Skip to main content

Principles and Targets Underlying Spinal Analgesia

  • Chapter
  • First Online:
Neuraxial Therapeutics

Abstract

Afferent traffic generated high-intensity stimuli or that activity arising from tissue and nerve injury activates second-order projection neurons in the dorsal horn. This input/output function is dynamic with a variety of linkages that can serve to increase or decrease the gain of this function. The biology of the linkages relevant to nociception has been the subject of voluminous research that defines the role of various mediators on membrane and cellular excitability and more importantly that the activation of these spinal elements after neuraxial delivery can predictably alter pain behavior. The richness of these pharmacological substrates is an indication of the complexity of the processing circuitry that encodes the content of the nociceptive message provided to higher centers to underlie the integrated behavioral phenotype defined as pain. The ameliorating effects of manipulating this extracranial afferent traffic on not just pain threshold, but on the complex behaviors evoked by injury and inflammation, emphasize the pivotal role played by these changes in of the spinofugal message content evoked by the neuraxial intervention on not just the sensory but the emotive components of the pain phenotype as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Askitopoulou H, Ramoutsaki IA, Konsolaki E. Analgesia and anesthesia: etymology and literary history of related Greek words. Anesth Analg. 2000;91(2):486–91. https://doi.org/10.1097/00000539-200008000-00048.

    Article  CAS  PubMed  Google Scholar 

  2. Head H. Studies in neurology. London: Oxford University Press; 1920.

    Google Scholar 

  3. Spiller W, Martin E. JAMA. 1912;58:1489–90.

    Article  Google Scholar 

  4. Yaksh TL. Analgetic actions of intrathecal opiates in cat and primate. Brain Res. 1978;153(1):205–10. https://doi.org/10.1016/0006-8993(78)91146-0.

    Article  CAS  PubMed  Google Scholar 

  5. Hylden JL, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980;67(2–3):313–6. https://doi.org/10.1016/0014-2999(80)90515-4.

    Article  CAS  PubMed  Google Scholar 

  6. Wang JK, Nauss LA, Thomas JE. Pain relief by intrathecally applied morphine in man. Anesthesiology. 1979;50(2):149–51. https://doi.org/10.1097/00000542-197902000-00013.

    Article  CAS  PubMed  Google Scholar 

  7. Onofrio BM. Treatment of chronic pain of malignant origin with intrathecal opiates. Clin Neurosurg. 1983;31:304–15. https://doi.org/10.1093/neurosurgery/31.cn_suppl_1.304.

    Article  CAS  PubMed  Google Scholar 

  8. Willer JC, Bergeret S, De Broucker T, Gaudy JH. Low dose epidural morphine does not affect non-nociceptive spinal reflexes in patients with postoperative pain. Pain. 1988;32(1):9–14. https://doi.org/10.1016/0304-3959(88)90017-6.

    Article  PubMed  Google Scholar 

  9. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91. https://doi.org/10.1016/j.neuron.2007.07.012.

    Article  CAS  PubMed  Google Scholar 

  10. Sherrington C. The integrative action of the nervous system. 1906.

    Google Scholar 

  11. King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, et al. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009;12(11):1364–6. https://doi.org/10.1038/nn.2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woo AK. Depression and anxiety in pain. Rev Pain. 2010;4(1):8–12. https://doi.org/10.1177/204946371000400103.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bruel BM, Burton AW. Intrathecal therapy for cancer-related pain. Pain Med. 2016;17(12):2404–21. https://doi.org/10.1093/pm/pnw060.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang G, Liu G, Zhou Z, Yang J, Su C. Successful treatment of refractory cancer pain and depression with continuous intrathecal administration of dexmedetomidine and morphine: a case report. Pain Ther. 2020;9:797. https://doi.org/10.1007/s40122-020-00183-3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kiehelä L, Hamunen K, Heiskanen T. Spinal analgesia for severe cancer pain: a retrospective analysis of 60 patients. Scand J Pain. 2017;16:140–5. https://doi.org/10.1016/j.sjpain.2017.04.073.

    Article  PubMed  Google Scholar 

  16. Woller SA, Eddinger KA, Corr M, Yaksh TL. An overview of pathways encoding nociception. Clin Exp Rheumatol. 2017;35 Suppl 107(5):40–6.

    PubMed  Google Scholar 

  17. Rebel A, Sloan P, Andrykowski M. Postoperative analgesia after radical prostatectomy with high-dose intrathecal morphine and intravenous naloxone: a retrospective review. J Opioid Manag. 2009;5(6):331–9. https://doi.org/10.5055/jom.2009.0033.

    Article  PubMed  Google Scholar 

  18. Deer TR, Pope JE, Hanes MC, McDowell GC. Intrathecal therapy for chronic pain: a review of morphine and ziconotide as firstline options. Pain Med. 2019;20(4):784–98. https://doi.org/10.1093/pm/pny132.

    Article  PubMed  Google Scholar 

  19. Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000Prime Rep. 2015;7:56. https://doi.org/10.12703/P7-56.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Greenberg SA. The history of dermatome mapping. Arch Neurol. 2003;60(1):126–31. https://doi.org/10.1001/archneur.60.1.126.

    Article  PubMed  Google Scholar 

  21. Brown AG, Rose PK, Snow PJ. Dendritic trees and cutaneous receptive fields of adjacent spinocervical tract neurones in the cat. J Physiol. 1980;300:429–40. https://doi.org/10.1113/jphysiol.1980.sp013170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11(12):823–36. https://doi.org/10.1038/nrn2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol. 2018;169:91–134. https://doi.org/10.1016/j.pneurobio.2018.06.012.

    Article  CAS  PubMed  Google Scholar 

  24. Wall PD, Shortland P. Long-range afferents in the rat spinal cord. 1. Numbers, distances and conduction velocities. Philos Trans R Soc Lond Ser B Biol Sci. 1991;334(1269):85–93. https://doi.org/10.1098/rstb.1991.0098.

    Article  CAS  Google Scholar 

  25. Shortland P, Wall PD. Long-range afferents in the rat spinal cord. II. Arborizations that penetrate grey matter. Philos Trans R Soc Lond Ser B Biol Sci. 1992;337(1282):445–55. https://doi.org/10.1098/rstb.1992.0120.

    Article  CAS  Google Scholar 

  26. Treede RD, Meyer RA, Raja SN, Campbell JN. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol. 1992;38(4):397–421. https://doi.org/10.1016/0301-0082(92)90027-c.

    Article  CAS  PubMed  Google Scholar 

  27. Koltzenburg M, Torebjörk HE, Wahren LK. Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain. Brain. 1994;117(Pt 3):579–91. https://doi.org/10.1093/brain/117.3.579.

    Article  PubMed  Google Scholar 

  28. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. https://doi.org/10.1016/j.cell.2009.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Todd A. Plasticity of inhibition in the spinal cord. In: Schaible H-G, editor. Pain control. Handbook of experimental pharmacology. Berlin, Heidelberg: Springer; 2015.

    Google Scholar 

  30. Sorkin LS, Puig S, Jones DL. Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists. Pain. 1998;77(2):181–90. https://doi.org/10.1016/s0304-3959(98)00094-3.

    Article  CAS  PubMed  Google Scholar 

  31. Langford LA, Coggeshall RE. Branching of sensory axons in the peripheral nerve of the rat. J Comp Neurol. 1981;203(4):745–50. https://doi.org/10.1002/cne.902030411.

    Article  CAS  PubMed  Google Scholar 

  32. Lin YT, Chen JC. Dorsal root ganglia isolation and primary culture to study neurotransmitter release. J Vis Exp. 2018;140 https://doi.org/10.3791/57569.

  33. Berta T, Qadri Y, Tan PH, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Ther Targets. 2017;21(7):695–703. https://doi.org/10.1080/14728222.2017.1328057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, et al. Coupled activation of primary sensory neurons contributes to chronic pain. Neuron. 2016;91(5):1085–96. https://doi.org/10.1016/j.neuron.2016.07.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rozanski GM, Nath AR, Adams ME, Stanley EF. Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. J Physiol. 2013;591(22):5575–83. https://doi.org/10.1113/jphysiol.2013.260281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu P, Bembrick AL, Keay KA, McLachlan EM. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun. 2007;21(5):599–616. https://doi.org/10.1016/j.bbi.2006.10.013.

    Article  CAS  PubMed  Google Scholar 

  37. Raoof R, Willemen HLDM, Eijkelkamp N. Divergent roles of immune cells and their mediators in pain. Rheumatology (Oxford). 2018;57(3):429–40. https://doi.org/10.1093/rheumatology/kex308.

    Article  CAS  PubMed  Google Scholar 

  38. Yu X, Liu H, Hamel KA, Morvan MG, Yu S, Leff J, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun. 2020;11(1):264. https://doi.org/10.1038/s41467-019-13839-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bersellini Farinotti A, Wigerblad G, Nascimento D, Bas DB, Morado Urbina C, Nandakumar KS, et al. Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons. J Exp Med. 2019;216(8):1904–24. https://doi.org/10.1084/jem.20181657.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ivanusic JJ. The evidence for the spinal segmental innervation of bone. Clin Anat. 2007;20(8):956–60. https://doi.org/10.1002/ca.20555.

    Article  PubMed  Google Scholar 

  41. Todd AJ. Identifying functional populations among the interneurons in laminae I–III of the spinal dorsal horn. Mol Pain. 2017;13:1744806917693003. https://doi.org/10.1177/1744806917693003.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Polgár E, Durrieux C, Hughes DI, Todd AJ. A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn. PLoS One. 2013;8(10):e78309. https://doi.org/10.1371/journal.pone.0078309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandkühler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89(2):707–58. https://doi.org/10.1152/physrev.00025.2008.

    Article  CAS  PubMed  Google Scholar 

  44. Sorkin LS, Puig S. Neuronal model of tactile allodynia produced by spinal strychnine: effects of excitatory amino acid receptor antagonists and a mu-opiate receptor agonist. Pain. 1996;68(2–3):283–92. https://doi.org/10.1016/s0304-3959(96)03130-2.

    Article  CAS  PubMed  Google Scholar 

  45. Yaksh TL, Harty GJ, Onofrio BM. High dose of spinal morphine produce a nonopiate receptor-mediated hyperesthesia: clinical and theoretic implications. Anesthesiology. 1986;64(5):590–7. https://doi.org/10.1097/00000542-198605000-00008.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto T, Yaksh TL. Effects of intrathecal strychnine and bicuculline on nerve compression-induced thermal hyperalgesia and selective antagonism by MK-801. Pain. 1993;54(1):79–84. https://doi.org/10.1016/0304-3959(93)90102-u.

    Article  CAS  PubMed  Google Scholar 

  47. Denny-Brown D, Kirk EJ, Yanagisawa N. The tract of Lissauer in relation to sensory transmission in the dorsal horn of spinal cord in the macaque monkey. J Comp Neurol. 1973;151(2):175–200. https://doi.org/10.1002/cne.901510206.

    Article  CAS  PubMed  Google Scholar 

  48. Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, et al. Enhancing neuronal chloride extrusion rescues α2/α3 GABA. Nat Commun. 2020;11(1):869. https://doi.org/10.1038/s41467-019-14154-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Old EA, Malcangio M. Chemokine mediated neuron-glia communication and aberrant signalling in neuropathic pain states. Curr Opin Pharmacol. 2012;12(1):67–73. https://doi.org/10.1016/j.coph.2011.10.015.

    Article  CAS  PubMed  Google Scholar 

  50. Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol. 2014;14(4):217–31. https://doi.org/10.1038/nri3621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23–36. https://doi.org/10.1038/nrn2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium. 2019;78:15–25. https://doi.org/10.1016/j.ceca.2018.12.007.

    Article  CAS  PubMed  Google Scholar 

  53. Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010;126(1):56–68. https://doi.org/10.1016/j.pharmthera.2010.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129(2):343–66. https://doi.org/10.1097/ALN.0000000000002130.

    Article  PubMed  Google Scholar 

  55. Basbaum AI, Fields HL. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol. 1979;187(3):513–31. https://doi.org/10.1002/cne.901870304.

    Article  CAS  PubMed  Google Scholar 

  56. Westlund KN, Bowker RM, Ziegler MG, Coulter JD. Origins and terminations of descending noradrenergic projections to the spinal cord of monkey. Brain Res. 1984;292(1):1–16. https://doi.org/10.1016/0006-8993(84)90884-9.

    Article  CAS  PubMed  Google Scholar 

  57. Yaksh TL. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res. 1979;160(1):180–5. https://doi.org/10.1016/0006-8993(79)90616-4.

    Article  CAS  PubMed  Google Scholar 

  58. Hammond DL, Yaksh TL. Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res. 1984;298(2):329–37. https://doi.org/10.1016/0006-8993(84)91432-x.

    Article  CAS  PubMed  Google Scholar 

  59. Yaksh TL, Tyce GM. Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res. 1979;171(1):176–81. https://doi.org/10.1016/0006-8993(79)90747-9.

    Article  CAS  PubMed  Google Scholar 

  60. Tyce GM, Yaksh TL. Monoamine release from cat spinal cord by somatic stimuli: an intrinsic modulatory system. J Physiol. 1981;314:513–29. https://doi.org/10.1113/jphysiol.1981.sp013722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nichols ML, Allen BJ, Rogers SD, Ghilardi JR, Honore P, Luger NM, et al. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science. 1999;286(5444):1558–61. https://doi.org/10.1126/science.286.5444.1558.

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki R, Morcuende S, Webber M, Hunt SP, Dickenson AH. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci. 2002;5(12):1319–26. https://doi.org/10.1038/nn966.

    Article  CAS  PubMed  Google Scholar 

  63. Svensson CI, Tran TK, Fitzsimmons B, Yaksh TL, Hua XY. Descending serotonergic facilitation of spinal ERK activation and pain behavior. FEBS Lett. 2006;580(28–29):6629–34. https://doi.org/10.1016/j.febslet.2006.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang DX, Owens CM, Willis WD. Short-latency excitatory postsynaptic potentials are evoked in primate spinothalamic tract neurons by corticospinal tract volleys. Pain. 1991;45(2):197–201. https://doi.org/10.1016/0304-3959(91)90188-4.

    Article  PubMed  Google Scholar 

  65. Kevetter GA, Haber LH, Yezierski RP, Chung JM, Martin RF, Willis WD. Cells of origin of the spinoreticular tract in the monkey. J Comp Neurol. 1982;207(1):61–74. https://doi.org/10.1002/cne.902070106.

    Article  CAS  PubMed  Google Scholar 

  66. Willis WDJ, Coggeshall RE. Sensory mechanisms of the spinal cord. 3rd ed. New York: Kluwer Academic/Plenum Publishers; 2004.

    Book  Google Scholar 

  67. Brown-Séquard CE. Course of lectures on the physiology and pathology of the central nervous system. Philadelphia, PA: Lippincott; 1860.

    Google Scholar 

  68. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968–71. https://doi.org/10.1126/science.277.5328.968.

    Article  CAS  PubMed  Google Scholar 

  69. Ploner M, Freund HJ, Schnitzler A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain. 1999;81(1–2):211–4. https://doi.org/10.1016/s0304-3959(99)00012-3.

    Article  CAS  PubMed  Google Scholar 

  70. LaGraize SC, Labuda CJ, Rutledge MA, Jackson RL, Fuchs PN. Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp Neurol. 2004;188(1):139–48. https://doi.org/10.1016/j.expneurol.2004.04.003.

    Article  PubMed  Google Scholar 

  71. Melzack R, Casey K. Sensory, motivational and central control determinants of pain. DR 1968.

    Google Scholar 

  72. Mendell LM. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol. 1966;16(3):316–32. https://doi.org/10.1016/0014-4886(66)90068-9.

    Article  CAS  PubMed  Google Scholar 

  73. Herrero JF. Wind-up of spinal cord neurons. In: Schmidt RF, Willis WD, editors. Encyclopedia of pain. Berlin, Heidelberg: Springer; 2007.

    Google Scholar 

  74. Dickenson AH, Sullivan AF. Differential effects of excitatory amino acid antagonists on dorsal horn nociceptive neurones in the rat. Brain Res. 1990;506(1):31–9. https://doi.org/10.1016/0006-8993(90)91195-m.

    Article  CAS  PubMed  Google Scholar 

  75. Xu Q, Yaksh TL. A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol. 2011;24(4):400–7. https://doi.org/10.1097/ACO.0b013e32834871df.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Negus SS. Core outcome measures in preclinical assessment of candidate analgesics. Pharmacol Rev. 2019;71(2):225–66. https://doi.org/10.1124/pr.118.017210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaliyaperumal S, Wilson K, Aeffner F, Dean C. Animal models of peripheral pain: biology review and application for drug discovery. Toxicol Pathol. 2020;48(1):202–19. https://doi.org/10.1177/0192623319857051.

    Article  CAS  PubMed  Google Scholar 

  78. Johnson AC, Farmer AD, Ness TJ, Greenwood-Van Meerveld B. Critical evaluation of animal models of visceral pain for therapeutics development: a focus on irritable bowel syndrome. Neurogastroenterol Motil. 2020;32(4):e13776. https://doi.org/10.1111/nmo.13776.

    Article  PubMed  Google Scholar 

  79. Foerster O. The dermatomes in man. Brain. 1933;56:353–523.

    Article  Google Scholar 

  80. Keegan JJ, Garrett FD. The segmental distribution of the cutaneous nerves in the limbs of man. Anat Rec. 1948;102(4):409–37. https://doi.org/10.1002/ar.1091020403.

    Article  CAS  PubMed  Google Scholar 

  81. Takahashi Y, Nakajima Y, Sakamoto T. Dermatome mapping in the rat hindlimb by electrical stimulation of the spinal nerves. Neurosci Lett. 1994;168(1–2):85–8. https://doi.org/10.1016/0304-3940(94)90422-7.

    Article  CAS  PubMed  Google Scholar 

  82. Takahashi Y, Chiba T, Sameda H, Ohtori S, Kurokawa M, Moriya H. Organization of cutaneous ventrodorsal and rostrocaudal axial lines in the rat hindlimb and trunk in the dorsal horn of the spinal cord. J Comp Neurol. 2002;445(2):133–44. https://doi.org/10.1002/cne.10158.

    Article  PubMed  Google Scholar 

  83. Takahashi Y, Chiba T, Kurokawa M, Aoki Y. Dermatomes and the central organization of dermatomes and body surface regions in the spinal cord dorsal horn in rats. J Comp Neurol. 2003;462(1):29–41. https://doi.org/10.1002/cne.10669.

    Article  PubMed  Google Scholar 

  84. Takahashi Y, Ohtori S, Takahashi K. Somatotopic organization of lumbar muscle-innervating neurons in the ventral horn of the rat spinal cord. J Anat. 2010;216(4):489–95. https://doi.org/10.1111/j.1469-7580.2009.01203.x.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bajrović F, Sketelj J. Extent of nociceptive dermatomes in adult rats is not primarily maintained by axonal competition. Exp Neurol. 1998;150(1):115–21. https://doi.org/10.1006/exnr.1997.6734.

    Article  PubMed  Google Scholar 

  86. Fletcher TF, Kitchell RL. The lumbar, sacral and coccygeal tactile dermatomes of the dog. J Comp Neurol. 1966;128(2):171–80. https://doi.org/10.1002/cne.901280204.

    Article  CAS  PubMed  Google Scholar 

  87. Kirk EJ. The dermatomes of the sheep. J Comp Neurol. 1968;134(3):353–70. https://doi.org/10.1002/cne.901340308.

    Article  CAS  PubMed  Google Scholar 

  88. Kirk EJ, Denny-Brown D. Functional variation in dermatomes in the macaque monkey following dorsal root lesions. J Comp Neurol. 1970;139(3):307–20. https://doi.org/10.1002/cne.901390304.

    Article  CAS  PubMed  Google Scholar 

  89. Lee MW, McPhee RW, Stringer MD. An evidence-based approach to human dermatomes. Clin Anat. 2008;21(5):363–73. https://doi.org/10.1002/ca.20636.

    Article  CAS  PubMed  Google Scholar 

  90. Inman V, Saunders JB. Referrred pain from skeletal structures. J Nerv Ment Dis. 1944;99:660–7.

    Article  Google Scholar 

  91. Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11(10):695–707. https://doi.org/10.1038/nrc3131.

    Article  CAS  PubMed  Google Scholar 

  92. Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71. https://doi.org/10.1007/978-1-4939-0897-4_3.

    Article  PubMed  Google Scholar 

  93. Lohse I, Brothers SP. Pathogenesis and treatment of pancreatic cancer related pain. Anticancer Res. 2020;40(4):1789–96. https://doi.org/10.21873/anticanres.14133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuo DC, de Groat WC. Primary afferent projections of the major splanchnic nerve to the spinal cord and gracile nucleus of the cat. J Comp Neurol. 1985;231(4):421–34. https://doi.org/10.1002/cne.902310402.

    Article  CAS  PubMed  Google Scholar 

  95. Brierley SM, Hibberd TJ, Spencer NJ. Spinal afferent innervation of the colon and rectum. Front Cell Neurosci. 2018;12:467. https://doi.org/10.3389/fncel.2018.00467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grundy L, Brierley SM. Cross-organ sensitization between the colon and bladder: to pee or not to pee? Am J Physiol Gastrointest Liver Physiol. 2018;314(3):G301–G8. https://doi.org/10.1152/ajpgi.00272.2017.

    Article  CAS  PubMed  Google Scholar 

  97. Sadeghi M, Erickson A, Castro J, Deiteren A, Harrington AM, Grundy L, et al. Contribution of membrane receptor signalling to chronic visceral pain. Int J Biochem Cell Biol. 2018;98:10–23. https://doi.org/10.1016/j.biocel.2018.02.017.

    Article  CAS  PubMed  Google Scholar 

  98. Gebhart GF, Bielefeldt K. Physiology of visceral pain. Compr Physiol. 2016;6(4):1609–33. https://doi.org/10.1002/cphy.c150049.

    Article  CAS  PubMed  Google Scholar 

  99. Laird JM, Martinez-Caro L, Garcia-Nicas E, Cervero F. A new model of visceral pain and referred hyperalgesia in the mouse. Pain. 2001;92(3):335–42. https://doi.org/10.1016/s0304-3959(01)00275-5.

    Article  CAS  PubMed  Google Scholar 

  100. Haberberger RV, Barry C, Dominguez N, Matusica D. Human dorsal root ganglia. Front Cell Neurosci. 2019;13:271. https://doi.org/10.3389/fncel.2019.00271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu H, Chen Y, Huang L, Sun X, Fu T, Wu S, et al. Drug distribution into peripheral nerve. J Pharmacol Exp Ther. 2018;365(2):336–45. https://doi.org/10.1124/jpet.117.245613.

    Article  CAS  PubMed  Google Scholar 

  102. Abram SE, Yi J, Fuchs A, Hogan QH. Permeability of injured and intact peripheral nerves and dorsal root ganglia. Anesthesiology. 2006;105(1):146–53. https://doi.org/10.1097/00000542-200607000-00024.

    Article  PubMed  Google Scholar 

  103. McLachlan EM, Jänig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363(6429):543–6. https://doi.org/10.1038/363543a0.

    Article  CAS  PubMed  Google Scholar 

  104. Brown JD, Saeed M, Do L, Braz J, Basbaum AI, Iadarola MJ, et al. CT-guided injection of a TRPV1 agonist around dorsal root ganglia decreases pain transmission in swine. Sci Transl Med. 2015;7(305):305ra145. https://doi.org/10.1126/scitranslmed.aac6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu H, Fischer G, Hogan QH. AAV-mediated gene transfer to dorsal root ganglion. Methods Mol Biol. 2016;1382:251–61. https://doi.org/10.1007/978-1-4939-3271-9_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hockman TM, Cisternas AF, Jones B, Butt MT, Osborn KG, Steinauer JJ, et al. Target engagement and histopathology of neuraxial resiniferatoxin in dog. Vet Anaesth Analg. 2018;45(2):212–26. https://doi.org/10.1016/j.vaa.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  107. Hardcastle N, Boulis NM, Federici T. AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opin Biol Ther. 2018;18(3):293–307. https://doi.org/10.1080/14712598.2018.1416089.

    Article  CAS  PubMed  Google Scholar 

  108. Zheng CX, Wang SM, Bai YH, Luo TT, Wang JQ, Dai CQ, et al. Lentiviral vectors and adeno-associated virus vectors: useful tools for gene transfer in pain research. Anat Rec (Hoboken). 2018;301(5):825–36. https://doi.org/10.1002/ar.23723.

    Article  PubMed  Google Scholar 

  109. Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46–51. https://doi.org/10.1016/j.addr.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  110. Jia L, Zhang Y, Qu YJ, Huai J, Wei H, Yue SW. Gene therapy by lentivirus-mediated RNA interference targeting extracellular-regulated kinase alleviates neuropathic pain in vivo. J Cell Biochem. 2018;120:8110–9. https://doi.org/10.1002/jcb.28090.

    Article  CAS  PubMed  Google Scholar 

  111. Belanger S, Ma W, Chabot JG, Quirion R. Expression of calcitonin gene-related peptide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates. Neuroscience. 2002;115(2):441–53. https://doi.org/10.1016/s0306-4522(02)00452-9.

    Article  CAS  PubMed  Google Scholar 

  112. Hogan QH, Prost R, Kulier A, Taylor ML, Liu S, Mark L. Magnetic resonance imaging of cerebrospinal fluid volume and the influence of body habitus and abdominal pressure. Anesthesiology. 1996;84(6):1341–9. https://doi.org/10.1097/00000542-199606000-00010.

    Article  CAS  PubMed  Google Scholar 

  113. Carpenter RL, Hogan QH, Liu SS, Crane B, Moore J. Lumbosacral cerebrospinal fluid volume is the primary determinant of sensory block extent and duration during spinal anesthesia. Anesthesiology. 1998;89(1):24–9. https://doi.org/10.1097/00000542-199807000-00007.

    Article  CAS  PubMed  Google Scholar 

  114. Axelsson KH, Edström HH, Sundberg AE, Widman GB. Spinal anaesthesia with hyperbaric 0.5% bupivacaine: effects of volume. Acta Anaesthesiol Scand. 1982;26(5):439–45. https://doi.org/10.1111/j.1399-6576.1982.tb01796.x.

    Article  CAS  PubMed  Google Scholar 

  115. van Zundert AA, Stultiens G, Jakimowicz JJ, Peek D, van der Ham WG, Korsten HH, et al. Laparoscopic cholecystectomy under segmental thoracic spinal anaesthesia: a feasibility study. Br J Anaesth. 2007;98(5):682–6. https://doi.org/10.1093/bja/aem058.

    Article  PubMed  Google Scholar 

  116. Malinovsky JM, Renaud G, Le Corre P, Charles F, Lepage JY, Malinge M, et al. Intrathecal bupivacaine in humans: influence of volume and baricity of solutions. Anesthesiology. 1999;91(5):1260–6. https://doi.org/10.1097/00000542-199911000-00016.

    Article  CAS  PubMed  Google Scholar 

  117. King HK, Wooten DJ. Effects of drug dose, volume, and concentration on spinal anesthesia with isobaric tetracaine. Reg Anesth. 1995;20(1):45–9.

    CAS  PubMed  Google Scholar 

  118. Bromage PR. Mechanism of action of extradural analgesia. Br J Anaesth. 1975;47(suppl):199–211.

    PubMed  Google Scholar 

  119. Ellakany MH. Thoracic spinal anesthesia is safe for patients undergoing abdominal cancer surgery. Anesth Essays Res. 2014;8(2):223–8. https://doi.org/10.4103/0259-1162.134516.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Boswell MV, Iacono RP, Guthkelch AN. Sites of action of subarachnoid lidocaine and tetracaine: observations with evoked potential monitoring during spinal cord stimulator implantation. Reg Anesth. 1992;17(1):37–42.

    CAS  PubMed  Google Scholar 

  121. Onuki E, Higuchi H, Takagi S, Nishijima K, Fujita N, Matsuura T, et al. Gestation-related reduction in lumbar cerebrospinal fluid volume and dural sac surface area. Anesth Analg. 2010;110(1):148–53. https://doi.org/10.1213/ANE.0b013e3181c04faf.

    Article  PubMed  Google Scholar 

  122. Hocking G, Wildsmith JA. Intrathecal drug spread. Br J Anaesth. 2004;93(4):568–78. https://doi.org/10.1093/bja/aeh204.

    Article  CAS  PubMed  Google Scholar 

  123. Pitkänen M, Rosenberg PH. Local anaesthetics and additives for spinal anaesthesia--characteristics and factors influencing the spread and duration of the block. Best Pract Res Clin Anaesthesiol. 2003;17(3):305–22. https://doi.org/10.1016/s1521-6896(02)00092-7.

    Article  PubMed  Google Scholar 

  124. Brown AG, Fyffe RE, Noble R. Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat’s spinal cord. J Physiol. 1980;307:385–400. https://doi.org/10.1113/jphysiol.1980.sp013441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sugiura Y, Terui N, Hosoya Y. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol. 1989;62(4):834–40. https://doi.org/10.1152/jn.1989.62.4.834.

    Article  CAS  PubMed  Google Scholar 

  126. Simone DA, Sorkin LS, Oh U, Chung JM, Owens C, LaMotte RH, et al. Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol. 1991;66(1):228–46. https://doi.org/10.1152/jn.1991.66.1.228.

    Article  CAS  PubMed  Google Scholar 

  127. Sikandar S, Dickenson AH. Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care. 2012;6(1):17–26. https://doi.org/10.1097/SPC.0b013e32834f6ec9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yaksh TL, Noueihed RY, Durant PA. Studies of the pharmacology and pathology of intrathecally administered 4-anilinopiperidine analogues and morphine in the rat and cat. Anesthesiology. 1986;64(1):54–66. https://doi.org/10.1097/00000542-198601000-00009.

    Article  CAS  PubMed  Google Scholar 

  129. Sabbe MB, Grafe MR, Mjanger E, Tiseo PJ, Hill HF, Yaksh TL. Spinal delivery of sufentanil, alfentanil, and morphine in dogs. Physiologic and toxicologic investigations. Anesthesiology. 1994;81(4):899–920. https://doi.org/10.1097/00000542-199410000-00017.

    Article  CAS  PubMed  Google Scholar 

  130. Nordberg G, Hedner T, Mellstrand T, Dahlström B. Pharmacokinetic aspects of intrathecal morphine analgesia. Anesthesiology. 1984;60(5):448–54. https://doi.org/10.1097/00000542-198405000-00010.

    Article  CAS  PubMed  Google Scholar 

  131. Homma E, Collins JG, Kitahata LM, Matsumoto M, Kawahara M. Suppression of noxiously evoked WDR dorsal horn neuronal activity by spinally administered morphine. Anesthesiology. 1983;58(3):232–6. https://doi.org/10.1097/00000542-198303000-00005.

    Article  CAS  PubMed  Google Scholar 

  132. Suzukawa M, Matsumoto M, Collins JG, Kitahata LM, Yuge O. Dose-response suppression of noxiously evoked activity of WDR neurons by spinally administered fentanyl. Anesthesiology. 1983;58(6):510–3. https://doi.org/10.1097/00000542-198306000-00005.

    Article  CAS  PubMed  Google Scholar 

  133. Bujedo BM, Santos SG, Azpiazu AU. A review of epidural and intrathecal opioids used in the management of postoperative pain. J Opioid Manag. 2012;8(3):177–92. https://doi.org/10.5055/jom.2012.0114.

    Article  PubMed  Google Scholar 

  134. Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88(4):1277–340. https://doi.org/10.1152/physrev.00027.2007.

    Article  PubMed  Google Scholar 

  135. Wolak DJ, Thorne RG. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013;10(5):1492–504. https://doi.org/10.1021/mp300495e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vanderwall AG, Noor S, Sun MS, Sanchez JE, Yang XO, Jantzie LL, et al. Effects of spinal non-viral interleukin-10 gene therapy formulated with d-mannose in neuropathic interleukin-10 deficient mice: behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav Immun. 2018;69:91–112. https://doi.org/10.1016/j.bbi.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. Sorkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorkin, L.S., Dias, E.V., Yaksh, T.L. (2023). Principles and Targets Underlying Spinal Analgesia. In: Yaksh, T., Hayek, S. (eds) Neuraxial Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-031-39558-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39558-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39557-4

  • Online ISBN: 978-3-031-39558-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics