Skip to main content

Training and Simulation Models in PCNL

  • Chapter
  • First Online:
Percutaneous Renal Surgery

Abstract

Urolithiasis have become an increasingly common medical problem. While urologists have many tools in their armamentarium for treatment, percutaneous nephrolithotomy (PCNL) remains a first-line treatment for large (≥2 cm) or challenging stones. PCNL bolsters high stone-free rates, but it remains a complex procedure with many nuances. One of the most challenging steps is percutaneous access. Meticulous preparation is involved for PCNL, as surgeons plan the most ideal needle access path. If perfect access is achieved in an efficient manner, this significantly reduces the risks of complications and increases the chance of rendering patients stone-free. Many simulation training modalities exist for PCNL ranging from low-fidelity benchtop models to high-fidelity, validated immersion simulation. In this chapter we review the available simulation platforms for training PCNL procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PCNl:

Percutaneous nephrolithotomy

PRA:

Percutaneous renal access

SBE:

Simulation-based education

VR:

Virtual reality

AR:

Augmented reality

MR:

Mixed reality

TEC:

Thiel’s-embalmed cadaver

US:

Ultrasound

PCS:

Pelvicalyceal collecting system

PVA:

Polyvinyl alcohol

SFR:

Stone-free rates

SIL:

Simulation Innovation Laboratory

IP:

In person

References

  • Checcucci E, Amparore D, Volpi G, Piramide F, De Cillis S, Piana A, et al. Percutaneous puncture during PCNL: new perspective for the future with virtual imaging guidance. World J Urol. 2022;40(3):639–50.

    Article  CAS  PubMed  Google Scholar 

  • Chi T, Hathaway L, Chok, R et al. Robotic-assisted percutaneous nephrolithotomy and ureteroscopy with the monarch® platform, urology compares favorably against conventional techniques. J Urol 2022;e638.

    Google Scholar 

  • de la Rosette JJ, Laguna MP, Rassweiler JJ, Conort P. Training in percutaneous nephrolithotomy—A critical review. Eur Urol. 2008;54(5):994–1001.

    Article  PubMed  Google Scholar 

  • Farcas M, Reynolds LF, Lee JY. Simulation-based percutaneous renal access training: evaluating a novel 3D immersive virtual reality platform. J Endourol. 2021;35(5):695–9.

    Article  PubMed  Google Scholar 

  • Ferraguti F. Augmented reality and robotic-assistance for percutaneous nephrolithotomy. In: EEE robotics and automation letters: IEEE; 2020. p. 4556–563.

    Google Scholar 

  • Ghazi A, Campbell T, Melnyk R, Feng C, Andrusco A, Stone J, et al. Validation of a full-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol. 2017;31(12):1314–20.

    Article  PubMed  Google Scholar 

  • Ghazi A, Melnyk R, Farooq S, Bell A, Holler T, Saba P, et al. Validity of a patient-specific percutaneous nephrolithotomy (PCNL) simulated surgical rehearsal platform: impact on patient and surgical outcomes. World J Urol. 2022;40(3):627–37.

    Article  PubMed  Google Scholar 

  • Hacker A, Wendt-Nordahl G, Honeck P, Michel MS, Alken P, Knoll T. A biological model to teach percutaneous nephrolithotomy technique with ultrasound- and fluoroscopy-guided access. J Endourol. 2007;21(5):545–50.

    Article  PubMed  Google Scholar 

  • Kallidonis P, Kyriazis I, Vasilas M, Panagopoulos V, Georgiopoulos I, Ozsoy M, et al. Modular training for percutaneous nephrolithotripsy: the safe way to go. Arab J Urol. 2015;13(4):270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein JT, Rassweiler J, Rassweiler-Seyfried MC. Validation of a novel cost effective easy to produce and durable in vitro model for kidney-puncture and percutaneous nephrolitholapaxy-simulation. J Endourol. 2018;32(9):871–6.

    Article  PubMed  Google Scholar 

  • Kozan AA, Chan LH, Biyani CS. Current status of simulation training in urology: a non-systematic review. Res Rep Urol. 2020;12:111–28.

    PubMed  PubMed Central  Google Scholar 

  • Li H, Chen Y, Liu C, Li B, Xu K, Bao S. Construction of a three-dimensional model of renal stones: comprehensive planning for percutaneous nephrolithotomy and assistance in surgery. World J Urol. 2013;31(6):1587–92.

    Article  PubMed  Google Scholar 

  • Mishra S, Kurien A, Ganpule A, Muthu V, Sabnis R, Desai M. Percutaneous renal access training: content validation comparison between a live porcine and a virtual reality (VR) simulation model. BJU Int. 2010;106(11):1753–6.

    Article  PubMed  Google Scholar 

  • Mu Y. Development and validation of augmented reality training simulator for ultrasound guided percutaneous renal access. Electronic Thesis and Dissertation Repository. Canada: The University of Western Ontario; 2020.

    Google Scholar 

  • Muller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, et al. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg. 2013;8(4):663–75.

    Article  PubMed  Google Scholar 

  • Parkhomenko E, O’Leary M, Safiullah S, Walia S, Owyong M, Lin C, et al. Pilot assessment of immersive virtual reality renal models as an educational and preoperative planning tool for percutaneous nephrolithotomy. J Endourol. 2019;33(4):283–8.

    Article  PubMed  Google Scholar 

  • Patterson JM. Simulation in percutaneous nephrolithotomy (PCNL). In: Practical simulation in urology. Cham: Springer; 2022.

    Google Scholar 

  • Porpiglia F, Checcucci E, Amparore D, Peretti D, Piramide F, De Cillis S, et al. Percutaneous kidney puncture with three-dimensional mixed-reality hologram guidance: from preoperative planning to intraoperative navigation. Eur Urol. 2022;81(6):588–97.

    Article  PubMed  Google Scholar 

  • Rassweiler JJ, Müller M, Fangerau M, Klein J, Goezen AS, Pereira P, et al. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol. 2012;61(3):628–31.

    Article  PubMed  Google Scholar 

  • Rassweiler-Seyfried MC, Rassweiler JJ, Weiss C, Muller M, Meinzer HP, Maier-Hein L, et al. iPad-assisted percutaneous nephrolithotomy (PCNL): a matched pair analysis compared to standard PCNL. World J Urol. 2020;38(2):447–53.

    Article  PubMed  Google Scholar 

  • Ryu WHA, Dharampal N, Mostafa AE, Sharlin E, Kopp G, Jacobs WB, et al. Systematic review of patient-specific surgical simulation: toward advancing medical education. J Surg Educ. 2017;74(6):1028–38.

    Article  PubMed  Google Scholar 

  • Sarmah P, Voss J, Ho A, Veneziano D, Somani B. Low versus high fidelity: the importance of ‘realism’ in the simulation of a stone treatment procedure. Curr Opin Urol. 2017;27(4):316–22.

    Google Scholar 

  • Saxton A, Shepard L, Holler T, Wanderling C, Schuler N, Lee A, et al. Evaluation of mixed reality (MR) technologies for remote guidance during ultrasound (US)-guided percutaneous renal access simulation: a prospective, randomized comparative trial. AUA; 2023.

    Google Scholar 

  • Song Y, Ma Y, Fei X. Evaluating the learning curve for percutaneous nephrolithotomy under total ultrasound guidance. PLoS ONE. 2015;10(8): e0132986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veneziano D, Smith A, Reihsen T, Speich J, Sweet RM. The SimPORTAL fluoro-less C-arm trainer: an innovative device for percutaneous kidney access. J Endourol. 2015;29(2):240–5.

    Article  PubMed  Google Scholar 

  • Vijayakumar M, Balaji S, Singh A, Ganpule A, Sabnis R, Desai M. A novel biological model for training in percutaneous renal access. Arab J Urol. 2019;17(4):292–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ghazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wanderling, C., Li, A., Saxton, A., Veneziano, D., Ghazi, A. (2023). Training and Simulation Models in PCNL. In: Denstedt, J.D., Liatsikos, E.N. (eds) Percutaneous Renal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-40542-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40542-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40541-9

  • Online ISBN: 978-3-031-40542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics