Skip to main content

Common Causes of Aseptic Fracture Fixation Failure

  • Chapter
  • First Online:
Failed Fracture Fixation
  • 176 Accesses

Abstract

The primary goal of treating fractures is to achieve osseous union. This can be accomplished with operative and nonoperative treatment. When fractures are treated operatively, a race between union and hardware failure occurs. When hardware failure occurs, revision surgery will likely be necessary. However, prior to revision surgery, a root cause analysis of the failure should be done so the next intervention will have the greatest chance of success. Hardware failure with nonunion can be attributed to two main causes, the fracture environment created by the surgeon and the innate biological capacity of the patient. Surgical errors and biological deficiencies must be explored prior to further surgery. To understand potential surgical errors, orthopaedic surgeons must have a basic understanding of primary and secondary bone healing processes and how fixation techniques and orthopaedic implants can influence osseous healing. This should allow the surgeon to determine whether proper technique or hardware was used. Ignorance of this can lead to repeating the same surgical misadventures that previously failed all while expecting a different result to occur. Placing the fracture or nonunion in the optimal mechanical environment will provide the best chance possible for union. Also, orthopaedic surgeons should be able to identify atrophic, oligotrophic, hypertrophic and pseudoarthrosis-type nonunions from their radiographic images. Additionally, surgeons need to understand the unique biological environment each nonunion possesses. Understanding this will help lead to the optimal surgical environment but it still may not overcome severe shortcomings in the healing capacity of the patient. Each patient brings a different biological capacity to heal a fracture. All aspects of the patient’s history must be examined including social habits, medications, previous surgeries and medical conditions. Any negative aspect that can be modified or eliminated should be corrected prior to revision surgery to prevent further surgical misadventures and optimize the chance of achieving osseous union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zura R, Xiong Z, Einhorn T, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775. https://doi.org/10.1001/jamasurg2016.2775. Pub 2016 Nov 16

    Article  PubMed  Google Scholar 

  2. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. https://doi.org/10.1016/j.injury.2011.03.031.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gerstenfeld LC, Alkhiary YM, Krall EA, et al. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem. 2006;54(11):1215–28.

    Article  CAS  PubMed  Google Scholar 

  4. Pape HC, Giannoudis PV, Grimme K, et al. Effects of intramedullary femoral fracture fixation: what is the impact of experimental studies in regards to the clinical knowledge? Shock. 2002;18(4):291–300.

    Article  PubMed  Google Scholar 

  5. Cho HH, Kyoung KM, Seo MJ, et al. Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells Dev. 2006;15(6):853–64.

    Article  CAS  PubMed  Google Scholar 

  6. Rahn BA. Bone healing: histologic and physiologic concepts. In: Fackelman GE, editor. Bone in clinical orthopedics. Stuttgart/New York: Thieme; 2002. p. 287–326.

    Google Scholar 

  7. Marsell R, Einhorn TA. The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury. 2009;40(Suppl 3):S4–7. [PubMed: 20082790]

    Article  PubMed  Google Scholar 

  8. Ketenjian AY, Arsenis C. Morphological and biochemical studies during differentiation and calcification of fracture callus cartilage. Clin Orthop Relat Res. 1975;107:266–73. [PubMed: 48443]

    Article  CAS  Google Scholar 

  9. Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am. 1988;70(7):1067–81.

    Article  CAS  PubMed  Google Scholar 

  10. Kaderly RE. Primary bone healing. Semin Vet Med Surg (Small Animal). 1991;6(1):21–5.

    CAS  Google Scholar 

  11. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S7–21.

    Article  Google Scholar 

  12. Norris BL, Lang G, Russell TAT, Rothberg DL, Ricci WM, Borrelli J Jr. Absolute versus relative fracture fixation: impact on fracture healing. J Orthop Trauma. 2018;32(Suppl 1):S12–6.

    Article  PubMed  Google Scholar 

  13. Checketts JX, Dai Q, Zhu L, Miao Z, Shepherd S, Norris BL. Readmission rates after hip fracture: are there prefracture warning signs for patients most at risk of readmission? J Am Acad Orthop Surg. 2020;28(24):1017–26.

    Article  PubMed  Google Scholar 

  14. Pivec R, Issa K, Kapadia BH, et al. Incidence and future projections of periprosthetic femoral fracture following primary total hip arthroplasty: an analysis of international registry data. J Long Term Eff Med Implants. 2015;25(4):269–75.

    Article  PubMed  Google Scholar 

  15. Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res. 1979;138:175–96.

    Google Scholar 

  16. Kfuri M, Fogagnolo F, Pires RE. Biomechanics of plate and screw constructs for fracture fixation. In: Crist BD, Borrelli Jr J, Harvey EJ, editors. Essential biomechanics for orthopedic trauma: a case-based guide. Springer International Publishing; 2020. p. 171–8.

    Chapter  Google Scholar 

  17. Törnkvist H, Hearn TC, Schatzker J. The strength of plate fixation in relation to the number and spacing of bone screws. J Orthop Trauma. 1996;10(3):204–8.

    Article  PubMed  Google Scholar 

  18. Kempf I, Grosse A, Beck G. Closed locked intramedullary nailing. Its application to comminuted fractures of the femur. J Bone Joint Surg Am. 1985;67(5):709–20.

    Article  CAS  PubMed  Google Scholar 

  19. Bhandari M, et al. Variability in the definition and perceived causes of delayed unions and nonunions: a cross-sectional, multinational survey of orthopaedic surgeons. J Bone Joint Surg Am. 2012;94(15):1091–6.

    Article  Google Scholar 

  20. Bell A, et al. Nonunion of the Femur and Tibia: an update. Orthop Clin North AM. 2016;47(2):365–75.

    Article  PubMed  Google Scholar 

  21. Olszewski D, et al. Fate of patients with a "surprise" positive culture after nonunion surgery. J Orthop Trauma. 2016;30(1):19–23.

    Article  Google Scholar 

  22. Amorosa LF, et al. A single-stage treatment protocol for presumptive aspetic diaphyseal nonunions: a review of outcomes. J Orthop Trauma. 2013;27(10):582–6.

    Article  PubMed  Google Scholar 

  23. Arsoy D, et al. Outcomes of presumed aspetic long-bone nonunions with postive intraoperative cultures through a single-stage surgical protocol. J Orthop Trauma. 2018;32(Suppl 1):S35–9.

    Article  PubMed  Google Scholar 

  24. Metsemakers WJ, Morgenstern M, McNally MA, Moriarty TF, McFadyen I, Scarborough M, Athanasou NA, Ochsner PE, Kuehl R, Raschke M, Borens O, Xie Z, Velkes S, Hungerer S, Kates SL, Zalavras C, Giannoudis PV, Richards RG, Verhofstad MHJ. Fracture-related infection: a consensus on definition from an international expert group. Injury. 2018;49:505–10.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, et al. Usefullness of serum D-dimer for preoperative diagnosis of infected nonunion after open reduction and internal fixation. Infect Drug Resist. 2019;12:1827–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao X-Q, et al. Interleukin-6 versus common inflammatory biomarkers for diagnosing fracture-related infection: utility and potential influencing factors. J Immunol Res. 2021;14:616–38.

    Google Scholar 

  27. Brinker MR, et al. Utility of common biomarkers for diagnosing infection in nonunion. J Orthop Trauma. 2021;35(3):121–7.

    Article  PubMed  Google Scholar 

  28. van den Kieboom J, et al. Diagnostic accuracy of serum inflammatory markers in late fracture-related infection. Bone Joint J. 2018;100-B(12):1542–50.

    Article  PubMed  Google Scholar 

  29. Sigmund IK, et al. Limited diagnostic value of serum inflammatory biomarkers in the diagnosis of fracture-related infections. Bone Joint J. 2020;102-B(7):904–11.

    Article  Google Scholar 

  30. Browner BD, Jupiter JB, Krettek C, Anderson PA, et al., editors. Chapter 25: skeletal trauma: basic science, management, and reconstruction. 5th ed. Saunders/Elsevier; 2009. p. 643–61.

    Google Scholar 

  31. Hoffmeier KL, et al. Choosing a proper working length can improve the lifespan of locked plates. A biomechanical study. Clin Biomech. 2011;26(4):405–9.

    Article  Google Scholar 

  32. Ricci WM, et al. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9.

    Article  PubMed  Google Scholar 

  33. Chen G, et al. Computational investigations of mechanical failures of internal plate fixation. Proc Inst Mech Eng H. 2010;224(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  34. Wheatley BM, et al. Effects of NSAIDs on bone healing: a meta-analysis. J Am Acad Orthop Surg. 2019;27(7):330–6.

    Article  Google Scholar 

  35. Zawawy HB, et al. Smoking delays chondrogenosis in a mouse model of closed tibia fracture healing. J Orthop Res. 2006;24:2150–8.

    Article  PubMed  Google Scholar 

  36. Little CP, et al. Failure of surgery for the scaphoid non-union is associated with smoking. J Hand Surg (Br). 2006;31:252–5.

    Article  CAS  PubMed  Google Scholar 

  37. Hak DJ, et al. Success of exchange reamed intramedullary nailing for femoral shaft nonunion or delayed union. J Orthop Trauma. 2005;14:178–82.

    Article  Google Scholar 

  38. Castillo RC, et al. Impact of smoking on fracture healing and risk of complications in limb-threating open tibia fracture. J Orthop Trauma. 2005;19(3):151–7.

    Article  PubMed  Google Scholar 

  39. Scolaro JA, et al. Cigarette smoking increases complications following fracture: a systemic review. J Bone Joint Surg Am. 2014;96(8):674–81.

    Article  PubMed  Google Scholar 

  40. Chakkalakal DA. Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Ex Res. 2005;29(12):2077–90.

    Article  Google Scholar 

  41. Chakkalakal DA, et al. Inhibition of bone repair in a rat model for chronic and excessive alcohol consumption. Alcohol. 2005;36(3):201–2014.

    Article  CAS  PubMed  Google Scholar 

  42. Elmali N, et al. Fracture healing and bone mass in rats fed on liquid diet containing ethanol. Alcohol Clin Exp Res. 2002;26(4):509–13.

    Article  PubMed  Google Scholar 

  43. Schemitsch LA, et al. Prognostic factors for reoperation after plate fixation of the midshaft clavicle. J Orthop Trauma. 2015;29(12):533–7.

    Article  PubMed  Google Scholar 

  44. Brinker MR, et al. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma. 2007;21(8):557–70.

    Article  PubMed  Google Scholar 

  45. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353–73.

    Article  CAS  PubMed  Google Scholar 

  46. Bogunovic L, et al. Hypovitaminosis D in patients schedule to undergo orthopedic surgery: a single-center analysis. J Bone Joint Surg. 2010;92(13):2300–4.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Day SM, DeHeer DH. Reversal of the detrimental effects of chronic protein malnutrition on long bone fracture healing. J Orthop Trauma. 2001;15(1):1947–53.

    Article  Google Scholar 

  48. Cross MB, et al. Evaluation of malnutrition in orthopaedic surgery. J Am Acad Orthop Surg. 2014;22(3):193–9.

    Article  PubMed  Google Scholar 

  49. Hughes MS, et al. Enhanced fracture and soft tissue healing by means of anabolic dietary supplementation. J Bone Joint Surg Am. 2006;88(11):2386–94.

    Article  PubMed  Google Scholar 

  50. Kayal RA, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoblastic activity. J Bone Miner Res. 2007;22(4):560–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kayal RA, et al. Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone. 2009;44(2):357–63.

    Article  CAS  PubMed  Google Scholar 

  52. Urabe K, et al. Inhibition of endochondral ossification during fracture repair in experimental hypothyroid rats. J Orthop Res. 1999;17(6):920–5.

    Article  CAS  PubMed  Google Scholar 

  53. Bassett JHD, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;27(2):135–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent L. Norris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, M., Norris, G., Checketts, J., Norris, B.L. (2024). Common Causes of Aseptic Fracture Fixation Failure. In: Giannoudis, P.V., Tornetta III, P. (eds) Failed Fracture Fixation. Springer, Cham. https://doi.org/10.1007/978-3-031-39692-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39692-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39691-5

  • Online ISBN: 978-3-031-39692-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics