Skip to main content

Optical Methods for Detecting Local Microdefects in Cable Products

  • Chapter
  • First Online:
Emerging Trends in Materials Research and Manufacturing Processes

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 59 Accesses

Abstract

The paper addressed the study of feasibility of optical methods to measure the diameter of extended products to perform in-process detection of local microdefects in cable products. The analysis of data on through-transmission methods and the power measurement method showed that the power measurement method is most appropriate for implementation of the microdefect detection device since it enables measuring at the desired frequency. The experimental study confirmed the efficiency of the power measurement method, and revealed a significant drawback of the method, namely, an increased error due to the inhomogeneous distribution of optical flow power when the test object moves through the measurement zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alboyaci, B., Aytac, M., Berat, Y., Ince, A.: Elsevier evaluation of the effect of structural defects in the heat-shrink cable terminal on electric field distribution. Eng. Fail. Anal. 132, 105920 (2022)

    Article  Google Scholar 

  2. Benidir, A., Flamand, O., Gaillet, L., Dimitriadis, G.: Impact of roughness and circularity-defect on bridges stability. J. Wind Eng. Ind. Aerodyn. 137, 1–13 (2015). https://doi.org/10.1016/j.jweia.2014.11.010

    Article  Google Scholar 

  3. Uckol, H., SuatIlhan, A.: Workmanship defect classification in medium voltage cable terminations with convolutional neural network. Electr. Power Syst. Res. 194, 107105 (2021). https://doi.org/10.1016/j.epsr.2021.107105

    Article  Google Scholar 

  4. Lysenko, E., Nikolaev, E., Vlasov, V., Surzhikov, A.: Microstructure and reactivity of Fe2O3–Li2CO3–ZnO ferrite system ball-milled in a planetary mill. Thermochim. Acta 664, 100–107 (2018)

    Google Scholar 

  5. Lysenko, E.N., Malyshev, A.V., Vlasov, V.A., Nikolaev, E.V., Surzhikov, A.P.: Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill. J. Therm. Anal. Calorim. 134(1), 127–133 (2018)

    Article  Google Scholar 

  6. Chen, Y., Hui, B., Cheng, Y., Hao, Y., Fu, M.: Failure investigation of buffer layers in high-voltage XLPE cables. Eng. Fail. Anal. 113, 104546 (2020). https://doi.org/10.1016/j.engfailanal.2020.104546

    Article  Google Scholar 

  7. Abbasi, V.: Classifying faults locations in cable terminations and investigation of the faults reasons. Iran. J. Electr. Electron. Eng. 14(3), 270–277 (2018). https://doi.org/10.22068/IJEEE.14.3.270

    Article  Google Scholar 

  8. Surzhikov, A.P., Pritulov, A.M., Lysenko, E.N., Sokolovskiy, A.N., Vlasov, V.A., Vasendina, E.A.: Calorimetric investigation of radiation-thermal synthesized lithium pentaferrite. J. Therm. Anal. Calorim. 101(1), 11–13 (2010)

    Article  Google Scholar 

  9. Surzhikov, A.P., Peshev, V.V., Pritulov, A.M., Gyngazov, S.A.: Grain-boundary diffusion of oxygen in polycrystalline ferrites. Russ. Phys. J. 42(5), 490–495 (1999)

    Article  Google Scholar 

  10. Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A., Lisenko, E.N., Galtseva, O.V.: Physics of magnetic phenomena: investigation of electroconductivity of lithium pentaferrite. Russ. Phys. J. 49(5), 506–510 (2006)

    Article  Google Scholar 

  11. Andrade, A.F., Costa, E.G., Andrade, L.M., Soares, S.H., Lira, R.S.: Design of cable termination for AC breakdown voltage tests. Energies 12(16), 3075 (2019). https://doi.org/10.3390/en12163075

    Article  Google Scholar 

  12. Starikova, N.S., Redko, V.V., Vavilova, G.V.: Control of cable insulation quality by changing of electrical capacitance per unit during high voltage testing. J. Phys.: Conf. Ser. 671(1), 012056 (2015). https://doi.org/10.1088/1742-6596/671/1/012056

    Article  Google Scholar 

  13. Goldshtein, A.E., Vavilova, G.V., Belyankov, V.Y.: An electro-capacitive measuring transducer for the process inspection of the cable capacitance per unit length in the process of production. Russ. J. Nondestr. Test. 51(2), 86–93 (2015). https://doi.org/10.1134/S1061830915020047

    Article  Google Scholar 

  14. Zou, X., Mu, H., L. Qu, Zhang, H., Xie, C., Zhang, G.: Localization and assessment of breakage defect in cables based on time–frequency domain reflectometry. Energy Rep. 8(5), 1474–1481 (2022). https://doi.org/10.1016/j.egyr.2022.02.202

  15. Alonso, G., Meseguer, J., Sanz-Andres, A., Valero, E.: On the galloping instability of two-dimensional bodies having elliptical cross-sections. J. Wind Eng. Ind. Aerodyn. 98, 438–448 (2010). https://doi.org/10.1016/j.jweia.2010.02.002

    Article  Google Scholar 

  16. Afia, A., Ehtasham, M., Zoltan, T.: Dielectric spectroscopy of low voltage nuclear power cables under simultaneous thermal and mechanical stresses. Energy Rep. 6, 662–667 (2020). https://doi.org/10.1016/j.egyr.2020.11.155

    Article  Google Scholar 

  17. Chursin, Y.A., Redko, L.A., Fedorov, E.M: Enlargement of measuring zone in laser gauges without sacrificing measurement accuracy. Meas.: J. Int. Meas. Confed. 131, 647–653 (2019). https://doi.org/10.1016/j.measurement.2018.09.031

  18. Feng, B., Zhang, L., Hou, S., et al.: Research on cable defect location method based on joint time-frequency analysis. In: IEEE International Conference on Electrical Materials and Power Equipment, pp. 1–4 (2021)

    Google Scholar 

  19. Eigner, A., Semino, S.: 50 years of electrical-stress control in cable accessories. IEEE Electr. Insul. Mag. 29(5), 47–55 (2013). https://doi.org/10.1109/MEI.2013.6585856

    Article  Google Scholar 

  20. Huang, F.: Cause analysis and countermeasures of a breakdown failure of flexible 110 kV cable terminal. In: E3S Web of Conferences, vol. 38, pp. 2–6 (2018). https://doi.org/10.1051/e3sconf/20183804004

  21. Fedorov, E.M., Koba, A.A.: Three-axis laser method for measuring the diameter of cylindrical objects. Dyn. Syst. Mech. Mach. 7819008 (2016). https://doi.org/10.1109/Dynamics.2016.7819008

  22. Chimunda, S., Nyamupangedengu, C.: A reliability assessment model for an outdoor 88 kV XLPE cable termination. Electr. Power Syst. Res. 177, 105979 (2019). https://doi.org/10.1016/j.epsr.2019.105979

    Article  Google Scholar 

  23. Mazzanti, G., Marzinotto, M.: Advanced electro-thermal life and reliability model for high voltage cable systems including accessories. IEEE Electr. Insul. Mag. 33(3), 17–25 (2017). https://doi.org/10.1109/MEI.2017.7906159

    Article  Google Scholar 

  24. Fynes-Clinton, D., Nyamupangedengu, C.: Partial discharge characterization of cross-linked polyethylene medium voltage power cable termination defects at very low frequency (0.1 Hz) and power frequency test voltages. IEEE Electr. Insul. Mag. 32(4), 15–23 (2016). https://doi.org/10.1109/MEI.2016.7528986

  25. Linde, E., Verardi, L., Pourmand, P.: Non-destructive condition monitoring of aged ethylene-propylene copolymer cable insulation samples using dielectric spectroscopy and NMR spectroscopy. Polym. Test. 46, 72–78 (2015). https://doi.org/10.1016/j.polymertesting.2015.07.002

    Article  Google Scholar 

  26. Zhang, H., Mu, H., Lu, X., Tian, J., Zou, X.: A method for locating and diagnosing cable abrasion based on broadband impedance spectroscopy. Energy Rep. 8, 1492–1499 (2022). https://doi.org/10.1016/j.egyr.2022.03.163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Razuvaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razuvaev, I., Fedorov, E., Redko, V. (2023). Optical Methods for Detecting Local Microdefects in Cable Products. In: Lysenko, E., Rogachev, A., Galtseva, O. (eds) Emerging Trends in Materials Research and Manufacturing Processes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-38964-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38964-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38963-4

  • Online ISBN: 978-3-031-38964-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics