. Oh, and M. Yap. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26:1454–1463, 2008.

    Article  Google Scholar 

  8. Deuse, T., X. Hu, A. Gravina, D. Wang, G. Tediashvili, C. De, W. O. Thayer, A. Wahl, J. V. Garcia, H. Reichenspurner, M. M. Davis, L. L. Lanier, and S. Schrepfer. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 3:252, 2019.

    Article  Google Scholar 

  9. Fink, Jr., D. W. FDA regulation of stem cell-based products. Science 324:1662–1663, 2009.

    Article  Google Scholar 

  10. Garreta, E., E. Melo, D. Navajas, and R. Farré. Low oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells. Physiol. Rep. 2:e12075, 2014.

    Article  Google Scholar 

  11. Hakim, F., T. Kaitsuka, J. M. Raeed, F. Y. Wei, N. Shiraki, T. Akagi, T. Yokota, S. Kume, and K. Tomizawa. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells. J. Biol. Chem. 289:9623–9638, 2014.

    Article  Google Scholar 

  12. Haramoto, Y., Y. Onuma, S. Mawaribuchi, Y. Nakajima, Y. Aiki, K. Higuchi, M. Shimizu, H. Tateno, J. Hirabayashi, and Y. Ito. A technique for removing tumourigenic pluripotent stem cells using rBC2LCN lectin. Regen. Ther. 14:306–314, 2020.

    Article  Google Scholar 

  13. Hentze, H., P. L. Soong, S. T. Wang, B. W. Phillips, T. C. Putti, and N. R. Dunn. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2:198, 2009.

    Article  Google Scholar 

  14. Hogrebe, N. J., P. Augsornworawat, K. G. Maxwell, L. Velazco-Cruz, and J. R. Millman. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38:460–470, 2020.

    Article  Google Scholar 

  15. Huangfu, D., R. Maehr, W. Guo, A. Eijkelenboom, M. Snitow, A. E. Chen, and D. A. Melton. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26:795–797, 2008.

    Article  Google Scholar 

  16. Kim, J. H., J. M. Auerbach, J. A. Rodriguez-Gomez, I. Velasco, D. Gavin, N. Lumelsky, S. H. Lee, J. Nguyen, R. Sanchez-Pernaute, K. Bankiewicz, and R. McKay. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56, 2002.

    Article  Google Scholar 

  17. Lawrenz, B., H. Schiller, E. Willbold, M. Ruediger, A. Muhs, and S. Esser. Highly sensitive biosafety model for stem-cell-derived grafts. Cytotherapy 6:212–222, 2004.

    Article  Google Scholar 

  18. Lengner, C. J., A. A. Gimelbrant, J. A. Erwin, A. W. Cheng, M. G. Guenther, G. G. Welstead, R. Alagappan, G. M. Frampton, P. Xu, J. Muffat, S. Santagata, D. Powers, C. B. Barrett, R. A. Young, J. T. Lee, R. Jaenisch, and M. Mitalipova. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141:872–883, 2010.

    Article  Google Scholar 

  19. Ma, S., R. Viola, L. Sui, V. Cherubini, F. Barbetti, and D. Egli. Beta cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Rep. 11:1407–1415, 2018.

    Article  Google Scholar 

  20. Menendez, S., S. Camus, A. Herreria, I. Paramonov, L. B. Morera, M. Collado, V. Pekarik, I. Maceda, M. Edel, A. Consiglio, A. Sanchez, H. Li, M. Serrano, and J. C. Belmonte. Increased dosage of tumor suppressors limits the tumorigenicity of iPS cells without affecting their pluripotency. Aging Cell 11:41–50, 2012.

    Article  Google Scholar 

  21. Millman, J. R., J. H. Tan, and C. K. Colton. The effects of low oxygen on self-renewal and differentiation of embryonic stem cells. Curr. Opin. Organ Transplant. 14:694–700, 2009.

    Article  Google Scholar 

  22. Pabon, Jr., J. E., W. E. Findley, and W. E. Gibbons. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil. Steril. 51:896–900, 1989.

    Article  Google Scholar 

  23. Powers, D. E., J. R. Millman, S. Bonner-Weir, M. J. Rappel, and C. K. Colton. Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation. Biotechnol. Prog. 26:805–818, 2010.

    Article  Google Scholar 

  24. Powers, D. E., J. R. Millman, R. B. Huang, and C. K. Colton. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnol. Bioeng. 101:241–254, 2008.

    Article  Google Scholar 

  25. Qadir, M. M. F., S. Alvarez-Cubela, K. Belle, T. Sapir, F. Messaggio, K. B. Johnson, O. Umland, D. Hardin, D. Klein, I. Perez-Alvarez, F. Sadiq, O. Alcazar, L. A. Inverardi, C. Ricordi, P. Buchwald, C. A. Fraker, R. L. Pastori, and J. Dominguez-Bendala. A double fail-safe approach to prevent tumorigenesis and select pancreatic beta cells from human embryonic stem cells. Stem Cell Rep. 12:611–623, 2019.

    Article  Google Scholar 

  26. Simon, M. C., and B. Keith. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 9:285–296, 2008.

    Article  Google Scholar 

  27. Sułkowski, M., P. Konieczny, P. Chlebanowska, and M. Majka. Introduction of exogenous HSV-TK suicide gene increases safety of keratinocyte-derived induced pluripotent stem cells by providing genetic “emergency exit” switch. Int. J. Mol. Sci. 19:197, 2018.

    Article  Google Scholar 

  28. Tan, H. L., B. Z. Tan, W. X. T. Goh, S. Cua, and A. Choo. In vivo surveillance and elimination of teratoma-forming human embryonic stem cells with monoclonal antibody 2448 targeting annexin A2. Biotechnol. Bioeng. 116:2996–3005, 2019.

    Article  Google Scholar 

  29. Tang, C., A. S. Lee, J. P. Volkmer, D. Sahoo, D. Nag, A. R. Mosley, M. A. Inlay, R. Ardehali, S. L. Chavez, R. R. Pera, B. Behr, J. C. Wu, I. L. Weissman, and M. Drukker. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 29:829–834, 2011.

    Article  Google Scholar 

  30. Tohyama, S., F. Hattori, M. Sano, T. Hishiki, Y. Nagahata, T. Matsuura, H. Hashimoto, T. Suzuki, H. Yamashita, Y. Satoh, T. Egashira, T. Seki, N. Muraoka, H. Yamakawa, Y. Ohgino, T. Tanaka, M. Yoichi, S. Yuasa, M. Murata, M. Suematsu, and K. Fukuda. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137, 2013.

    Article  Google Scholar 

  31. Velazco-Cruz, L., M. M. Goedegebuure, and J. R. Millman. Advances toward engineering functionally mature human pluripotent stem cell-derived beta cells. Front. Bioeng. Biotechnol. 8:786, 2020.

    Article  Google Scholar 

  32. Warren, L., P. D. Manos, T. Ahfeldt, Y. H. Loh, H. Li, F. Lau, W. Ebina, P. K. Mandal, Z. D. Smith, A. Meissner, G. Q. Daley, A. S. Brack, J. J. Collins, C. Cowan, T. M. Schlaeger, and D. J. Rossi. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7:618, 2010.

    Article  Google Scholar 

  33. Yoshida, Y., K. Takahashi, K. Okita, T. Ichisaka, and S. Yamanaka. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241, 2009.

    Article  Google Scholar 

  34. Zhou, Q., H. Chipperfield, D. A. Melton, and W. H. Wong. A gene regulatory network in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 104:16438–16443, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

Oct4-GFP mESC and miPSC lines were generously donated by Professor Douglas Melton (Harvard University). HIF-1α−/− mESC were generously donated by Professor Peter Carmeliet (Katholieke Universiteit Leuven). Helpful discussion and technical assistance with aspects of this work were provided by Professor Susan Bonner-Weir (Joslin Diabetes Center). Helpful discussion and technical assistance with aspects of the cardiomyocyte aspects of this work were provided by Dr. Daryl Powers (MIT). Histopathological assessment was provided by Dr. Nicola M. A. Parry (MIT). The FACS was operated by Michael Jennings and Michele Griffin (MIT). Rose E. Yu, Giulia M. Dula, Julie Paul, and Bhargavi Chevva (MIT) provided technical assistance.

Author Contributions

JRM and CKC conceived the experimental design. JRM and JT conducted the in vitro experiments. JRM conducted the in vivo experiments. JRM and CKC wrote the manuscript. All authors edited and reviewed the manuscript.

Funding

This study was supported by a grant from the Juvenile Diabetes Research Foundation (41-2009-803).

Data Availability

All data associated with this study is presented in the paper. All cell lines used were acquired from third parties.

Conflict of interest

J.R.M. and C.K.C. are inventors on issued patent number 10,179,901 entitled “Methods and compositions for increased safety of stem cell-derived populations”. J.R.M. is a consultant for Sana Biotechnology. J.R.M. is co-founder of Salentra Biosciences. J.T. has no declarations.

Ethical Approval

All animal work was approved by the MIT Committee on Animal Care.

Informed Consent

There were no research subject participants. All authors consent to publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey R. Millman or Clark K. Colton.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millman, J.R., Tan, J.H. & Colton, C.K. Mouse Pluripotent Stem Cell Differentiation Under Physiological Oxygen Reduces Residual Teratomas. Cel. Mol. Bioeng. 14, 555–567 (2021). https://doi.org/10.1007/s12195-021-00687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00687-8

Keywords

Navigation