Skip to main content

Trends and Perspectives in Mitigating CMAS Infiltration in Thermal Barrier Coating

  • Chapter
  • First Online:
Ceramic Coatings for High-Temperature Environments

Abstract

The aerospace industry is facing challenges in meeting environmental and energy demands, which require a reduction in fuel consumption, emissions and production costs while improving the efficiency of aero-engines. One way to achieve this is by developing a thermal barrier coating (TBC) on the hottest components of the turbine to increase its inlet temperature. Different methods are used to deposit TBC, including air plasma spray (APS) and electron beam physical vapor deposition (EB-PVD), with each having its advantages and disadvantages. Current process developments are constantly trying to find a good compromise between intrinsic material properties, production cost and feasibility. With this in mind, suspension plasma spraying (SPS) has emerged as a viable option that can replace some applications. However, in service, complex loadings and environmental contaminants such as calcium-magnesium-aluminosilicate (CMAS) damage the TBC and reduce its durability. After presenting the SPS process, its application to thermal barrier coatings and industrialization challenges of the process, the chapter discusses the effects of CMAS infiltration on TBC and the methodologies used to characterize the damage during engine operation. Then, it explores potential solutions to mitigate CMAS attack, including modifying the coating composition, introducing additional layers, using SPS coatings and developing “CMAS-superphobic” surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pörtner, H.-O. et al., (eds.). (2022). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  2. Atwoli, L., et al.: Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. N. Engl. J. Med. 385(12), 1134–1137 (2021). https://doi.org/10.1056/NEJMe2113200

    Article  Google Scholar 

  3. Airbus, The Boeing Company, Dassault Aviation, GE Aviation, Rolls-Royce, Safran and United Technologies Corporation, ‘The Sustainability of Aviation’, NVI Joint statement

    Google Scholar 

  4. ‘Air France-KLM CO2 emissions reduction targets for 2030 approved by the Science Based Targets initiative (SBTi)*|AIR FRANCE KLM’. https://www.airfranceklm.com/en/newsroom/air-france-klm-co2-emissions-reduction-targets-2030-approved-science-based-targets-0 (Accessed 12 Feb 2023)

  5. ‘Aviation—Analysis’, IEA. https://www.iea.org/reports/aviation (Accessed 12 Feb 2023)

  6. Stan Shparberg and Bob Lange, ‘Global Market Forecast 2022’. Airbus presentation

    Google Scholar 

  7. Mosely, ‘As air travel rebounds, boeing forecasts demand for more than 41,000 new airplanes by 2041’, MediaRoom (2022). https://boeing.mediaroom.com/2022-07-16-As-Air-Travel-Rebounds,-Boeing-Forecasts-Demand-for-More-than-41,000-New-Airplanes-by-2041 (Accessed 12 Feb 2023)

  8. Fred Pearce, ‘How airplane contrails are helping make the planet warmer’, Yale E360. https://e360.yale.edu/features/how-airplane-contrails-are-helping-make-the-planet-warmer (Accessed 12 Feb 2023)

  9. ‘ATAG’. https://www.atag.org/our-activities/climate-change.html (Accessed Feb. 12, 2023).

  10. IATA (77th IATA Annual General Meeting). (2021). ‘Resolution on the industry’s commitment to reach net zero carbon emissions by 2050’

    Google Scholar 

  11. Advisory Group for Aerospace Research and Development (AGARD), Advanced Aero-Engine Concepts and Controls (1996). Accessed: 12 Feb 2023. [Online]. Available: http://archive.org/details/DTIC_ADA311466

  12. Dorfman, M.R., Dwivedi, G., Dambra, C., Wilson, S.: Perspective: Challenges in the aerospace marketplace and growth opportunities for thermal spray. J. Therm. Spray Technol. 31(4), 672–684 (2022). https://doi.org/10.1007/s11666-022-01351-x

    Article  CAS  Google Scholar 

  13. Paquin, S., Cariou, R.P., Flamme, T.M., Rollinger, A.B.V.: Turbine blade having an improved structure. WO2018189434A3 (2018)

    Google Scholar 

  14. Rollinger, A.B.V., Cariou, R.P., Flamme, T.M., Paquin, S.: Turbine blade comprising a cooling circuit. US10844733B2 (2020)

    Google Scholar 

  15. Vagge, S.T., Ghogare, S.: Thermal barrier coatings: review. Mater. Today: Proc. 56, 1201–1216 (2022). https://doi.org/10.1016/j.matpr.2021.11.170

    Article  CAS  Google Scholar 

  16. Feuerstein, A., Knapp, J., Taylor, T., Ashary, A., Bolcavage, A., Hitchman, N.: Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review. J. Therm. Spray Technol. 17(2), Art. no. 2 (2008). https://doi.org/10.1007/s11666-007-9148-y

  17. Vardelle, A., Moreau, C., Themelis, N.J., Chazelas, C.: A perspective on plasma spray technology. Plasma Chem. Plasma Process. (2015). https://doi.org/10.1007/s11090-014-9600-y

    Article  Google Scholar 

  18. Kumar, N., Gupta, M., Mack, D.E., Mauer, G., Vaßen, R.: Columnar thermal barrier coatings produced by different thermal spray processes. J. Therm. Spray Technol. 30(6), 1437–1452 (2021). https://doi.org/10.1007/s11666-021-01228-5

    Article  CAS  Google Scholar 

  19. Bernard, B., Bianchi, L., Malié, A., Joulia, A., Rémy, B.: Columnar suspension plasma sprayed coating microstructural control for thermal barrier coating application. J. Euro. Ceram. Soc. 36(4), Art. no. 4 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.018

  20. Kebriyaei, A., Rahimipour, M.R., Razavi, M., Alizade Herfati, A.: Effect of solution precursor on microstructure and high-temperature properties of the thermal barrier coating made by solution precursor plasma spray (SPPS) process. J. Therm. Spray Technol. (2022) https://doi.org/10.1007/s11666-022-01470-5

  21. Pujol, G., Ansart, F., Bonino, J.-P., Malié, A., Hamadi, S.: Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications. Surf. Coat. Technol. 237, 71–78 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.055

    Article  CAS  Google Scholar 

  22. Wellman, R.G., Nicholls, J.R.: A review of the erosion of thermal barrier coatings. J. Phys. D Appl. Phys. 40(16), R293 (2007). https://doi.org/10.1088/0022-3727/40/16/R01

    Article  CAS  Google Scholar 

  23. Bacos, M.P. et al.: 10 Years-activities at Onera on advanced thermal barrier coatings. AerospaceLab, no. 3, Art. no. 3 (2011)

    Google Scholar 

  24. Darolia, R.: Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 58(6), 315–348 (2013). https://doi.org/10.1179/1743280413Y.0000000019

    Article  CAS  Google Scholar 

  25. Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I.: Thermal spray fundamentals. Springer US (2014). https://doi.org/10.1007/978-0-387-68991-3

  26. Vardelle, A. et al.: The 2016 thermal spray roadmap. J. Therm. Spray Technol. 25(8), Art. no. 8 (2016). https://doi.org/10.1007/s11666-016-0473-x

  27. Ruelle, C., Goutier, S., Rat, V., Keromnes, A., Chazelas, C., Meillot, E.: Study of the electric arc dynamics in a cascaded-anode plasma torch. Surface Coatings Technol. (2023)

    Google Scholar 

  28. Pfender, E.: Fundamental studies associated with the plasma spray process. Surf. Coat. Technol. 34(1), 1–14 (1988). https://doi.org/10.1016/0257-8972(88)90083-7

    Article  CAS  Google Scholar 

  29. Zhukovskii, R., Chazelas, C., Vardelle, A., Rat, V.: Control of the arc motion in DC plasma spray torch with a cascaded anode. J. Therm. Spray Technol. 29(1), 3–12 (2020). https://doi.org/10.1007/s11666-019-00969-8

    Article  Google Scholar 

  30. Fauchais, P., Coudert, J.F., Vardelle, M., Vardelle, A., Denoirjean, A.: Diagnostics of thermal spraying plasma jets. JTST 1(2), 117–128 (1992). https://doi.org/10.1007/BF02659011

    Article  CAS  Google Scholar 

  31. Vardelle, M., Vardelle, A., Leger, A.C., Fauchais, P., Gobin, D.: Influence of particle parameters at impact on splat formation and solidification in plasma spraying processes. JTST 4(1), 50–58 (1995). https://doi.org/10.1007/BF02648528

    Article  CAS  Google Scholar 

  32. Blanchi, L., Grimaud, A., Blein, F., Lucchèse, P., Fauchais, P.: Comparison of plasma-sprayed alumina coatings by RF and DC plasma spraying. JTST 4(1), 59–66 (1995). https://doi.org/10.1007/BF02648529

    Article  Google Scholar 

  33. Mauer, G., Vaßen, R., Stöver, D.: Comparison and Applications of DPV-2000 and accuraspray-g3 diagnostic systems. J. Therm. Spray Technol. 16(3), 414–424 (2007). https://doi.org/10.1007/s11666-007-9047-2

    Article  CAS  Google Scholar 

  34. Hui, R., et al.: Thermal plasma spraying for SOFCs: applications, potential advantages, and challenges. J. Power. Sources 170(2), 308–323 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.075

    Article  CAS  Google Scholar 

  35. Clarke, D.R., Oechsner, M., Padture, N.P.: Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37(10), Art. no. 10 (2012) https://doi.org/10.1557/mrs.2012.232

  36. Padture, N.P.: Thermal barrier coatings for gas-turbine engine applications. Science 296(5566), Art. no. 5566 (2002). https://doi.org/10.1126/science.1068609

  37. Rat, V., Chazelas, C., Goutier, S., Keromnes, A., Mariaux, G., Vardelle, A.: In-flight mechanisms in suspension plasma spraying: Issues and perspectives. J. Therm. Spray Technol. 31(4), 699–715 (2022). https://doi.org/10.1007/s11666-022-01376-2

    Article  Google Scholar 

  38. Łatka, L.: Thermal barrier coatings manufactured by suspension plasma spraying—a review. Adv. Mater. Sci. 18(3), 95–117 (2018). https://doi.org/10.1515/adms-2017-0044

    Article  Google Scholar 

  39. Sokołowski, P., Kozerski, S., Pawłowski, L., Ambroziak, A.: The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings. Surf. Coat. Technol. 260, 97–106 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.078

    Article  CAS  Google Scholar 

  40. Caio, F., Moreau, C.: Influence of substrate shape and roughness on coating microstructure in suspension plasma spray. Coatings 9(11), 746 (2019). https://doi.org/10.3390/coatings9110746

    Article  CAS  Google Scholar 

  41. VanEvery, K., et al.: Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J. Therm. Spray Technol. 20(4), 817–828 (2011). https://doi.org/10.1007/s11666-011-9632-2

    Article  CAS  Google Scholar 

  42. Aubignat, E., et al.: Optimization of the injection with a twin-fluid atomizer for suspension plasma spray process using three non-intrusive diagnostic tools. J. Vis. 19(1), 21–36 (2016). https://doi.org/10.1007/s12650-015-0281-2

    Article  CAS  Google Scholar 

  43. Zhao, Y., et al.: Influence of substrate properties on the formation of suspension plasma sprayed coatings. J. Therm. Spray Technol. 27(1), 73–83 (2018). https://doi.org/10.1007/s11666-017-0671-1

    Article  CAS  Google Scholar 

  44. Ganvir, A., Calinas, R.F., Markocsan, N., Curry, N., Joshi, S.: Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings. J. Eur. Ceram. Soc. 39(2), 470–481 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.023

    Article  CAS  Google Scholar 

  45. Joulia, A., Duarte, W., Goutier, S., Vardelle, M., Vardelle, A., Rossignol, S.: Tailoring the spray conditions for suspension plasma spraying. J. Therm. Spray Technol., 24(1), Art. no. 1 (2015) https://doi.org/10.1007/s11666-014-0184-0

  46. Bernard, B., et al.: Effect of suspension plasma-sprayed YSZ columnar microstructure and bond coat surface preparation on thermal barrier coating properties. J. Therm. Spray Technol. 26(6), 1025–1037 (2017). https://doi.org/10.1007/s11666-017-0584-z

    Article  CAS  Google Scholar 

  47. Curry, N., Tang, Z., Markocsan, N., Nylén, P.: Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings—thermal and lifetime performance. Surf. Coat. Technol. 268, 15–23 (2015). https://doi.org/10.1016/j.surfcoat.2014.08.067

    Article  CAS  Google Scholar 

  48. Bidron, G., Goutier, S., Vardelle, M., Denoirjean, P., Fauchais, P.: Flattening behavior of micro- and nano-sized yttria-stabilized zirconia particles plasma-sprayed on smooth preheated (610 K) nickel substrate: part I. J. Phys. D Appl. Phys. 52(16), 165201 (2019). https://doi.org/10.1088/1361-6463/aafd81

    Article  CAS  Google Scholar 

  49. Dolmaire, A., Goutier, S., Vardelle, M., Geffroy, P.-M., Joulia, A.: Investigations on particle behavior at the stagnation zone for a suspension particle jet in plasma spray conditions. J. Therm. Spray Technol. 30(4), 1001–1014 (2021). https://doi.org/10.1007/s11666-021-01174-2

    Article  CAS  Google Scholar 

  50. Delbos, C., Fazilleau, J., Rat, V., Coudert, J.F., Fauchais, P., Pateyron, B.: Phenomena involved in suspension plasma spraying part 2: Zirconia particle treatment and coating formation. Plasma Chem. Plasma Process. 26(4), 393–414 (2006). https://doi.org/10.1007/s11090-006-9020-8

    Article  CAS  Google Scholar 

  51. Oberste-Berghaus, J., Bouaricha, S., Legoux, J.-G., Moreau, C.: Injection conditions and in-flight particle states in suspension plasma spraying of alumina and zirconia nano-ceramics. In: Presented at the Proceedings of the Internation Thermal Spray Conference, pp. 2–4. Basel (2005)

    Google Scholar 

  52. Etchart-Salas, R., et al.: Influence of plasma instabilities in ceramic suspension plasma spraying. J. Therm. Spray Technol. 16(5), 857–865 (2007). https://doi.org/10.1007/s11666-007-9084-x

    Article  CAS  Google Scholar 

  53. Dolmaire, A., et al.: Benefits of hydrogen in a segmented-anode plasma torch in suspension plasma spraying. J. Therm. Spray Technol. 30(1), 236–250 (2021). https://doi.org/10.1007/s11666-020-01134-2

    Article  Google Scholar 

  54. Seshadri, R.C., Dwivedi, G., Viswanathan, V., Sampath, S.: Characterizing suspension plasma spray coating formation dynamics through curvature measurements. J. Therm. Spray Technol. 25(8), 1666–1683 (2016). https://doi.org/10.1007/s11666-016-0460-2

    Article  CAS  Google Scholar 

  55. Ganvir, A., Curry, N., Björklund, S., Markocsan, N., Nylén, P.: Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS). J. Therm. Spray Technol. 24(7), 1195–1204 (2015). https://doi.org/10.1007/s11666-015-0263-x

    Article  CAS  Google Scholar 

  56. Chen, X., Kuroda, S., Ohnuki, T., Araki, H., Watanabe, M., Sakka, Y.: Effects of Processing parameters on the deposition of yttria partially stabilized zirconia coating during suspension plasma spray. J. Am. Ceram. Soc. 99(11), 3546–3555 (2016). https://doi.org/10.1111/jace.14393

    Article  CAS  Google Scholar 

  57. Chen, X., et al.: Highly segmented thermal barrier coatings deposited by suspension plasma spray: effects of spray process on microstructure. J. Therm. Spray Technol. 25(8), 1638–1649 (2016). https://doi.org/10.1007/s11666-016-0469-6

    Article  CAS  Google Scholar 

  58. Zhou, D., Guillon, O., Vaßen, R.: Development of YSZ thermal barrier coatings using axial suspension plasma spraying. Coatings 7(8), 120 (2017). https://doi.org/10.3390/coatings7080120

    Article  CAS  Google Scholar 

  59. Fauchais, P., Etchart-Salas, R., Rat, V., Coudert, J.F., Caron, N., Wittmann-Ténèze, K.: Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J. Therm. Spray Technol. 17(1), 31–59 (2008). https://doi.org/10.1007/s11666-007-9152-2

    Article  CAS  Google Scholar 

  60. Jadidi, M., Mousavi, M., Moghtadernejad, S., Dolatabadi, A.: A three-dimensional analysis of the suspension plasma spray impinging on a flat substrate. J. Therm. Spray Tech. 24(1), 11–23 (2015). https://doi.org/10.1007/s11666-014-0166-2

    Article  CAS  Google Scholar 

  61. Phillips, C.G., Kaye, S.R.: The influence of the viscous boundary layer on the critical stokes number for particle impaction near a stagnation point. J. Aerosol Sci. 30(6), 709–718 (1999). https://doi.org/10.1016/S0021-8502(98)00766-6

    Article  CAS  Google Scholar 

  62. Farrokhpanah, A., Coyle, T.W., Mostaghimi, J.: Numerical study of suspension plasma spraying. J. Therm. Spray Tech. 26(1), 12–36 (2017). https://doi.org/10.1007/s11666-016-0502-9

    Article  Google Scholar 

  63. Pourang, K., Moreau, C., Dolatabadi, A.: Effect of substrate and its shape on in-flight particle characteristics in suspension plasma spraying. J. Therm. Spray Technol., 25(1), Art. no. 1 (2016). https://doi.org/10.1007/s11666-015-0342-z

  64. Bernard, B.: Barrières thermiques par projection plasma de suspensions : développement et caractérisation de microstructures à faible conductivité thermique. Université de Lorraine (2016)

    Google Scholar 

  65. Joeris, J., Tiwari, A., Brinckmann, S., Kurze, F., Guillon, O., Vaßen, R.: Evaluation of major factors influencing the TBC topcoat formation in axial suspension plasma spraying (SPS). Int. J. Appl. Ceram. Technol. https://doi.org/10.1111/ijac.14288.

  66. Zhao, Y., et al.: Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying. Surf. Coat. Technol. 249, 48–55 (2014). https://doi.org/10.1016/j.surfcoat.2014.03.046

    Article  CAS  Google Scholar 

  67. Curry, N., VanEvery, K., Snyder, T., Markocsan, N.: Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings. Coatings 4(3), 630–650 (2014). https://doi.org/10.3390/coatings4030630

    Article  CAS  Google Scholar 

  68. Gupta, M., Markocsan, N., Li, X.-H., Kjellman, B.: Development of bondcoats for high lifetime suspension plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 371, 366–377 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.013

    Article  CAS  Google Scholar 

  69. Mahade, S., et al.: Understanding the effect of material composition and microstructural design on the erosion behavior of plasma sprayed thermal barrier coatings. Appl. Surf. Sci. 488, 170–184 (2019). https://doi.org/10.1016/j.apsusc.2019.05.245

    Article  CAS  Google Scholar 

  70. Lima, R.S., Guerreiro, B.M.H., Aghasibeig, M.: Microstructural characterization and room-temperature erosion behavior of as-deposited SPS, EB-PVD and APS YSZ-based TBCs. J. Therm. Spray Technol. 28(1), 223–232 (2019). https://doi.org/10.1007/s11666-018-0763-6

    Article  CAS  Google Scholar 

  71. Bernard, B. et al.: Thermal insulation properties of YSZ coatings: Suspension Plasma Spraying (SPS) versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS). Surface Coatings Technol. (2016) https://doi.org/10.1016/j.surfcoat.2016.06.010

  72. Ganvir, A., Curry, N., Govindarajan, S., Markocsan, N.: Characterization of Thermal barrier coatings produced by various thermal spray techniques using solid powder, suspension, and solution precursor feedstock material. Int. J. Appl. Ceram. Technol. 13(2), 324–332 (2016). https://doi.org/10.1111/ijac.12472

    Article  CAS  Google Scholar 

  73. Su-ungkavatin, P., Tiruta-Barna, L., Hamelin, L.: Biofuels, electrofuels, electric or hydrogen?: a review of current and emerging sustainable aviation systems. Prog. Energy Combust. Sci. 96, 101073 (2023). https://doi.org/10.1016/j.pecs.2023.101073

    Article  Google Scholar 

  74. Cabrera, E., de Sousa, J.M.M.: Use of sustainable fuels in aviation—a review. Energies 15(7), Art. no. 7 (2022). https://doi.org/10.3390/en15072440

  75. Irimiea, C. et al.: ALTERNATE: Experimental and modeling study of soot formation in high-pressure kerosene and SAF combustion. In: Presented at the Towards Sustainable Aviation Summit 2022 (TSAS 2022) (2022). Accessed: 01 Mar 2023. [Online]. Available: https://hal.science/hal-03943930

  76. Chen, W.R., Zhao, L.R.: Review—volcanic ash and its influence on aircraft engine components. Proc. Eng. 99, 795–803 (2015). https://doi.org/10.1016/j.proeng.2014.12.604

    Article  Google Scholar 

  77. Martin, R.V.: Satellite remote sensing of surface air quality. Atmos. Environ. 42(34), 7823–7843 (2008). https://doi.org/10.1016/j.atmosenv.2008.07.018

    Article  CAS  Google Scholar 

  78. Hoff, R.M., Christopher, S.A.: Remote sensing of particulate pollution from space: have we reached the promised land? J. Air Waste Manag. Assoc. 59(6), 645–675 (2009). https://doi.org/10.3155/1047-3289.59.6.645

    Article  CAS  Google Scholar 

  79. ‘Ambient (outdoor) air pollution’. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (Accessed 22 Feb 2023)

  80. Nieto, A., Agrawal, R., Bravo, L., Hofmeister-Mock, C., Pepi, M., Ghoshal, A.: Calcia–magnesia–alumina–silicate (CMAS) attack mechanisms and roadmap towards Sandphobic thermal and environmental barrier coatings. Int. Mater. Rev. 66(7), 451–492 (2021). https://doi.org/10.1080/09506608.2020.1824414

    Article  CAS  Google Scholar 

  81. Donkelaar van, A., et al.: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ. Health Perspect. 118(6), 847–855 (2010). https://doi.org/10.1289/ehp.0901623

  82. Amato, F., et al.: Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. J. Environ. Monit. 12(4), 854–862 (2010). https://doi.org/10.1039/B925439K

    Article  CAS  Google Scholar 

  83. Shahsavani, A., et al.: The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. J. Arid Environ. 77, 72–83 (2012). https://doi.org/10.1016/j.jaridenv.2011.09.007

    Article  Google Scholar 

  84. Amanollahi, J., Kaboodvandpour, S., Abdullah, A.M., Ramli, M.F.: Accuracy assessment of moderate resolution image spectroradiometer products for dust storms in semiarid environment. Int. J. Environ. Sci. Technol. 8(2), 373–380 (2011). https://doi.org/10.1007/BF03326224

    Article  Google Scholar 

  85. Altuwayjiri, A., Pirhadi, M., Kalafy, M., Alharbi, B., Sioutas, C.: Impact of different sources on the oxidative potential of ambient particulate matter PM10 in Riyadh, Saudi Arabia: A focus on dust emissions. Sci. Total Environ. (2022). https://doi.org/10.1016/j.scitotenv.2021.150590

  86. Amarloei, A., Fazlzadeh, M., Jafari, A.J., Zarei, A., Mazloomi, S.: Particulate matters and bioaerosols during Middle East dust storms events in Ilam, Iran. Microchem. J. 152, 104280 (2020). https://doi.org/10.1016/j.microc.2019.104280

    Article  CAS  Google Scholar 

  87. Tsiouri, V., Kakosimos, K.E., Kumar, P.: Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area—A review. Air Qual. Atmos. Health 8(1), 67–80 (2015). https://doi.org/10.1007/s11869-014-0277-4

    Article  CAS  Google Scholar 

  88. Saliba, N.A., El Jam, F., El Tayar, G., Obeid, W., Roumie, M.: Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmos. Res. 97(1), 106–114 (2010). https://doi.org/10.1016/j.atmosres.2010.03.011

    Article  CAS  Google Scholar 

  89. Al-Zu’bi, A.: Evaluation of the Jordanian environmental legislations. World Appl. Sci. J. 14(10), 1438–1444 (2011)

    Google Scholar 

  90. Al Katheeri, E., Al Jallad, F., Al Omar, M.: Assessment of gaseous and particulate pollutants in the ambient air in Al Mirfa City, United Arab Emirates. J. Environ. Protect. 3(7), 640–647 (2012)

    Google Scholar 

  91. Alexander, D.: Volcanic ash in the atmosphere and risks for civil aviation: a study in European crisis management. Int. J. Disaster Risk Sci. 4(1), 9–19 (2013). https://doi.org/10.1007/s13753-013-0003-0

    Article  Google Scholar 

  92. Bolić, T., Sivčev, Ź: Eruption of Eyjafjallajökull in Iceland: experience of European air traffic management. Transp. Res. Record 2214(1), 136–143 (2011). https://doi.org/10.3141/2214-17

    Article  Google Scholar 

  93. Mazzocchi, M., Hansstein, F., Ragona, M.: The 2010 volcanic ash cloud and its financial impact on the European airline industry. In CESifo Forum: IFO Institut für Wirtschaftsforschung an der Universität München (pp. 92–100) (2010)

    Google Scholar 

  94. Ragona, M., Hannstein, F., Mazzocchi, M.: The financial impact of the volcanic ash crisis on the European airline industry. Governing Disasters: The Challenges of Emergency Risk Regulafion, pp. 27–50 (2011)

    Google Scholar 

  95. Elgobashi, S.: An updated classification map of particle-laden turbulent flows. In IUTAM Symposium on Computational Approaches to Multiphase Flow (pp. 3–10). Springer (2006)

    Google Scholar 

  96. Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52(4), 309–329 (1994). https://doi.org/10.1007/BF00936835

    Article  Google Scholar 

  97. Bojdo, N., Filippone, A., Parkes, B., Clarkson, R.: Aircraft engine dust ingestion following sand storms. Aeros. Sci. Technol. 106, 106072 (2020). https://doi.org/10.1016/j.ast.2020.106072

    Article  Google Scholar 

  98. Bojdo, N.: Rotorcraft Engine Air Particle Separation. University of Manchester (2013)

    Google Scholar 

  99. Bojdo, N., Ellis, M., Filippone, A., Jones, M., Pawley, A.: Particle-vane interaction probability in gas turbine engines. J. Turbomachinery 141(9) (2019). https://doi.org/10.1115/1.4043953

  100. Bojdo, N., Filippone, A.: A simple model to assess the role of dust composition and size on deposition in rotorcraft engines. Aerospace 6(4), Art. no. 4 (2019) https://doi.org/10.3390/aerospace6040044

  101. Ellis, M., Bojdo, N., Filippone, A., Clarkson, R.: Monte Carlo predictions of aero-engine performance degradation due to particle ingestion. Aerospace 8(6), Art. no. 6 (2021) https://doi.org/10.3390/aerospace8060146

  102. Abdelouhab, S., Podor, R., Rapin, C., Toplis, M.J., Berthod, P., Vilasi, M.: Determination of Na2O activities in silicate melts by EMF measurements. J. Non-Crystalline Solids 354(26), Art. no. 26 (2008) https://doi.org/10.1016/j.jnoncrysol.2007.12.003

  103. Craig, M., Ndamka, N.L., Wellman, R.G., Nicholls, J.R.: CMAS degradation of EB-PVD TBCs: the effect of basicity. Surface Coatings Technol. 270, 145–153 (2015). https://doi.org/10.1016/j.surfcoat.2015.03.009

    Article  CAS  Google Scholar 

  104. Phalippou, J.: Verres: aspects théoriques. Techniques de l’ingénieur. Sci. Fondamentales 7(AF3600), AF3600–1 (2001)

    Google Scholar 

  105. Wu, Y., et al.: Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings. J. Mater. Sci. Technol. 35(3), 440–447 (2019). https://doi.org/10.1016/j.jmst.2018.09.046

    Article  CAS  Google Scholar 

  106. Ghosh, D., Chatterjee, A.: Iron Making and Steelmaking: Theory and PRACTICE. PHI Learning Pvt. Ltd (2008)

    Google Scholar 

  107. Petitjean, C., Panteix, P.-J., Rapin, C., Vilasi, M., Podor, R.: Electrochemical behavior of glass melts: application to corrosion processes. In: 2nd International summer school on nuclear glass wasteform: structure, Properties, and long-term behavior (SUMGLASS 2013), Angeli, F., Delaye, J.M., Schuller, S., Pinet, O., Rebiscoul, D., Gin, S., Peuget, S., (eds.). Procedia Materials Science, vol. 7. pp. 101–110 (2014). https://doi.org/10.1016/j.mspro.2014.10.014

  108. Chellah, N., Vidal-Setif, M.H., Petitjean, C., Panteix, P.J., Rapin, C., Vilasi, M.: Calcium-Magnesium-Alumino-Silicate (CMAS) degradation of thermal barrier coatings: solubility of different oxides from ZrO2-Nd2O3 system in a model CMAS. Presented at the HTCPM8, Les Embiez (2012)

    Google Scholar 

  109. Bodsworth, C.: HBB. Physical Chemistry of Iron and Steel Manufacture (1972)

    Google Scholar 

  110. Jackson, R.W., Zaleski, E.M., Poerschke, D.L., Hazel, B.T., Begley, M.R., Levi, C.G.: Interaction of molten silicates with thermal barrier coatings under temperature gradients. Acta Mater. 89, 396–407 (2015). https://doi.org/10.1016/j.actamat.2015.01.038

    Article  CAS  Google Scholar 

  111. Engelbrecht, J.P., McDonald, E.V., Gillies, J.A., Jayanty, R.K.M., Casuccio, G., Gertler, A.W.: Characterizing mineral dusts and other aerosols from the middle east—part 1: ambient sampling. Inhalation Toxicol. 21(4), 297–326 (2009). https://doi.org/10.1080/08958370802464273

    Article  CAS  Google Scholar 

  112. Aygun, A., Vasiliev, A.L., Padture, N.P., Ma, X.: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Materialia 55(20), Art. no. 20 (2007) https://doi.org/10.1016/j.actamat.2007.08.028

  113. Borom, M.P., Johnson, C.A., Peluso, L.A.: Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface Coatings Technol. 86, 116–126 (1996)

    Article  Google Scholar 

  114. Krämer, S., Yang, J., Levi, C.G., Johnson, C.A.: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits. J. Am. Ceram. Soc., 89(10), Art. no. 10 (2006) https://doi.org/10.1111/j.1551-2916.2006.01209.x

  115. Morelli, S., et al.: CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes. J. Euro. Ceram. Soc. 40(12), 4084–4100 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.04.058

    Article  CAS  Google Scholar 

  116. Wellman, R., Whitman, G., Nicholls, J.R.: CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage. Int. J. Refractory Metals Hard Mater. 28(1), Art. no. 1 (2010) https://doi.org/10.1016/j.ijrmhm.2009.07.005

  117. Vidal-Sétif, M.H., Rio, C., Boivin, D., Lavigne, O.: Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS. Surface Coatings Technol. 239, 41–48 (2014). https://doi.org/10.1016/j.surfcoat.2013.11.014

    Article  CAS  Google Scholar 

  118. Wilke, B.M., Duke, B.J., Jimoh, W.L.O.: Mineralogy and chemistry of harmattan dust in Northern Nigeria. CATENA 11(1), 91–96 (1984). https://doi.org/10.1016/S0341-8162(84)80009-0

    Article  CAS  Google Scholar 

  119. Goudie, A.S.: Dust storms and their geomorphological implications. J. Arid Environ. 1(4), 291–311 (1978). https://doi.org/10.1016/S0140-1963(18)31712-9

    Article  Google Scholar 

  120. Taylor, H.E., Lichte, F.E.: Chemical composition of Mount St. Helens volcanic ash. Geophys. Res. Lett. 7(11), 949–952 (1980). https://doi.org/10.1029/GL007i011p00949

    Article  CAS  Google Scholar 

  121. Rai, A.K., Bhattacharya, R.S., Wolfe, D.E., Eden, T.J.: CMAS-resistant thermal barrier coatings (TBC): CMAS-resistant thermal barrier coatings. Int. J. Appl. Ceram. Technol. 7(5), Art. no. 5 (2009) https://doi.org/10.1111/j.1744-7402.2009.02373.x

  122. Braue, W.: Environmental stability of the YSZ layer and the YSZ/TGO interface of an in-service EB-PVD coated high-pressure turbine blade. J. Mater. Sci. 44(7), 1664–1675 (2009). https://doi.org/10.1007/s10853-008-3215-8

    Article  CAS  Google Scholar 

  123. Fang, H. et al.: Comparative study on failure behavior of promising CMAS-resistant plasma-sprayed thermal barrier coatings in burner rig test with/without CMAS deposition. Ceram. Int. (2022) https://doi.org/10.1016/j.ceramint.2022.12.099

  124. Ndamka, N.L., Wellman, R.G., Nicholls, J.R.: The degradation of thermal barrier coatings by molten deposits: introducing the concept of basicity. Mater. High Temp. 33(1), Art. no. 1 (2016) https://doi.org/10.1179/1878641315Y.0000000017

  125. Perrudin, F.: Étude de la dissolution de diverses terres rares dans des liquides silicatés (CMAS) de composition variable: contribution au développement des barrières thermiques en ZRO2-RE2O3 (RE=La-Lu). Université de Lorraine (2018)

    Google Scholar 

  126. Stott, F.H., De Wet, D.J., Taylor, R.: Degradation of thermal-barrier coatings at very high temperatures. MRS Bull. 19(10), Art. no. 10 (1994)

    Google Scholar 

  127. Svancarek, P., et al.: A comparison of the microstructure and mechanical properties of two liquid phase sintered aluminas containing different molar ratios of calcia–silica sintering additives. J. Euro. Ceram. Soc. 24(12), 3453–3463 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.10.032

    Article  CAS  Google Scholar 

  128. Poerschke, D.L., Barth, T.L., Levi, C.G.: Equilibrium relationships between thermal barrier oxides and silicate melts. Acta Mater. 120, 302–314 (2016). https://doi.org/10.1016/j.actamat.2016.08.077

    Article  CAS  Google Scholar 

  129. Poerschke, D.L., Jackson, R.W., Levi, C.G.: Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu. Rev. Mater. Res., 47(1), Art. no. 1 (2017) https://doi.org/10.1146/annurev-matsci-010917-105000

  130. Perrudin, F., Vidal-Sétif, M.H., Rio, C., Petitjean, C., Panteix, P.J., Vilasi, M.: Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts. J. Euro. Ceram. Soc. 39(14), Art. no. 14 (2019) https://doi.org/10.1016/j.jeurceramsoc.2019.06.036

  131. Levi, C.G., Hutchinson, J.W., Vidal-Sétif, M.-H., Johnson, C.A.: Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 37(10), Art. no. 10 (2012) https://doi.org/10.1557/mrs.2012.230

  132. Mercer, C., Faulhaber, S., Evans, A.G., Darolia, R.: A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta Materialia 53(4), Art. no. 4 (2005) https://doi.org/10.1016/j.actamat.2004.11.028

  133. Chen, X.: Calcium–magnesium–alumina–silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings. Surface Coatings Technol. 200(11), 3418–3427 (2006). https://doi.org/10.1016/j.surfcoat.2004.12.029

    Article  CAS  Google Scholar 

  134. Evans, A.G., Hutchinson, J.W.: The mechanics of coating delamination in thermal gradients. Surface Coatings Technol. 201(18), 7905–7916 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.029

    Article  CAS  Google Scholar 

  135. Vogel, A., Clarkson, R., Durant, A., Cassiani, M., Stohl, A.: Volcanic ash ingestion by a large gas turbine aeroengine: fan-particle interaction, EPSC2016–15419 (2016)

    Google Scholar 

  136. Taltavull, C., Dean, J., Clyne, T.W.: Adhesion of volcanic ash particles under controlled conditions and implications for their deposition in gas turbines. Adv. Eng. Mater. 18(5), 803–813 (2016). https://doi.org/10.1002/adem.201500371

    Article  CAS  Google Scholar 

  137. Holgate, C.S., Seward, G.G.E., Ericks, A.R., Poerschke, D.L., Levi, C.G.: Dissolution and diffusion kinetics of yttria-stabilized zirconia into molten silicates. J. Euro. Ceram. Soc. 41(3), 1984–1994 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.056

    Article  CAS  Google Scholar 

  138. Strangman, T., Raybould, D., Jameel, A., Baker, W.: Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils. Surface Coatings Technol., 202(4–7), Art. no. 4–7 (2007) https://doi.org/10.1016/j.surfcoat.2007.06.067

  139. VanValzah, J.R., Eaton, H.E.: Cooling rate effects on the tetragonal to monoclinic phase transformation in aged plasma-sprayed yttria partially stabilized zirconia. Surface Coatings Technol., 46(3), Art. no. 3 (1991) https://doi.org/10.1016/0257-8972(91)90171-R

  140. Krämer, S. et al.: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater. Sci. Eng.: A 490(1–2), Art. no. 1–2 (2008) https://doi.org/10.1016/j.msea.2008.01.006

  141. Vidal-Setif, M.H., Chellah, N., Rio, C., Sanchez, C., Lavigne, O.: Calcium–magnesium–alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs. Surface Coatings Technol. 208, 39–45 (2012). https://doi.org/10.1016/j.surfcoat.2012.07.074

    Article  CAS  Google Scholar 

  142. A. D. Gledhill, K. M. Reddy, J. M. Drexler, K. Shinoda, S. Sampath, and N. P. Padture, ‘Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings’, Materials Science and Engineering: A, vol. 528, no. 24, Art. no. 24, Sep. 2011, doi: https://doi.org/10.1016/j.msea.2011.06.041.

  143. Stott, F.H., Taylor, R., de Wet, D.J.: The effects of molten silicate deposits on the stability of thermal barrier coatings for turbine applications at very high temperatures. In: Proceedings of Advanced Materials (1992)

    Google Scholar 

  144. Krause, A.R., Garces, H.F., Dwivedi, G., Ortiz, A.L., Sampath, S., Padture, N.P.: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 105, 355–366 (2016). https://doi.org/10.1016/j.actamat.2015.12.044

    Article  CAS  Google Scholar 

  145. Kim, J., Dunn, M.G., Baran, A.J., Wade, D.P., Tremba, E.L.: Deposition of volcanic materials in the hot sections of two gas turbine engines. J. Eng. Gas Turbines Power 115(3), 641–651 (1993). https://doi.org/10.1115/1.2906754

    Article  CAS  Google Scholar 

  146. Döring, F., Staudacher, S., Koch, C., Weißschuh, M.: Modeling particle deposition effects in aircraft engine compressors. J. Turbomachinery 139(5) (2017). https://doi.org/10.1115/1.4035072

  147. Clarkson, R., Simpson, H.: Maximising airspace use during volcanic eruptions: matching engine durability against ash cloud occurrence. In: Proceedings of the NATO STO AVT-272 Specialists Meeting on: Impact of Volcanic Ash Clouds on Military Operations, pp. 15–17. Vilnius, Lithuania (2017)

    Google Scholar 

  148. Clarkson, R.J., Majewicz, E.J., Mack, P.: A re-evaluation of the 2010 quantitative understanding of the effects volcanic ash has on gas turbine engines. Proc. Inst. Mech. Eng. Part G: J. Aero. Eng. 230(12), 2274–2291 (2016). https://doi.org/10.1177/0954410015623372

    Article  Google Scholar 

  149. Li, D., Jiang, P., Gao, R., Sun, F., Jin, X., Fan, X.: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion. J. Adv. Ceram. 10(3), 551–564 (2021). https://doi.org/10.1007/s40145-021-0457-2

    Article  CAS  Google Scholar 

  150. Shan, X., et al.: Buckling failure in air-plasma sprayed thermal barrier coatings induced by molten silicate attack. Scripta Mater. 113, 71–74 (2016). https://doi.org/10.1016/j.scriptamat.2015.09.029

    Article  CAS  Google Scholar 

  151. Chen, X., Wang, R., Yao, N., Evans, A.G., Hutchinson, J.W., Bruce, R.W.: Foreign object damage in a thermal barrier system: mechanisms and simulations. Mater. Sci. Eng.: A 352(1–2), Art. no. 1–2 (2003) https://doi.org/10.1016/S0921-5093(02)00905-X

  152. Zhang, G., Fan, X., Xu, R., Su, L., Wang, T.J.: Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system. Ceram. Int. 44(11), 12655–12663 (2018). https://doi.org/10.1016/j.ceramint.2018.04.065

    Article  CAS  Google Scholar 

  153. Peng, H., Wang, L., Guo, L., Miao, W., Guo, H., Gong, S.: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress Natl. Sci.: Mater. Int. 22(5), Art. no. 5 (2012) https://doi.org/10.1016/j.pnsc.2012.06.007

  154. Guo, L., Li, G., Gan, Z.: Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications. J. Adv. Ceram. 10(3), 472–481 (2021). https://doi.org/10.1007/s40145-020-0449-7

    Article  CAS  Google Scholar 

  155. Ndamka, N.L.: Microstructural damage of thermal barrier coatings due to CMAS. Cranfield University (2013)

    Google Scholar 

  156. Mahade, S., Curry, N., Björklund, S., Markocsan, N., Nylén, P.: Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue. J. Alloys Compounds 689, 1011–1019 (2016). https://doi.org/10.1016/j.jallcom.2016.07.333

    Article  CAS  Google Scholar 

  157. Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., Pettit, F.S.: Mechanisms controlling the durability of thermal barrier coatings. Progress Mater. Sci. 46(5), Art. no. 5 (2001)

    Google Scholar 

  158. Dryepondt, S., Porter, J.R., Clarke, D.R.: On the initiation of cyclic oxidation-induced rumpling of platinum-modified nickel aluminide coatings. Acta Mater. 57(6), 1717–1723 (2009). https://doi.org/10.1016/j.actamat.2008.12.015

    Article  CAS  Google Scholar 

  159. Spitsberg, I.T., Mumm, D.R., Evans, A.G.: On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings. Mater. Sci. Eng. A 394(1), 176–191 (2005). https://doi.org/10.1016/j.msea.2004.11.038

    Article  CAS  Google Scholar 

  160. Tolpygo, V.K., Clarke, D.R.: Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Mater. 48(13), 3283–3293 (2000). https://doi.org/10.1016/S1359-6454(00)00156-7

    Article  CAS  Google Scholar 

  161. Ruud, J.A., Bartz, A., Borom, M.P., Johnson, C.A.: Strength degradation and failure mechanisms of electron-beam physical-vapor-deposited thermal barrier coatings. J. Am. Ceramic Soc. 84(7), 1545–1552 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00875.x

    Article  CAS  Google Scholar 

  162. Giggins, C.S., Kear, B.H., Pettit, F.S., Tien, J.K.: Factors affecting adhesion of oxide scales on alloys. Metall. Trans. B 5(7), 1685–1688 (1974). https://doi.org/10.1007/BF02646343

    Article  CAS  Google Scholar 

  163. Evans, H.E.: Modelling oxide spallation. Mater. High Temperatures 12(2–3), 219–227 (1994). https://doi.org/10.1080/09603409.1994.11689489

    Article  CAS  Google Scholar 

  164. Tolpygo, V.K., Clarke, D.R.: On the rumpling mechanism in nickel-aluminide coatings: part II: characterization of surface undulations and bond coat swelling. Acta Mater. 52(17), 5129–5141 (2004). https://doi.org/10.1016/j.actamat.2004.07.023

    Article  CAS  Google Scholar 

  165. Tolpygo, V.K., Clarke, D.R., Murphy, K.S.: Oxidation-induced failure of EB-PVD thermal barrier coatings. Surface Coatings Technol 146–147, 124–131 (2001). https://doi.org/10.1016/S0257-8972(01)01482-7

    Article  Google Scholar 

  166. Zhao, H., Yu, Z., Wadley, H.N.G.: The influence of coating compliance on the delamination of thermal barrier coatings. Surface Coatings Technol 204(15), 2432–2441 (2010). https://doi.org/10.1016/j.surfcoat.2010.01.018

    Article  CAS  Google Scholar 

  167. Dong, H., Yang, G.-J., Cai, H.-N., Ding, H., Li, C.-X., Li, C.-J.: The influence of temperature gradient across YSZ on thermal cyclic lifetime of plasma-sprayed thermal barrier coatings. Ceramics Int., Part A 41(9), 11046–11056 (2015) https://doi.org/10.1016/j.ceramint.2015.05.049

  168. Zhu, D., Miller, R.A.: Determination of creep behavior of thermal barrier coatings under laser imposed high thermal and stress gradient conditions. J. Mater. Res. 14(1), 146–161 (1999). https://doi.org/10.1557/JMR.1999.0023

    Article  CAS  Google Scholar 

  169. Vaßen, R., Kagawa, Y., Subramanian, R., Zombo, P., Zhu, D.: Testing and evaluation of thermal-barrier coatings. MRS Bull. 37(10), 911–916 (2012). https://doi.org/10.1557/mrs.2012.235

    Article  CAS  Google Scholar 

  170. Musalek, R., Tesar, T., Medricky, J., Lukac, F., Lima, R.S.: High-temperature cycling of plasma sprayed multilayered NiCrAlY/YSZ/GZO/YAG thermal barrier coatings prepared from liquid feedstocks. J. Therm. Spray Tech. 30(1), 81–96 (2021). https://doi.org/10.1007/s11666-020-01107-5

    Article  CAS  Google Scholar 

  171. Zhu, D., Miller, R.A.: Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. J. Therm. Spray Tech. 9(2), 175–180 (2000). https://doi.org/10.1361/105996300770349890

    Article  CAS  Google Scholar 

  172. Nies, D., Pulz, R., Glaubitz, S., Finn, M., Rehmer, B., Skrotzki, B.: Testing of thermal barrier coatings by laser excitation. Adv. Eng. Mater. 12(12), 1224–1229 (2010). https://doi.org/10.1002/adem.201000212

    Article  CAS  Google Scholar 

  173. Wu, Y., et al.: Laser thermal gradient testing and fracture mechanics study of a thermal barrier coating. J. Therm. Spray Tech. 28(6), 1239–1251 (2019). https://doi.org/10.1007/s11666-019-00879-9

    Article  CAS  Google Scholar 

  174. Gentleman, M.M., Eldridge, J.I., Zhu, D.M., Murphy, K.S., Clarke, D.R.: Non-contact sensing of TBC/BC interface temperature in a thermal gradient. Surface Coatings Technol. 201(7), 3937–3941 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.102

    Article  CAS  Google Scholar 

  175. Jackson, R.W., Zaleski, E.M., Hazel, B.T., Begley, M.R., Levi, C.G.: Response of molten silicate infiltrated Gd2Zr2O7 thermal barrier coatings to temperature gradients. Acta Mater. 132, 538–549 (2017). https://doi.org/10.1016/j.actamat.2017.03.081

    Article  CAS  Google Scholar 

  176. Yang, L., Zhou, Y.C., Mao, W.G., Lu, C.: Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings. Appl. Phys. Lett. 93(23), 231906 (2008). https://doi.org/10.1063/1.3043458

    Article  CAS  Google Scholar 

  177. Wang, H., Dinwiddie, R.B.: Characterization of thermal barrier coatings using thermal methods. Adv. Eng. Mater. 3(7), 465–468 (2001). https://doi.org/10.1002/1527-2648(200107)3:7%3c465::AID-ADEM465%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  178. Voyer, J., Gitzhofer, F., Boulos, M.I.: Study of the performance of TBC under thermal cycling conditions using an acoustic emission rig. J. Therm. Spray Tech. 7(2), 181–190 (1998). https://doi.org/10.1361/105996398770350909

    Article  CAS  Google Scholar 

  179. Traeger, F., Vaßen, R., Rauwald, K.-H., Stöver, D.: Thermal cycling setup for testing thermal barrier coatings. Adv. Eng. Mater. 5(6), 429–432 (2003). https://doi.org/10.1002/adem.200300337

    Article  CAS  Google Scholar 

  180. Zhu, W., Li, Z.Y., Yang, L., Zhou, Y.C., Wei, J.F.: Real-time detection of CMAS corrosion failure in aps thermal barrier coatings under thermal shock. Exp. Mech. 60(6), 775–785 (2020). https://doi.org/10.1007/s11340-020-00603-7

    Article  CAS  Google Scholar 

  181. Steinke, T., Sebold, D., Mack, D.E., Vaßen, R., Stöver, D.: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surface Coatings Technol. 205(7), 2287–2295 (2010). https://doi.org/10.1016/j.surfcoat.2010.09.008

    Article  CAS  Google Scholar 

  182. Fox, D.S., Miller, R.A., Zhu, D., Perez, M., Cuy, M.D., Robinson, R.C.: Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory. E-17628 (2011)

    Google Scholar 

  183. Vaßen, R. et al.: Recent activities in the field of thermal barrier coatings including burner rig testing in the European Union. Adv. Eng. Mater., 10(10), Art. no. 10 (2008) https://doi.org/10.1002/adem.200800015

  184. Maurel, V. et al.: Recent Progress in local characterization of damage evolution in thermal barrier coating under thermal cycling. In: Superalloys 2020, Tin, S., Hardy, M., Clews,. J., Cormier, J., Feng, Q., Marcin, J., O’Brien, C., Suzuki, A. (eds.) The Minerals, Metals and Materials Series, pp. 813–823. Cham, Springer International Publishing (2020) https://doi.org/10.1007/978-3-030-51834-9_80

  185. Mumm, D.R., Watanabe, M., Evans, A.G., Pfaendtner, J.A.: The influence of test method on failure mechanisms and durability of a thermal barrier system. Acta Mater. 52(5), 1123–1131 (2004). https://doi.org/10.1016/j.actamat.2003.10.045

    Article  CAS  Google Scholar 

  186. Eldridge, J.I., Spuckler, C.M., Street, K.W., Markham, J.R.: Infrared radiative properties of yttria–stabilized zirconia thermal barrier coatings. In 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: Ceramic Engineering and Science Proceedings, pp. 417–430. Wiley (2002)

    Google Scholar 

  187. Demasi, J.T., Ortiz, M.: Thermal barrier coating life prediction model development, phase 1’, NASA-CR-182230 (1989). Accessed 15 Sep 2022. [Online]. Available: https://ntrs.nasa.gov/citations/19900004072

  188. Berndt, C.C., et al.: Current problems in plasma spray processing. JTST 1(4), 341–356 (1992). https://doi.org/10.1007/BF02647162

    Article  CAS  Google Scholar 

  189. Shinozaki, M., Roberts, K.A., van de Goor, B., Clyne, T.W.: Deposition of ingested volcanic ash on surfaces in the turbine of a small jet engine. Adv. Eng. Mater. 15(10), 986–994 (2013). https://doi.org/10.1002/adem.201200357

    Article  CAS  Google Scholar 

  190. Fox, D.S. et al.: Natural gas/oxygen burner rig at the NASA glenn materials research laboratory. E-20020 (2022)

    Google Scholar 

  191. Gildersleeve, E., Viswanathan, V., Sampath, S.: Molten silicate interactions with plasma sprayed thermal barrier coatings: Role of materials and microstructure. J. Euro. Ceramic Soc. 39(6), 2122–2131 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.01.023

    Article  CAS  Google Scholar 

  192. Mack, D.E., Wobst, T., Jarligo, M.O.D., Sebold, D., Vaßen, R.: Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection. Surface Coatings Technol. 324, 36–47 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.071

    Article  CAS  Google Scholar 

  193. Mauget, F., Hamon, F., Morisset, M., Cormier, J., Riallant, F., Mendez, J.: Damage mechanisms in an EB-PVD thermal barrier coating system during TMF and TGMF testing conditions under combustion environment. Int. J. Fatigue 99, 225–234 (2017). https://doi.org/10.1016/j.ijfatigue.2016.08.001

    Article  CAS  Google Scholar 

  194. Despres, L.: Comportement en fatigue thermomécanique à haute température d’un système barrière thermique texturé par laser. Université Bourgogne Franche-Comté (2020)

    Google Scholar 

  195. Wang, T. et al.: Corrosion behavior of air plasma spraying zirconia-based thermal barrier coatings subject to Calcium–Magnesium–Aluminum-Silicate (CMAS) via burner rig test. Ceramics Int. Part B, 46(11), 18698–18706 (2020) https://doi.org/10.1016/j.ceramint.2020.04.184

  196. Jana, P., Jayan, P.S., Mandal, S., Biswas, K.: Thermal cycling life and failure analysis of rare earth magnesium hexaaluminate based advanced thermal barrier coatings at 1400°C. Surface Coatings Technol. 328, 398–409 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.019

    Article  CAS  Google Scholar 

  197. Naraparaju, R., et al.: Integrated testing approach using a customized micro turbine for a volcanic ash and CMAS related degradation study of thermal barrier coatings. Surface Coatings Technol. 337, 198–208 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.030

    Article  CAS  Google Scholar 

  198. Vaßen, R., et al.: Performance of YSZ and Gd2Zr2O7/YSZ double layer thermal barrier coatings in burner rig tests. J. Euro. Ceramic Soc. 40(2), 480–490 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.021

    Article  CAS  Google Scholar 

  199. Vaßen, R.: Entwicklung neuer oxidischer Wärmedämmschichten für Anwendungen in stationären und Flug-Gasturbinen. Forschungszentrum Jülich GmbH (2004)

    Google Scholar 

  200. Drexler, J.M., Aygun, A., Li, D., Vaßen, R., Steinke, T., Padture, N.P.: Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surface Coatings Technol. 204(16), 2683–2688 (2010). https://doi.org/10.1016/j.surfcoat.2010.02.026

    Article  CAS  Google Scholar 

  201. Kumar, N., Mahade, S., Ganvir, A., Joshi, S.: Understanding the influence of microstructure on hot corrosion and erosion behavior of suspension plasma sprayed thermal barrier coatings. Surface Coatings Technol. 419, 127306 (2021). https://doi.org/10.1016/j.surfcoat.2021.127306

    Article  CAS  Google Scholar 

  202. Mahade, S.: Functional Performance of Gadolinium Zirconate/Yttria Stabilized Zirconia Multi-Layered Thermal Barrier Coatings (2018)

    Google Scholar 

  203. Levi, C.G.: Emerging materials and processes for thermal barrier systems. Curr. Opinion Solid State Mater. Sci., 8(1), Art. no. 1 (2004) https://doi.org/10.1016/j.cossms.2004.03.009

  204. Mauer, G., Jarligo, M.O., Mack, D.E., Vaßen, R.: Plasma-sprayed thermal barrier coatings: new materials, processing issues, and solutions. J. Therm. Spray Technol., 22(5), Art. no. 5 (2013) https://doi.org/10.1007/s11666-013-9889-8s

  205. Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D.E., Stöver, D.: Overview on advanced thermal barrier coatings. Surface Coatings Technol. 205(4), 938–942 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151

    Article  CAS  Google Scholar 

  206. Winter, M.R., Clarke, D.R.: Oxide materials with low thermal conductivity. J. Am. Ceramic Soc., 90(2), Art. no. 2 (2007) https://doi.org/10.1111/j.1551-2916.2006.01410.x

  207. Pragatheeswaran, A., et al.: Plasma spray-deposited lanthanum phosphate coatings for protection against molten uranium corrosion. Surface Coatings Technol. 265, 166–173 (2015). https://doi.org/10.1016/j.surfcoat.2015.01.040

    Article  CAS  Google Scholar 

  208. Vaßen, R., Bakan, E., Mack, D.E., Guillon, O.: A perspective on thermally sprayed thermal barrier coatings: current status and trends. J. Therm. Spray Tech. 31(4), 685–698 (2022). https://doi.org/10.1007/s11666-022-01330-2

    Article  CAS  Google Scholar 

  209. Bakan, E., Vaßen, R.: Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J. Therm. Spray Tech. 26(6), Art. no. 6 (2017) https://doi.org/10.1007/s11666-017-0597-7

  210. Xu, L., Wang, H., Su, L., Lu, D., Peng, K., Gao, H.: A new class of high-entropy fluorite oxides with tunable expansion coefficients, low thermal conductivity and exceptional sintering resistance. J. Euro. Ceramic Soc. 41(13), 6670–6676 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.05.043

    Article  CAS  Google Scholar 

  211. Song, D., et al.: Glass-like thermal conductivity in mass-disordered high-entropy (Y, Yb)2(Ti, Zr, Hf)2O7 for thermal barrier material. Mater. Des. 210, 110059 (2021). https://doi.org/10.1016/j.matdes.2021.110059

    Article  CAS  Google Scholar 

  212. Zhu, D.: Design and performance optimizations of advanced erosion-resistant low conductivity thermal barrier coatings for rotorcraft engines (2012)

    Google Scholar 

  213. Schlegel, N., Sebold, D., Sohn, Y.J., Mauer, G., Vaßen, R.: Cycling performance of a columnar-structured complex perovskite in a temperature gradient test. J. Therm. Spray Technol. 24(7), Art. no. 7 (2015). https://doi.org/10.1007/s11666-015-0254-y

  214. Zhu, D., Nesbitt, J.A., Mccue, T.R., Barrett, C.A., Miller, R.A.: Furnace cyclic behavior of plasma–sprayed zirconia–yttria and multi–component rare earth oxide doped thermal barrier coatings. In 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, pp. 533–545. Wiley (2002). https://doi.org/10.1002/9780470294758.ch59

  215. Vassen, R., Traeger, F., Stöver, D.: New thermal barrier coatings based on Pyrochlore/YSZ double-layer systems. Int. J. Appl. Ceramic Technol. 1(4), 351–361 (2004)

    Article  CAS  Google Scholar 

  216. Schulz, U., Braue, W.: Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits. Surface Coatings Technol. 235, 165–173 (2013). https://doi.org/10.1016/j.surfcoat.2013.07.029

    Article  CAS  Google Scholar 

  217. Drexler, J.M., Ortiz, A.L., Padture, N.P.: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 60(15), 5437–5447 (2012). https://doi.org/10.1016/j.actamat.2012.06.053

    Article  CAS  Google Scholar 

  218. Ahlborg, N.L., Zhu, D.: Calcium–magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surface Coatings Technol. 237, 79–87 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.036

    Article  CAS  Google Scholar 

  219. Xia, J., et al.: On the resistance of rare earth oxide-doped YSZ to high temperature volcanic ash attack. Surface Coatings Technol. 307, 534–541 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.033

    Article  CAS  Google Scholar 

  220. Gok, M.G., Goller, G.: Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS+hot corrosion test. J. Euro. Ceramic Soc., (2017) https://doi.org/10.1016/j.jeurceramsoc.2017.02.004

  221. Nieto, A., et al.: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: Microstructural evolution, mechanical properties, and CMAS deposition. Surface Coatings Technol. 349, 1107–1116 (2018). https://doi.org/10.1016/j.surfcoat.2018.05.089

    Article  CAS  Google Scholar 

  222. Lashmi, P.G. et al.: Solution combustion synthesis of calcia-magnesia-aluminosilicate powder and its interaction with yttria-stabilized zirconia and co-doped yttria-stabilized zirconia. Ceramics Int., 45(15), Art. no. 15 (2019) https://doi.org/10.1016/j.ceramint.2019.06.036

  223. Poerschke, D.L., Levi, C.G.: Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS. J. Euro. Ceramic Soc. 35(2), 681–691 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.006

    Article  CAS  Google Scholar 

  224. Mechnich, P., Braue, W.: Volcanic ash-induced decomposition of EB-PVD Gd2Zr2O7 thermal barrier coatings to Gd-oxyapatite, zircon, and Gd, Fe-zirconolite. J. Am. Ceramic Soc. 96(6), 1958–1965 (2013). https://doi.org/10.1111/jace.12251

    Article  CAS  Google Scholar 

  225. Kumar, R., Cietek, D., Jiang, C., Roth, J., Gell, M., Jordan, E.H.: Influence of microstructure on the durability of gadolinium zirconate thermal barrier coatings using APS and SPPS processes. Surface Coatings Technol. 337, 117–125 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.004

    Article  CAS  Google Scholar 

  226. Levi, C.G.: Science underpinning TBC design for durability in aggressive environments. DTIC (2008)

    Google Scholar 

  227. Dolmaire, A., et al.: Reaction mechanisms of Gd2Zr2O7 in silicate melts derived from CAS. J. Euro. Ceramic Soc. 42(15), 7247–7257 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.08.051

    Article  CAS  Google Scholar 

  228. Yang, S., Song, W., Lavallee, Y., Zhou, X., Dingwell, D.B., Guo, H.: Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings. Corrosion Sci. 170, 108659 (2020). https://doi.org/10.1016/j.corsci.2020.108659

    Article  CAS  Google Scholar 

  229. Song, W., Guo, H.: CMAS dilemma in jet engines: beginning or ending? matlab, pp. 220042–4 (2022) https://doi.org/10.54227/mlab.20220042

  230. Leckie, R.M., Krämer, S., Rühle, M., Levi, C.G.: Thermochemical compatibility between alumina and ZrO2–GdO3/2 thermal barrier coatings. Acta Mater. 53(11), 3281–3292 (2005). https://doi.org/10.1016/j.actamat.2005.03.035

    Article  CAS  Google Scholar 

  231. Munawar, A.U., Schulz, U., Cerri, G., Lau, H.: Microstructure and cyclic lifetime of Gd and Dy-containing EB-PVD TBCs deposited as single and double-layer on various bond coats. Surface Coatings Technol. 245, 92–101 (2014). https://doi.org/10.1016/j.surfcoat.2014.02.047

    Article  CAS  Google Scholar 

  232. Schmitt, M.P., Rai, A.K., Bhattacharya, R., Zhu, D., Wolfe, D.E.: Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores. Surface Coatings Technol. 251, 56–63 (2014). https://doi.org/10.1016/j.surfcoat.2014.03.049

    Article  CAS  Google Scholar 

  233. Mahade, S., Curry, N., Björklund, S., Markocsan, N., Nylén, P., Vaßen, R.: Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray. J. Therm. Spray Technol. 26(1–2), 108–115 (2017). https://doi.org/10.1007/s11666-016-0479-4

    Article  CAS  Google Scholar 

  234. Mahade, S., Curry, N., Björklund, S., Markocsan, N., Nylén, P., Vaßen, R.: Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surface Coatings Technol. (2016) https://doi.org/10.1016/j.surfcoat.2016.12.062

  235. Mahade, S., Curry, N., Jonnalagadda, K.P., Peng, R.L., Markocsan, N., Nylén, P.: Influence of YSZ layer thickness on the durability of gadolinium zirconate/YSZ double-layered thermal barrier coatings produced by suspension plasma spray. Surface Coatings Technol. 357, 456–465 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.046

    Article  CAS  Google Scholar 

  236. Morelli, S., Bursich, S., Testa, V., Bolelli, G., Miccichè, A., Lusvarghi, L.: CMAS corrosion and thermal cycling fatigue resistance of alternative thermal barrier coating materials and architectures: a comparative evaluation. Surface Coatings Technol. 439, 128433 (2022). https://doi.org/10.1016/j.surfcoat.2022.128433

    Article  CAS  Google Scholar 

  237. Zhou, D., et al.: Thermal cycling performances of multilayered yttria-stabilized zirconia/gadolinium zirconate thermal barrier coatings. J. Am. Ceramic Soc. 103(3), 2048–2061 (2020). https://doi.org/10.1111/jace.16862

    Article  CAS  Google Scholar 

  238. Hasz, W.C., Borom, M.P., Johnson, C.A.: Protected thermal barrier coating composite with multiple coatings. US6261643B1, Jul. 17, 2001 Accessed 26 Jun 2018. [Online]. Available: https://patents.google.com/patent/US6261643B1/en

  239. Bianchi, L., Joulia, A., Bernard, B.D.R.J.: Revetement anti-cmas a efficacite renforcee. FR3067391A1, Dec. 14, 2018 Accessed 12 Jan 2020. [Online]. Available: https://patents.google.com/patent/FR3067391A1/en?q=non-wetting&q=CMAS&q=thermal&q=barrier&q=coatings&oq=non-wetting+CMAS+thermal+barrier+coatings

  240. Lokachari, S., et al.: Novel thermal barrier coatings with hexagonal boron nitride additives resistant to molten volcanic ash wetting. Corrosion Sci. 168, 108587 (2020). https://doi.org/10.1016/j.corsci.2020.108587

    Article  CAS  Google Scholar 

  241. Kang, Y.X., et al.: High temperature wettability between CMAS and YSZ coating with tailored surface microstructures. Mater. Lett. 229, 40–43 (2018). https://doi.org/10.1016/j.matlet.2018.06.066

    Article  CAS  Google Scholar 

  242. Zhang, B., et al.: Novel thermal barrier coatings repel and resist molten silicate deposits. Scripta Mater. 163, 71–76 (2019). https://doi.org/10.1016/j.scriptamat.2018.12.028

    Article  CAS  Google Scholar 

  243. Yang, S.-J., Song, W.-J., Dingwell, D.B., He, J., Guo, H.-B.: Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings. Rare Met. 41(2), 469–481 (2022). https://doi.org/10.1007/s12598-021-01773-6

    Article  CAS  Google Scholar 

  244. Song, W., et al.: Biomimetic super “Silicate” phobicity and superhydrophobicity of ceramic material. Adv. Mater. Interfaces 9(32), 2201267 (2022). https://doi.org/10.1002/admi.202201267

    Article  CAS  Google Scholar 

  245. Wang, Y. et al.: Preparation and CMAS wettability investigation of CMAS corrosion resistant protective layer with micro-nano double scale structure. Coatings 12(5), Art. no. 5 (2022). https://doi.org/10.3390/coatings12050648

  246. Guo, Y., et al.: Ultrafast laser reconstructed PS-PVD thermal barrier coatings with superior silicophobic triple-scale micro/nano structure. Mater. Des. 228, 111846 (2023). https://doi.org/10.1016/j.matdes.2023.111846

    Article  CAS  Google Scholar 

  247. Wu, H., Huo, K., Ye, F., Hua, Y., Dai, F.: Wetting and spreading behavior of molten CMAS on the laser textured thermal barrier coatings with the assistance of Pt-modification. Appl. Surface Sci. 622, 156887 (2023). https://doi.org/10.1016/j.apsusc.2023.156887

    Article  CAS  Google Scholar 

  248. Qu, W., Li, S., Jing, J., Pei, Y., Gong, S.: The spreading behavior of CMAS melt on YSZ single crystal with low index orientation. Appl. Surface Sci. 527, 146846 (2020). https://doi.org/10.1016/j.apsusc.2020.146846

    Article  CAS  Google Scholar 

  249. Huanjie, F., Weize, W., Zexin, Y.U.: Preparation of micro-nano hierarchical microstructure and its performance against CMAS wetting of thermal barrier coatings. HDLGDXXBZRKXB 48, 1–8 (2022). https://doi.org/10.14135/j.cnki.1006-3080.20220331001

    Article  Google Scholar 

  250. Ushmaev, D., Norton, A., Kell, J.: Thermally sprayed coatings resistant to environmental degradation: columnar-like coatings through laser ablation and surface melting approach. Surface Coatings Technol. 460, 129394 (2023). https://doi.org/10.1016/j.surfcoat.2023.129394

    Article  CAS  Google Scholar 

  251. Guo, L., Gao, Y., Cheng, Y., Sun, J., Ye, F., Wang, L.: Microstructure design of the laser glazed layer on thermal barrier coatings and its effect on the CMAS corrosion. Corrosion Sci. 192, 109847 (2021). https://doi.org/10.1016/j.corsci.2021.109847

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received no specific grant from any funding agency in the public or commercial sectors but M.G. would like to thank SAFRAN for the funding of his thesis. The authors of IRCER and ONERA would also like to thank the New Aquitaine region and SAFRAN for their support to the development of new generation coatings for aeronautics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucille Despres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaudin, M. et al. (2024). Trends and Perspectives in Mitigating CMAS Infiltration in Thermal Barrier Coating. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Ceramic Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-40809-0_2

Download citation

Publish with us

Policies and ethics