Skip to main content

Advertisement

Log in

Global myocardial longitudinal strain in a general population—associations with blood pressure and subclinical heart failure: The Tromsø Study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The early detection of subclinical myocardial dysfunction can contribute to the treatment and prevention of heart failure (HF). The aim of the study was to (i) describe myocardial global longitudinal strain (GLS) patterns in a large general population sample from Norway and their relation to established cardiovascular disease (CVD) risk factors; (ii) to determine its normal thresholds in healthy individuals and (iii) ascertain the relation of myocardial GLS to stage A subclinical heart failure (SAHF). Participants (n = 1855) of the 7th survey of the population-based Tromsø Study of Norway (2015–2016) with GLS measurements were studied. Linear and logistic regression models were used for assessment of the associations between CVD risk factors and GLS. Mean GLS (SD) in healthy participants was − 15.9 (2.7) % in men and − 17.8 (3.1) % in women. Among healthy subjects, defined as those without known cardiovascular diseases and comorbidities, GLS declined with age. An increase of systolic blood pressure (SBP) of 10 mm Hg was associated with a 0.2% GLS reduction. Myocardial GLS in individuals with SAHF was 1.2% lower than in participants without SAHF (p < 0.001). Mean myocardial GLS declines with age in both sexes, both in a general population and in the healthy subsample. SBP increase associated with GLS decline in women. Our findings indicate high sensitivity of GLS for early subclinical stages of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cardiovascular diseases (CVDs) WHO fact sheet (2017) http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  2. Krishnasamy R, Isbel NM, Hawley CM, Pascoe EM, Burrage M, Leano R, Haluska BA, Marwick TH, Stanton T (2015) Left ventricular global longitudinal strain (GLS) is a superior predictor of all-cause and cardiovascular mortality when compared to ejection fraction in advanced chronic kidney disease. PLoS ONE 10(5):e0127044. https://doi.org/10.1371/journal.pone.0127044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sengelov M, Jorgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, Nochioka K, Biering-Sorensen T (2015) Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging 8(12):1351–1359. https://doi.org/10.1016/j.jcmg.2015.07.013

    Article  PubMed  Google Scholar 

  4. Modin D, Sengelov M, Jorgensen PG, Bruun NE, Olsen FJ, Dons M, Fritz Hansen T, Jensen JS, Biering-Sorensen T (2018) Global longitudinal strain corrected by RR interval is a superior predictor of all-cause mortality in patients with systolic heart failure and atrial fibrillation. ESC Heart Fail 5(2):311–318. https://doi.org/10.1002/ehf2.12220

    Article  PubMed  Google Scholar 

  5. Bendary A, Tawfeek W, Mahros M, Salem M (2018) The predictive value of global longitudinal strain on clinical outcome in patients with ST-segment elevation myocardial infarction and preserved systolic function. Echocardiography 35(7):915–921. https://doi.org/10.1111/echo.13866

    Article  PubMed  Google Scholar 

  6. Lauridsen TK, Alhede C, Crowley AL, Kisslo J, Sorensen LL, Hansen TF, Risum N, Larsen CT, Hassager C, Sogaard P, Dahl A, Bruun NE (2018) Two-dimensional global longitudinal strain is superior to left ventricular ejection fraction in prediction of outcome in patients with left-sided infective endocarditis. Int J Cardiol 260:118–123. https://doi.org/10.1016/j.ijcard.2018.01.031

    Article  PubMed  Google Scholar 

  7. Kearney LG, Lu K, Ord M, Patel SK, Profitis K, Matalanis G, Burrell LM, Srivastava PM (2012) Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 13(10):827–833. https://doi.org/10.1093/ehjci/jes115

    Article  CAS  PubMed  Google Scholar 

  8. Hiemstra YL, Debonnaire P, Bootsma M, van Zwet EW, Delgado V, Schalij MJ, Atsma DE, Bax JJ, Marsan NA (2017) Global longitudinal strain and left atrial volume index provide incremental prognostic value in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. https://doi.org/10.1161/circimaging.116.005706

    Article  PubMed  Google Scholar 

  9. Olsen FJ, Jorgensen PG, Mogelvang R, Jensen JS, Fritz-Hansen T, Bech J, Biering-Sorensen T (2016) Predicting paroxysmal atrial fibrillation in cerebrovascular ischemia using tissue doppler imaging and speckle tracking echocardiography. J Stroke Cerebrovasc Dis 25(2):350–359. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.10.004

    Article  PubMed  Google Scholar 

  10. Biering-Sorensen T, Biering-Sorensen SR, Olsen FJ, Sengelov M, Jorgensen PG, Mogelvang R, Shah AM, Jensen JS (2017) Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the copenhagen city heart study. Circ Cardiovasc Imaging. https://doi.org/10.1161/circimaging.116.005521

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim SA, Park SM, Kim MN, Shim WJ (2016) Assessment of left ventricular function by layer-specific strain and its relationship to structural remodelling in patients with hypertension. Can J Cardiol 32(2):211–216. https://doi.org/10.1016/j.cjca.2015.04.025

    Article  PubMed  Google Scholar 

  12. Kuznetsova T, Nijs E, Cauwenberghs N, Knez J, Thijs L, Haddad F, Yang WY, Kerkhof PL, Voigt JU, Staessen JA (2019) Temporal changes in left ventricular longitudinal strain in general population: clinical correlates and impact on cardiac remodeling. Echocardiography 36(3):458–468. https://doi.org/10.1111/echo.14246

    Article  PubMed  Google Scholar 

  13. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J-U (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270

    Article  PubMed  Google Scholar 

  14. Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G, Donal E, Sade LE, Ernande L, Garbi M, Grapsa J, Hagendorff A, Kamp O, Magne J, Santoro C, Stefanidis A, Lancellotti P, Popescu B, Habib G, Committee ESD, Committee ESD (2017) Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 18(12):1301–1310. https://doi.org/10.1093/ehjci/jex244

    Article  PubMed  Google Scholar 

  15. Alcidi GM, Esposito R, Evola V, Santoro C, Lembo M, Sorrentino R, Lo Iudice F, Borgia F, Novo G, Trimarco B, Lancellotti P, Galderisi M (2017) Normal reference values of multilayer longitudinal strain according to age decades in a healthy population: a single-centre experience. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jex306

    Article  Google Scholar 

  16. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26(2):185–191. https://doi.org/10.1016/j.echo.2012.10.008

    Article  PubMed  Google Scholar 

  17. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL, American College of Cardiology F, American Heart Association Task Force on Practice G (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol 62(16):e147–e239. https://doi.org/10.1016/j.jacc.2013.05.019

    Article  PubMed  Google Scholar 

  18. Ammar KA, Jacobsen SJ, Mahoney DW, Kors JA, Redfield MM, Burnett JC Jr, Rodeheffer RJ (2007) Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 115(12):1563–1570. https://doi.org/10.1161/CIRCULATIONAHA.106.666818

    Article  PubMed  Google Scholar 

  19. Yang H, Negishi K, Wang Y, Nolan M, Marwick TH (2017) Imaging-guided cardioprotective treatment in a community elderly population of stage B heart failure. JACC Cardiovasc Imaging 10(3):217–226. https://doi.org/10.1016/j.jcmg.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  20. Chen XJ, Sun XL, Zhang Q, Gao XL, Liang YJ, Jiang J, Kang Y, Chen YC, Zeng Z, Yu CM (2016) Uncontrolled blood pressure as an independent risk factor of early impaired left ventricular systolic function in treated hypertension. Echocardiography 33(10):1488–1494. https://doi.org/10.1111/echo.13289

    Article  PubMed  Google Scholar 

  21. Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, Fang ZY, Prins JB, Stanton T (2015) Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart 101(13):1061–1066. https://doi.org/10.1136/heartjnl-2014-307391

    Article  PubMed  Google Scholar 

  22. Ho JE, McCabe EL, Wang TJ, Larson MG, Levy D, Tsao C, Aragam J, Mitchell GF, Benjamin EJ, Vasan RS, Cheng S (2017) Cardiometabolic traits and systolic mechanics in the community. Circ Heart Fail. https://doi.org/10.1161/circheartfailure.116.003536

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njolstad I (2012) Cohort profile: the Tromso study. Int J Epidemiol 41(4):961–967. https://doi.org/10.1093/ije/dyr049

    Article  PubMed  Google Scholar 

  24. https://www.mrc.ac.uk/research/facilities-and-resources-for-researchers/mrc-scales/mrc-dyspnoea-scale-mrc-breathlessness-scale/

  25. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F, American Heart A, National Heart L, Blood I (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17):2735–2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404

    Article  PubMed  Google Scholar 

  26. Cook S, Malyutina S, Kudryavtsev AV, Averina M, Bobrova N, Boytsov S, Brage S, Clark TG, Diez Benavente E, Eggen AE, Hopstock LA, Hughes A, Johansen H, Kholmatova K, Kichigina A, Kontsevaya A, Kornev M, Leong D, Magnus P, Mathiesen E, McKee M, Morgan K, Nilssen O, Plakhov I, Quint JK, Rapala A, Ryabikov A, Saburova L, Schirmer H, Shapkina M, Shiekh S, Shkolnikov VM, Stylidis M, Voevoda M, Westgate K, Leon DA (2018) Know your heart: rationale, design and conduct of a cross-sectional study of cardiovascular structure, function and risk factors in 4500 men and women aged 35–69 years from two Russian cities, 2015–18. Wellcome Open Res 3:67. https://doi.org/10.12688/wellcomeopenres.14619.3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition 5(5):303–311 discussion 312–303

    PubMed  Google Scholar 

  28. Appleton CP, Jensen JL, Hatle LK, Oh JK (1997) Doppler evaluation of left and right ventricular diastolic function: a technical guide for obtaining optimal flow velocity recordings. J Am Soc Echocardiogr 10(3):271–292

    Article  CAS  PubMed  Google Scholar 

  29. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu BA, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29(4):277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  30. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, d’Hooge J, Aurigemma GP, Thomas JD, Badano LP (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16(1):1–11. https://doi.org/10.1093/ehjci/jeu184

    Article  CAS  PubMed  Google Scholar 

  31. Negishi K, Negishi T, Kurosawa K, Hristova K, Popescu BA, Vinereanu D, Yuda S, Marwick TH (2015) Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging 8(4):489–492. https://doi.org/10.1016/j.jcmg.2014.06.013

    Article  PubMed  Google Scholar 

  32. Wood M (2005) Bootstrapped confidence intervals as an approach to statistical inference. Organ Res Methods 8(4):454–470. https://doi.org/10.1177/1094428105280059

    Article  Google Scholar 

  33. Kleijn SA, Pandian NG, Thomas JD, Perez de Isla L, Kamp O, Zuber M, Nihoyannopoulos P, Forster T, Nesser HJ, Geibel A, Gorissen W, Zamorano JL (2015) Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging 16(4):410–416. https://doi.org/10.1093/ehjci/jeu213

    Article  PubMed  Google Scholar 

  34. Shi J, Pan C, Kong D, Cheng L, Shu X (2016) Left ventricular longitudinal and circumferential layer-specific myocardial strains and their determinants in healthy subjects. Echocardiography 33(4):510–518. https://doi.org/10.1111/echo.13132

    Article  PubMed  Google Scholar 

  35. Nagata Y, Wu VC, Otsuji Y, Takeuchi M (2017) Normal range of myocardial layer-specific strain using two-dimensional speckle tracking echocardiography. PLoS ONE 12(6):e0180584. https://doi.org/10.1371/journal.pone.0180584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, Gentian D, Iliceto S, Vinereanu D, Badano LP (2014) Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev Esp Cardiol 67(8):651–658. https://doi.org/10.1016/j.rec.2013.12.009

    Article  PubMed  Google Scholar 

  37. van Dalen BM, Kauer F, Vletter WB, Soliman OI, van der Zwaan HB, Ten Cate FJ (1985) Geleijnse ML (2010) Influence of cardiac shape on left ventricular twist. J Appl Physiol 108(1):146–151. https://doi.org/10.1152/japplphysiol.00419.2009

    Article  Google Scholar 

  38. Castel AL, Menet A, Ennezat PV, Delelis F, Le Goffic C, Binda C, Guerbaai RA, Levy F, Graux P, Tribouilloy C, Marechaux S (2016) Global longitudinal strain software upgrade: implications for intervendor consistency and longitudinal imaging studies. Arch Cardiovasc Dis 109(1):22–30. https://doi.org/10.1016/j.acvd.2015.08.006

    Article  PubMed  Google Scholar 

  39. Bendiab NST, Meziane-Tani A, Ouabdesselam S, Methia N, Latreche S, Henaoui L, Monsuez JJ, Benkhedda S (2017) Factors associated with global longitudinal strain decline in hypertensive patients with normal left ventricular ejection fraction. Eur J Prev Cardiol 24(14):1463–1472. https://doi.org/10.1177/2047487317721644

    Article  Google Scholar 

  40. DeVore AD, McNulty S, Alenezi F, Ersboll M, Vader JM, Oh JK, Lin G, Redfield MM, Lewis G, Semigran MJ, Anstrom KJ, Hernandez AF, Velazquez EJ (2017) Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: insights from the RELAX trial. Eur J Heart Fail 19(7):893–900. https://doi.org/10.1002/ejhf.754

    Article  CAS  PubMed  Google Scholar 

  41. van Riet EE, Hoes AW, Limburg A, Landman MA, van der Hoeven H, Rutten FH (2014) Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur J Heart Fail 16(7):772–777. https://doi.org/10.1002/ejhf.110

    Article  CAS  PubMed  Google Scholar 

  42. Cameli M, Mandoli GE, Lisi E, Ibrahim A, Incampo E, Buccoliero G, Rizzo C, Devito F, Ciccone MM, Mondillo S (2019) Left atrial, ventricular and atrio-ventricular strain in patients with subclinical heart dysfunction. Int J Cardiovasc Imaging 35(2):249–258. https://doi.org/10.1007/s10554-018-1461-7

    Article  PubMed  Google Scholar 

  43. Leite S, Rodrigues S, Tavares-Silva M, Oliveira-Pinto J, Alaa M, Abdellatif M, Fontoura D, Falcao-Pires I, Gillebert TC, Leite-Moreira AF, Lourenco AP (2015) Afterload-induced diastolic dysfunction contributes to high filling pressures in experimental heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 309(10):H1648–H1654. https://doi.org/10.1152/ajpheart.00397.2015

    Article  CAS  PubMed  Google Scholar 

  44. Rosner A, Bijnens B, Hansen M, How OJ, Aarsaether E, Muller S, Sutherland GR, Myrmel T (2009) Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr 10(2):271–277. https://doi.org/10.1093/ejechocard/jen230

    Article  PubMed  Google Scholar 

  45. Tadic M, Cuspidi C, Celic V, Ivanovic B, Pencic B, Grassi G (2019) The influence of sex on left ventricular strain in hypertensive population. J Hypertens 37(1):50–56. https://doi.org/10.1097/HJH.0000000000001838

    Article  CAS  PubMed  Google Scholar 

  46. Tadic M, Cuspidi C, Backovic S, Kleut M, Ivanovic B, Scepanovic R, Iracek O, Celic V (2014) High-normal blood pressure, functional capacity and left heart mechanics: is there any connection? Blood Press 23(5):315–321. https://doi.org/10.3109/08037051.2014.907978

    Article  PubMed  Google Scholar 

  47. Salem JE, Nguyen LS, Hammoudi N, Preud’homme G, Hulot JS, Leban M, Funck-Brentano C, Touraine P, Isnard R, Bachelot A, Group CS (2018) Complex association of sex hormones on left ventricular systolic function: insight into sexual dimorphism. J Am Soc Echocardiogr 31(2):231–240. https://doi.org/10.1016/j.echo.2017.10.017

    Article  PubMed  Google Scholar 

  48. Mayet J, Hughes A (2003) Cardiac and vascular pathophysiology in hypertension. Heart 89(9):1104–1109. https://doi.org/10.1136/heart.89.9.1104

    Article  PubMed  PubMed Central  Google Scholar 

  49. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA (2009) Cardiac mechanics in mild hypertensive heart disease: a speckle-strain imaging study. Circ Cardiovasc Imaging 2(5):382–390. https://doi.org/10.1161/CIRCIMAGING.108.811620

    Article  PubMed  Google Scholar 

  50. Redfield MM, Gersh BJ, Bailey KR, Rodeheffer RJ (1994) Natural history of incidentally discovered, asymptomatic idiopathic dilated cardiomyopathy. Am J Cardiol 74(7):737–739. https://doi.org/10.1016/0002-9149(94)90323-9

    Article  CAS  PubMed  Google Scholar 

  51. Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, Tanabe K, Nakatani S, investigators J (2012) Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ J 76(11):2623–2632. https://doi.org/10.1253/circj.cj-12-0264

    Article  PubMed  Google Scholar 

  52. Yang H, Marwick TH, Fukuda N, Oe H, Saito M, Thomas JD, Negishi K (2015) Improvement in strain concordance between two major vendors after the strain standardization initiative. J Am Soc Echocardiogr 28(6):642–648. https://doi.org/10.1016/j.echo.2014.12.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Current study was supported by UiT-The Arctic University of Norway, Tromsø.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stylidis.

Ethics declarations

Conflict of interest

The authors declare that they have conflict of interest.

Ethical approval

The Tromsø Study protocol was approved by the Regional Committee for Medical and Health Research Ethics, North Norway (2014/940/REK Nord) and was performed according ethical standards outlined in the 1964 Declaration of Helsinki.

Informed consent

All participants of the study provided signed informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stylidis, M., Leon, D.A., Rӧsner, A. et al. Global myocardial longitudinal strain in a general population—associations with blood pressure and subclinical heart failure: The Tromsø Study. Int J Cardiovasc Imaging 36, 459–470 (2020). https://doi.org/10.1007/s10554-019-01741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01741-3

Keywords

Navigation