Skip to main content

Pathophysiology of Hypertensive Heart Disease

  • Chapter
  • First Online:
Hypertension and Heart Failure

Abstract

Left ventricular hypertrophy (LVH), a key biomarker of hypertensive heart disease (HHD), is an integrated marker of cardiovascular risk reflecting cardiac alterations induced by hemodynamic and non-hemodynamic factors operating in hypertension. The pathogenetic mechanisms underlying LVH and more generally hypertensive heart disease (HHD) are multiple, extremely complex, and still not fully elucidated.

Elevated blood pressure (BP) is the main trigger behind a cascade of events leading to LVH and diastolic/systolic dysfunction. Furthermore, numerous growth factors, cytokines, neurohormones, and ethnic/genetic predisposition play a relevant role in this dynamic process. Alterations in LV diastolic and systolic function in HHD characterize the onset and progression of myocardial structural and functional abnormalities involving extracellular matrix, fibrous tissue, vessels, and cardiomyocytes themselves. Compelling evidence indicates that alterations in systolic and diastolic functions may precede the development of frank LVH.

In this chapter, the pathophysiological mechanisms and correlates of LVH (and its subtypes), as well as diastolic/systolic dysfunction, will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrone-Filardi P, Coca A, Galderisi M, et al. Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: a consensus paper from the European Association of Cardiovascular Imaging (EACVI), the European Society of Cardiology Council on Hypertension, and the European Society of Hypertension (ESH). Eur Heart J Cardiovasc Imaging. 2017;18:945–60.

    Article  Google Scholar 

  2. Tadic M, Cuspidi C, Bombelli M, et al. Hypertensive heart disease beyond left ventricular hypertrophy: are we ready for echocardiographic strain evaluation in everyday clinical practice? J Hypertens. 2018;36:744–53.

    Article  CAS  Google Scholar 

  3. Cuspidi C, Facchetti R, Bombelli M, et al. High normal blood pressure and left ventricular hypertrophy echocardiographic findings from the PAMELA population. Hypertension. 2019;73:612–9.

    Article  CAS  Google Scholar 

  4. Mancia G, Facchetti R, Bombelli M, et al. White-coat hypertension: pathophysiological and clinical aspects: excellence award for hypertension research 2020. Hypertension. 2021;78:1677–88.

    Article  CAS  Google Scholar 

  5. Cuspidi C, Sala C, Negri F, et al. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012;26:343–9.

    Article  CAS  Google Scholar 

  6. Pedersen LR, Kristensen AM, Petersen SS, et al. Prognostic implications of left ventricular hypertrophy diagnosed on electrocardiogram vs echocardiography. J Clin Hypertens. 2020;22:1647–58.

    Article  CAS  Google Scholar 

  7. Vasan RS, Song RJ, Xanthakis V, et al. Hypertension-mediated organ damage prevalence, correlates, and prognosis in the community. Hypertension. 2022;79:505–15.

    Article  CAS  Google Scholar 

  8. Salah HM, Minhas AMK, Khan MS, et al. Trends and characteristics of hospitalizations for heart failure in the United States from 2004 to 2018. ESC Heart Fail. 2022;9(2):947–52.

    Article  Google Scholar 

  9. Faulkner JL. Obesity-associated cardiovascular risk in women: hypertension and heart failure. Clin Sci. 2021;135:1523–44.

    Article  CAS  Google Scholar 

  10. Joseph G, Marott JL, Biering-Sørensen T, et al. level of physical activity, left ventricular mass, hypertension, and prognosis. Hypertension. 2020;75:693–701.

    Article  CAS  Google Scholar 

  11. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16:1031–41.

    Article  CAS  Google Scholar 

  12. Stacey RB, Hundley WG. Integrating measures of myocardial fibrosis in the transition from hypertensive heart disease to heart failure. Curr Hypertens Rep. 2021;23(4):22.

    Article  Google Scholar 

  13. López B, Ravassa S, Moreno MU, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 2021;18:479–98.

    Article  Google Scholar 

  14. Liu Y, Lin Y, Zhang MM, Li XH, et al. The relationship of plasma renin, angiotensin, and aldosterone levels to blood pressure variability and target organ damage in children with essential hypertension. BMC Cardiovasc Disord. 2020;20(1):296.

    Article  Google Scholar 

  15. Cuspidi C, Tadic M, Sala C, et al. Regression of left ventricular hypertrophy in primary aldosteronism after adrenalectomy: a meta-analysis of echocardiographic studies. J Hypertens. 2021;39:775–83.

    Article  CAS  Google Scholar 

  16. Grassi G, Seravalle G, Mancia G. Sympathetic activation in cardiovascular disease: evidence, clinical impact and therapeutic implications. Eur J Clin Investig. 2015;45:1367–75.

    Article  Google Scholar 

  17. Burns J, Sivananthan MU, Ball SG, et al. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation. 2007;115:1999–2005.

    Article  Google Scholar 

  18. Kordalis A, Tsiachris D, Pietri P, et al. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J Hypertens. 2018;36:1614–21.

    Article  CAS  Google Scholar 

  19. da Silva-deAbreu A, Alhafez BA, Lavie CJ, et al. Interactions of hypertension, obesity, left ventricular hypertrophy, and heart failure. Curr Opin Cardiol. 2021;36:453–60.

    Article  Google Scholar 

  20. Chirinos JA, Segers P, Hughes T, et al. Large-artery stiffness in health and disease: JACC state-of-the-art review. Am Coll Cardiol. 2019;74:1237–63.

    Article  Google Scholar 

  21. Haring B, Wang W, Lee ET, et al. Effect of dietary sodium and potassium intake on left ventricular diastolic function and mass in adults≤40 years (from the Strong Heart Study). Am J Cardiol. 2015;115:1244–8.

    Article  CAS  Google Scholar 

  22. Cuspidi C, Tadic M, Gherbesi E, et al. Targeting subclinical organ damage in obstructive sleep apnea: a narrative review. J Hum Hypertens. 2021;35:26–36.

    Article  Google Scholar 

  23. Adeoye AM, Ovbiagele B, Kolo A, et al. SIREN Team as part of H3Africa consortium exploring overlaps between the genomic and environmental determinants of LVH and stroke: a multicenter study in West Africa. Glob Heart. 2017;12:107–13.

    Article  Google Scholar 

  24. Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19:1550–8.

    Article  CAS  Google Scholar 

  25. Cuspidi C, Mancia G, Ambrosioni E, et al. Left ventricular and carotid structure in untreated, uncomplicated essential hypertension: results from the Assessment Prognostic Risk Observational Survey (APROS). J Hum Hypertens. 2004;18:891–6.

    Article  CAS  Google Scholar 

  26. Khouri MG, Peshock RM, Ayers CR, et al. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas Heart Study. Circ Cardiovasc Imaging. 2010;3:164–71.

    Article  Google Scholar 

  27. Bang CN, Gerdts E, Aurigemma GP, et al. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients. Circ Cardiovasc Imaging. 2014;7:422–9.

    Article  Google Scholar 

  28. Cuspidi C, Facchetti R, Bombelli M, et al. Risk of mortality in relation to an updated classification of left ventricular geometric abnormalities in a general population: the Pamela study. J Hypertens. 2015;33:2133–40.

    Article  CAS  Google Scholar 

  29. de Simone G, Izzo R, Aurigemma GP, et al. Cardiovascular risk in relation to a new classification of hypertensive left ventricular geometric abnormalities. J Hypertens. 2015;33:745–54.

    Article  Google Scholar 

  30. Voorhees AP, Han HC. Biomechanics of cardiac function. Compr Physiol. 2016;5:1623–44.

    Google Scholar 

  31. Wenzel JP, Kellen RB, Magnussen C, et al. Diastolic dysfunction in individuals with and without heart failure with preserved ejection fraction. Clin Res Cardiol. 2021;111(4):416–27.

    Article  Google Scholar 

  32. Chahal NS, Lim TK, Jain P, et al. New insights into the relationship of left ventricular geometry and left ventricular mass with cardiac function: a population study of hypertensive subjects. Eur Heart J. 2010;31:588–94.

    Article  Google Scholar 

  33. Zanchetti A, Cuspidi C, Comarella L, et al. Left ventricular diastolic dysfunction in elderly hypertensives: results of the APROS-diadys study. J Hypertens. 2007;25:2158–67.

    Article  CAS  Google Scholar 

  34. Canepa M, Strait JB, Milaneschi Y, et al. The relationship between visceral adiposity and left ventricular diastolic function: results from the Baltimore Longitudinal Study of Aging. Nutr Metab Cardiovasc Dis. 2013;23:1263–70.

    Article  CAS  Google Scholar 

  35. Skaarup KG, Lassen MCH, Marott JL, et al. Diastolic function assessed with speckle tracking over a decade and its prognostic value: The Copenhagen City Heart Study. Echocardiography. 2021;38:964–73.

    Article  Google Scholar 

  36. Airale L, Paini A, Ianniello E, et al. Left atrial volume indexed for height(2) is a new sensitive marker for subclinical cardiac organ damage in female hypertensive patients. Hypertens Res. 2021;44:692–9.

    Article  CAS  Google Scholar 

  37. Pichler G, Redon J, Martínez F, et al. Cardiac magnetic resonance-derived fibrosis, strain and molecular biomarkers of fibrosis in hypertensive heart disease. J Hypertens. 2020;38:2036–42.

    Article  CAS  Google Scholar 

  38. Burocchi S, Gori M, Cioffi G, et al. Risk stratifying asymptomatic left ventricular systolic dysfunction in the community: beyond left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging. 2020;21:1405–11.

    Article  Google Scholar 

  39. Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ, et al. Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen City Heart Study. Circ Cardiovasc Imaging. 2017;10:e005521.

    Article  Google Scholar 

  40. Stylidis M, Leon DA, Rӧsner A, et al. Global myocardial longitudinal strain in a general population-associations with blood pressure and subclinical heart failure: The Tromso Study. Int J Cardiovasc Imaging. 2020;36:459–70.

    Article  Google Scholar 

  41. Modin D, Biering-Sørensen SR, Mogelvang R, et al. Prognostic value of echocardiography in hypertensive versus nonhypertensive participants from the general population. Hypertension. 2018;71:742–51.

    Article  CAS  Google Scholar 

  42. Tadic M, Cuspidi C, Majstorovic A, et al. The relationship between left ventricular deformation and different geometric patterns according to the updated classification: findings from the hypertensive population. J Hypertens. 2015;33:1954–61.

    Article  CAS  Google Scholar 

  43. Tadic M, Sala C, Carugo S, et al. Myocardial strain in hypertension: a meta-analysis of two-dimensional speckle tracking echocardiographic studies. J Hypertens. 2021;39:2103–12.

    Article  CAS  Google Scholar 

  44. Tadic M, Cuspidi C, Plein S, et al. Comprehensive assessment of hypertensive heart disease: cardiac magnetic resonance in focus. Heart Fail Rev. 2021;26:1383–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cesare Cuspidi or Guido Grassi .

Editor information

Editors and Affiliations

Ethics declarations

None.

Disclosure

No conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuspidi, C., Tadic, M., Sala, C., Grassi, G. (2023). Pathophysiology of Hypertensive Heart Disease. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics