Skip to main content

Intra-renal Pressure

  • Chapter
  • First Online:
Percutaneous Renal Surgery

Abstract

Pressure generation via instillation of irrigation during percutaneous nephrolithotomy is necessary for procedural safety and efficacy; termed intra-renal pressure (IRP). As iatrogenic pressures rise above physiologic levels intra-renal reflux, or fluid transposition outside of the collecting system, can occur. This shift of fluid and endotoxins, if present, has implications on post-operative pain/recovery, infectious and inflammatory responses, and systemic fluid/electrolyte imbalances. Numerous ex vivo human and in vivo animal studies have evaluated pressure thresholds for the three subtypes of intrarenal reflux: pyelovenous backflow, pyelosinuous backflow and intra-renal backflow. Knowledge and mitigation of procedural factors that lead to pressure rise during PCNL allows Urologists to minimize complications associated with elevated IRP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abourbih S, et al. Renal pelvic pressure in percutaneous nephrolithotomy: the effect of multiple tracts. J Endourol. 2017;31(10):1079–83.

    Article  PubMed  Google Scholar 

  • Alsmadi J, et al. The influence of super-mini percutaneous nephrolithotomy on renal pelvic pressure in vivo. J Endourol. 2018;32(9):819–23.

    Article  PubMed  Google Scholar 

  • Alsyouf M, et al. Elevated renal pelvic pressures during percutaneous nephrolithotomy risk higher postoperative pain and longer hospital stay. J Urol. 2018;199(1):193–9.

    Article  PubMed  Google Scholar 

  • Assimos D, et al. Surgical management of stones: American urological association/endourological society guideline PART II. J Urol. 2016;196(4):1161–9.

    Article  PubMed  Google Scholar 

  • Boccafoschi C, Lugnani F. Intra-renal reflux. Urol Res. 1985;13(5):253–8.

    Article  CAS  PubMed  Google Scholar 

  • Coulthard MG, et al. Renal scarring caused by vesicoureteric reflux and urinary infection: a study in pigs. Pediatr Nephrol. 2002;17(7):481–4.

    Article  PubMed  Google Scholar 

  • Croghan SM et al. Upper urinary tract pressures in endourology: a systematic review of range, variables and implications. BJU Int 2022.

    Google Scholar 

  • Dean NS, Krambeck AE. Endourologic procedures of the upper urinary tract and the effects on intrarenal pressure and temperature. J Endourol. 2023;37(2):191–8.

    Article  PubMed  Google Scholar 

  • Deng X, et al. A novel technique to intelligently monitor and control renal pelvic pressure during minimally invasive percutaneous nephrolithotomy. Urol Int. 2019;103(3):331–6.

    Article  PubMed  Google Scholar 

  • Desai M, Mishra S. Microperc’ micro percutaneous nephrolithotomy: evidence to practice. Curr Opin Urol. 2012;22(2):134–8.

    Article  PubMed  Google Scholar 

  • Desai MR, et al. Single-step percutaneous nephrolithotomy (microperc): the initial clinical report. J Urol. 2011;186(1):140–5.

    Article  PubMed  Google Scholar 

  • Doizi S, et al. Continuous monitoring of intrapelvic pressure during flexible ureteroscopy using a sensor wire: a pilot study. World J Urol. 2021;39(2):555–61.

    Article  PubMed  Google Scholar 

  • Doizi S, et al. Comparison of intrapelvic pressures during flexible ureteroscopy, mini-percutaneous nephrolithotomy, standard percutaneous nephrolithotomy, and endoscopic combined intrarenal surgery in a kidney model. World J Urol. 2021b;39(7):2709–17.

    Article  PubMed  Google Scholar 

  • Fichtner J, et al. Congenital unilateral hydronephrosis in a rat model: continuous renal pelvic and bladder pressures. J Urol. 1994;152(2 Pt 2):652–7.

    Article  CAS  PubMed  Google Scholar 

  • Fung LC, Atala A. Constant elevation in renal pelvic pressure induces an increase in urinary N-acetyl-beta-D-glucosaminidase in a nonobstructive porcine model. J Urol. 1998;159(1):212–6.

    Article  CAS  PubMed  Google Scholar 

  • Ganpule AP, et al. Percutaneous nephrolithotomy (PCNL) a critical review. Int J Surg. 2016;36(Pt D):660–4.

    Article  PubMed  Google Scholar 

  • Gokce MI, et al. Effect of active aspiration and sheath location on intrapelvic pressure during miniaturized percutaneous nephrolithotomy. Urology. 2021;153:101–6.

    Article  PubMed  Google Scholar 

  • Gui H, et al. Mini-percutaneous nephrolithotomy with an endoscopic surgical monitoring system for the management of renal stones: a retrospective evaluation. Front Surg. 2022;9: 773270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo HQ, et al. Relationship between the intrapelvic perfusion pressure in minimally invasive percutaneous nephrolithotomy and postoperative recovery. Zhonghua Wai Ke Za Zhi. 2008;46(1):52–4.

    PubMed  Google Scholar 

  • Guohua Z, et al. The influence of minimally invasive percutaneous nephrolithotomy on renal pelvic pressure in vivo. Surg Laparosc Endosc Percutan Tech. 2007;17(4):307–10.

    Article  PubMed  Google Scholar 

  • Guzelburc V, et al. Comparison of absorbed irrigation fluid volumes during retrograde intrarenal surgery and percutaneous nephrolithotomy for the treatment of kidney stones larger than 2 cm. Springerplus. 2016;5(1):1707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannappel J, et al. Pacemaker process of ureteral peristalsis in multicalyceal kidneys. Urol Int. 1982;37(4):240–6.

    Article  CAS  PubMed  Google Scholar 

  • Hinman F, Lee-Brown RK. Pyelovenous back flow: its relation to pelvic reabsorption, to hydronephrosis and to accidents of pyelography. J Amer Med Assoc 1924;82(8):607–613.

    Google Scholar 

  • Johnston RB, Porter C. The Whitaker test. Urol J. 2014;11(3):1727–30.

    PubMed  Google Scholar 

  • Jung H, Osther PJ. Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus. 2015;4:373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung HU, et al. Pharmacological effect on pyeloureteric dynamics with a clinical perspective: a review of the literature. Urol Res. 2006;34(6):341–50.

    Article  CAS  Google Scholar 

  • Jung G, et al. Surgical parameters related to excessive intrarenal pressure during minimally invasive percutaneous nephrolithotomy in the supine position: a prospective observational clinical study. Biomed Res Int. 2022;1199052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kukreja RA, et al. Fluid absorption during percutaneous nephrolithotomy: does it matter? J Endourol. 2002;16(4):221–4.

    Article  CAS  PubMed  Google Scholar 

  • Lai D, et al. Use of a novel vacuum-assisted access sheath in minimally invasive percutaneous nephrolithotomy: a feasibility study. J Endourol. 2020;34(3):339–44.

    Article  PubMed  Google Scholar 

  • Landman J, et al. Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology. 2002;60(4):584–7.

    Article  PubMed  Google Scholar 

  • Lee MS, et al. Determining the threshold of acute renal parenchymal damage for intrarenal pressure during flexible ureteroscopy using an in vivo pig model. World J Urol. 2022;40(11):2675–81.

    Article  PubMed  Google Scholar 

  • Lildal SK, et al. Gadolinium-enhanced MRI visualizing backflow at increasing intra-renal pressure in a porcine model. PLoS ONE. 2023;18(2): e0281676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftus CJ, et al. Mini versus standard percutaneous nephrolithotomy: the impact of sheath size on intrarenal pelvic pressure and infectious complications in a porcine model. J Endourol. 2018;32(4):350–3.

    Article  PubMed  Google Scholar 

  • Loftus C, Byrne M, Monga M. High pressure endoscopic irrigation: impact on renal histology. Int Braz J Urol. 2021;47(2):350–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mager R, et al. Introducing a novel in vitro model to characterize hydrodynamic effects of percutaneous nephrolithotomy systems. J Endourol. 2015;29(8):929–32.

    Article  PubMed  Google Scholar 

  • Malhotra SK, et al. Monitoring of irrigation fluid absorption during percutaneous nephrolithotripsy: the use of 1% ethanol as a marker. Anaesthesia. 2001;56(11):1090–115.

    Article  Google Scholar 

  • Matlaga BR, American Board of U. Contemporary surgical management of upper urinary tract calculi. J Urol. 2009;181(5):2152–6.

    Google Scholar 

  • Mortensen J, Djurhuus JC. Hydrodynamics of the normal multicalyceal pyeloureter in pigs: the pelvic pressure response to increasing flow rates, its normal ranges and intra-individual variations. J Urol. 1985;133(4):704–8.

    Article  CAS  PubMed  Google Scholar 

  • Noureldin YA et al. The effect of irrigation power and ureteral access sheath diameter on the maximal intra-pelvic pressure during ureteroscopy: in vivo experimental study in a live anesthetized pig. J Endourol. 2019;33(9):725–729.

    Google Scholar 

  • Omar M, et al. Systemic inflammatory response syndrome after percutaneous nephrolithotomy: a randomized single-blind clinical trial evaluating the impact of irrigation pressure. J Urol. 2016;196(1):109–14.

    Article  PubMed  Google Scholar 

  • Osther PJ, et al. Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi. Curr Opin Urol. 2016;26(1):63–9.

    Article  PubMed  Google Scholar 

  • Patel SR, Nakada SY. The modern history and evolution of percutaneous nephrolithotomy. J Endourol. 2015;29(2):153–7.

    Article  PubMed  Google Scholar 

  • Pedersen KV, et al. Distension of the renal pelvis in kidney stone patients: sensory and biomechanical responses. Urol Res. 2012;40(4):305–16.

    Article  PubMed  Google Scholar 

  • Pfitzner J. Poiseuille and his law. Anaesthesia. 1976;31(2):273–5.

    Article  CAS  PubMed  Google Scholar 

  • Ransley PG, Risdon RA. The pathogenesis of reflux nephropathy. Contrib Nephrol. 1979;16:90–7.

    Article  CAS  PubMed  Google Scholar 

  • Rawandale-Patil AV, Ganpule AP, Patni LG. Development of an innovative intrarenal pressure regulation system for mini-PCNL: a preliminary study. Indian J Urol. 2019;35(3):197–201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saltzman B, Khasidy LR, Smith AD. Measurement of renal pelvis pressures during endourologic procedures. Urology. 1987;30(5):472–4.

    Article  CAS  PubMed  Google Scholar 

  • Satish M, Tadi P. Physiology, vascular. StatPearls. 2022: Treasure Island (FL).

    Google Scholar 

  • Schwalb DM, et al. Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol. 1993;149(6):1576–85.

    Article  CAS  PubMed  Google Scholar 

  • Shah AK, et al. Implementation of ultramini percutaneous nephrolithotomy for treatment of 2–3 cm kidney stones: a preliminary report. J Endourol. 2015;29(11):1231–6.

    Article  PubMed  Google Scholar 

  • Sierra A et al. Real time intrarenal pressure control during flexible ureterorrenscopy using a vascular pressurewire: pilot study. J Clin Med. 2022;12(1).

    Google Scholar 

  • Stenberg A, et al. Back-leak of pelvic urine to the bloodstream. Acta Physiol Scand. 1988;134(2):223–34.

    Article  CAS  PubMed  Google Scholar 

  • Tepeler A, et al. Comparison of intrarenal pelvic pressure during micro-percutaneous nephrolithotomy and conventional percutaneous nephrolithotomy. Urolithiasis. 2014;42(3):275–9.

    Article  PubMed  Google Scholar 

  • Thomsen HS, Dorph S, Olsen S. Pyelorenal backflow in normal and ischemic rabbit kidneys. Invest Radiol. 1981;16(3):206–14.

    Article  CAS  PubMed  Google Scholar 

  • Thomsen HS, Larsen S. Intrarenal backflow during retrograde pyelography with graded intrapelvic pressure. A pathoanatomic study. Acta Pathol Microbiol Immunol Scand A 1983;91(4):245–52.

    Google Scholar 

  • Thomsen HS, Talner LB, Higgins CB. Intrarenal backflow during retrograde pyelography with graded intrapelvic pressure. A radiologic study. Invest Radiol 1982;17(6):593–603.

    Google Scholar 

  • Tokas T, et al. Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol. 2019a;37(1):125–31.

    Article  PubMed  Google Scholar 

  • Tokas T, et al. Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol. 2019;37(1):133–42.

    Article  PubMed  Google Scholar 

  • Travaglini F, et al. Pathophysiology of reno-ureteral colic. Urol Int. 2004;72(Suppl 1):20–3.

    Article  PubMed  Google Scholar 

  • Troxel SA, Low RK. Renal intrapelvic pressure during percutaneous nephrolithotomy and its correlation with the development of postoperative fever. J Urol. 2002;168(4 Pt 1):1348–51.

    Article  PubMed  Google Scholar 

  • Wahlberg J, Karlberg L, Persson AE. Total and regional renal blood flow during complete unilateral ureteral obstruction. Acta Physiol Scand. 1984;121(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  • Walzak MP, Paquin AJ. Renal pelvic pressure levels in management of nephrostomy. J Urol 1961;85:697–702.

    Google Scholar 

  • Whitehurst LA, Somani BK. Semi-rigid ureteroscopy: indications, tips, and tricks. Urolithiasis. 2018;46(1):39–45.

    Article  PubMed  Google Scholar 

  • Wilson WTP, Glenn M. Intrarenal pressures generated during flexible deflectable ureterorenoscopy. J Endourol. 1990;4(2):135–41.

    Article  Google Scholar 

  • Wright A, et al. Mini, ultra, micro’—nomenclature and cost of these new minimally invasive percutaneous nephrolithotomy (PCNL) techniques. Ther Adv Urol. 2016;8(2):142–6.

    Article  PubMed  Google Scholar 

  • Wu C, et al. Comparison of renal pelvic pressure and postoperative fever incidence between standard- and mini-tract percutaneous nephrolithotomy. Kaohsiung J Med Sci. 2017;33(1):36–43.

    Article  PubMed  Google Scholar 

  • Yang Z, et al. The new generation mini-PCNL system—monitoring and controlling of renal pelvic pressure by suctioning device for efficient and safe PCNL in managing renal staghorn calculi. Urol Int. 2016;97(1):61–6.

    Article  PubMed  Google Scholar 

  • Yap LC, et al. Intrarenal pressures during percutaneous nephrolithotomy: a porcine kidney model. Scand J Urol. 2022;56(3):251–4.

    Article  CAS  PubMed  Google Scholar 

  • Zanetti SP, et al. Vacuum-assisted mini-percutaneous nephrolithotomy: a new perspective in fragments clearance and intrarenal pressure control. World J Urol. 2021;39(6):1717–23.

    Article  PubMed  Google Scholar 

  • Zhong W, et al. Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J Endourol. 2008;22(9):2147–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Appreciation to Pradeep Sharma for his assistance in medical illustration for this chapter.

PressureWire is a trademark of Abbott or its related companies. Reproduced with permission of Abbott, © 2023. All rights reserved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Riedinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riedinger, E., Osther, P.J.S., Knudsen, B. (2023). Intra-renal Pressure. In: Denstedt, J.D., Liatsikos, E.N. (eds) Percutaneous Renal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-40542-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40542-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40541-9

  • Online ISBN: 978-3-031-40542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics