Skip to main content

Biomechanics of Plate and Screw Constructs for Fracture Fixation

  • Chapter
  • First Online:
Essential Biomechanics for Orthopedic Trauma

Abstract

Plates and screws have been used for the internal fixation of fractures for more than a century. In the beginning, implants were produced without consistency and with no standardization. As a result, many failures were reported, either related to metal corrosion or the weakness of the bone-implant construct. In the 1950s, a revolution took place in the internal fixation of the fractures, mostly driven by a set of principles formulated by the Association for the Study of Internal Fixation in Switzerland. Plates are very versatile tools which may be assembled to perform a variety of biomechanical functions. Consequently, the use of plates and screws in the fixation of fractures may be associated with primary or secondary bone healing. The complete understanding of the biomechanics of plates in the internal fixation of fractures is of paramount importance for reproducible and successful outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayes WC. Biomechanical measurements of bone. In: Burstein A, editor. CRC handbook of engineering in medicine and biology: section B. Instruments and measurements. Cleveland: CRC Press; 1978. p. 333–72.

    Google Scholar 

  2. Hayes WC. Biomechanics of fracture healing. In: Heppenstall RB, editor. Fracture treatment and healing. Philadelphia: WB Saunders; 1980. p. 124–72.

    Google Scholar 

  3. Rahn BA, Gallinaro P, Baltensperger A, Perren SM. Primary bone healing: an experimental study in the rabbit. J Bone Joint Surg Am. 1971;53(4):783–6.

    Article  CAS  Google Scholar 

  4. Mueller M, Allgower M, Willenegger H. Technik der operativen Frakturenbehandlung. Berlin: Springer; 1963.

    Book  Google Scholar 

  5. Gerber C, Mast J, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg. 1990;109(6):295–303.

    Article  CAS  Google Scholar 

  6. Ganz R, Mast J, Weber B, Perren S. Clinical aspects of “bio-logical” plating. Injury. 1991;22:4–5.

    Google Scholar 

  7. Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop. 1979;138:175–96.

    Google Scholar 

  8. Lane WA. Some remarks on the treatment of fractures. Br Med J. 1895;1(1790):861–3.

    Article  CAS  Google Scholar 

  9. Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci. 2006;11(2):118–26.

    Article  Google Scholar 

  10. Danis R. Theorie et practique de l’osteosynthèse. Paris: Masson & Cie Éditeurs; 1949.

    Google Scholar 

  11. Bagby GW, Janes JM. The effect of compression on the rate of fracture healing using a special plate. Am J Surg. 1958;95(5):761–71.

    Article  CAS  Google Scholar 

  12. Müller ME, Allgöwer M, Willenegger H. Compression fixation with plates. In: Technique of internal fixation of fractures. Berlin: Springer; 1965. p. 47–51.

    Chapter  Google Scholar 

  13. Perren SM, Russenberger M, Steinemann S, Müller ME, Allgöwer M. A dynamic compression plate. Acta Orthop Scand. 1969;135:31–41.

    Google Scholar 

  14. Perren SM, Cordey J, Rahn BA, Gautier E, Schneider E. Early temporary porosis of bone induced by internal fixation implants: a reaction to necrosis, not to stress protection? Clin Orthop. 1988;232:139–51.

    Google Scholar 

  15. Gautier E, Perren SM. [Limited Contact Dynamic Compression Plate (LC-DCP)–biomechanical research as basis to new plate design]. Orthopade. 1992;21(1):11–23. . Review. [Article in German]..

    Google Scholar 

  16. Kessler SB, Deiler S, Schiffl-Deiler M, Uhthoff HK, Schweiberer L. Refractures: a consequence of impaired local bone viability. Arch Orthop Trauma Surg. 1992;111(2):96–101.

    Article  CAS  Google Scholar 

  17. Perren SM, Buchanan JS. Basic concepts relevant to the design and development of the point contact fixator (PC-Fix). Injury. 1995;26(Suppl 2):S-B1–4.

    Article  Google Scholar 

  18. Tepic S, Perren SM. The biomechanics of the PC-Fix internal fixator. Injury. 1995;26(Suppl 2):S-B5–10.

    Article  Google Scholar 

  19. Frigg R, Appenzeller A, Christensen R, Frenk A, Gilbert S, Schavan R. The development of the distal femur Less Invasive Stabilization System (LISS). Injury. 2001;32(Suppl 3):SC24–31.

    Article  Google Scholar 

  20. Frigg R. Locking Compression Plate (LCP). An osteosynthesis plate based on the dynamic compression plate and the Point Contact Fixator (PC-Fix). Injury. 2001;32(Suppl 2):63–6.

    Article  Google Scholar 

  21. Wagner M. General principles for the clinical use of the LCP. Injury. 2003;34(Suppl 2):B31–42.

    Article  Google Scholar 

  22. Schmal H, Strohm PC, Jaeger M, Südkamp NP. Flexible fixation and fracture healing: do locked plating ‘internal fixators’ resemble external fixators? J Orthop Trauma. 2011;25(Suppl 1):S15–20.

    Article  Google Scholar 

  23. Hak DJ, Mauffrey C, Seligson D, Lindeque B. Use of carbon-fiber-reinforced composite implants in orthopedic surgery. Orthopedics. 2014;37(12):825–30.

    Article  Google Scholar 

  24. Hayes WC, Perren SM. Flexural rigidity of compression plate fixation (Nordic Meeting on Medical and Biological Engineering, 2d, Oslo, 1971. Proceedings). Med Biol Eng. 1971;2:242–4.

    Google Scholar 

  25. Hayes WC, Perren SM. Plate-bone friction in the compression fixation of fractures. Clin Orthop. 1972;89:236–40.

    Article  CAS  Google Scholar 

  26. Wagner M, Frigg R, editors. AO manual of fracture management. Internal fixators: concept and cases using LCP and LISS. Stuttgart/New York: Thieme; 2006.

    Google Scholar 

  27. Tornkvist H, Hearn TC, Schatzker J. The strength of plate fixation in relation to the number and spacing of bone screws. J Orthop Trauma. 1996;10(3):204–8.

    Article  CAS  Google Scholar 

  28. Gautier E, Sommer C. Guidelines for the application of the LCP. Injury. 2003;34(Suppl 2):63–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Kfuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kfuri, M., Fogagnolo, F., Pires, R.E. (2020). Biomechanics of Plate and Screw Constructs for Fracture Fixation. In: Crist, B., Borrelli Jr., J., Harvey, E. (eds) Essential Biomechanics for Orthopedic Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-36990-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36990-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36989-7

  • Online ISBN: 978-3-030-36990-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics