Skip to main content

Fluoride Pollution in Subsurface Water: Challenges and Opportunities

  • Chapter
  • First Online:
Advanced Treatment Technologies for Fluoride Removal in Water

Part of the book series: Water Science and Technology Library ((WSTL,volume 125 ))

  • 146 Accesses

Abstract

Fluoride contamination in groundwater is one of the drinking water crisis globally. Although its presence is necessary in small quantities, it is harmful to humans with intakes of more than 1.5 mg L−1 through contaminated drinking water due to geological factors and geochemical processes. A high fluoride content in drinking water results in skeletal fluorosis, as well as long-term liver, kidney, and brain damage. One of the most crucial challenges for drinking water safety is the management of fluoride pollution and fluorosis. To reduce the probability of fluorosis, it is essential to have a better understanding of the mechanisms underlying the presence of fluoride in the chemistry of subsurface water and the ability to identify high-risk locations using geographic data and remote sensing. The utilization of other sources of water or mixing should be prioritized. The development of stable technologies and integrated devices that are efficient, affordable, and manageable, as well as fundamental research on defluoridation reagents and novel materials, should receive significant amount of focus. To achieve stable gains, the design, construction, operation, and monitoring of defluoridation facilities should be thoroughly evaluated and improved. This chapter highlights the extent of fluoride contamination, the effect of fluoride contamination on human health, and the available defluoridation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, S., Singh, R., Arfin, T., & Neeti, K. (2022). Fluoride contamination, consequences and removal techniques in water: A review. Environmental Science: Advances.

    Google Scholar 

  • Alabdulaaly, A. I., Al-Zarah, A. I., & Khan, M. A. (2013). Occurrence of fluoride in ground waters of Saudi Arabia. Applied Water Science, 3, 589–595.

    Article  ADS  CAS  Google Scholar 

  • Ali, S., Shekhar, S., Bhattacharya, P., Verma, G., Chandrasekhar, T., & Chandrashekhar, A. K. (2018). Elevated fluoride in groundwater of Siwani Block, Western Haryana, India: A potential concern for sustainable water supplies for drinking and irrigation. Groundwater for Sustainable Development, 7, 410–420.

    Article  Google Scholar 

  • Ali, S., Thakur, S. K., Sarkar, A., & Shekhar, S. (2016). Worldwide contamination of water by fluoride. Environmental Chemistry Letters, 14, 291–315. https://doi.org/10.1007/s10311-016-0563-5

    Article  CAS  Google Scholar 

  • Anazawa, K. (2006). Fluorine and coexisting volatiles in the geosphere: The role in Japanese volcanic rocks. Fluorine and the Environment: Atmospheric Chemistry, Emissions & Lithosphere, 187.

    Google Scholar 

  • Arlappa, N., Qureshi, A. A. T. I. F., & Srinivas, R. (2013). Fluorosis in India: An overview. International Journal of Research and Development Health, 1(2), 97–102.

    Google Scholar 

  • Assefa, B. (2006). Defluoridation of Ethiopian rift valley region water using reverse osmosis membranes. Zede Journal, 23, 1–6.

    Google Scholar 

  • Bacquart, T., Frisbie, S., Mitchell, E., Grigg, L., Cole, C., Small, C., & Sarkar, B. (2015). Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium. Science of the Total Environment, 517, 232–245.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption—A review. Chemical Engineering Journal, 171(3), 811–840.

    Article  CAS  Google Scholar 

  • Bibi, S., Kamran, M. A., Sultana, J., & Farooqi, A. (2017). Occurrence and methods to remove arsenic and fluoride contamination in water. Environmental Chemistry Letters, 15, 125–149.

    Article  CAS  Google Scholar 

  • Brindha, K., & Elango, L. (2011). Fluoride in groundwater: Causes, implications and mitigation measures. Fluoride Properties, Applications and Environmental Management, 1, 111–136.

    Google Scholar 

  • Camargo, J. A. (2003). Fluoride toxicity to aquatic organisms: A review. Chemosphere, 50(3), 251–264. https://doi.org/10.1016/S0045-6535(02)00498-8

  • Cape, J. N., Fowler, D., & Davison, A. (2003). Ecological effects of sulfur dioxide, fluorides, and minor air pollutants: Recent trends and research needs. Environment International, 29(2–3), 201–211. https://doi.org/10.1016/S0160-4120(02)00180-0

    Article  CAS  PubMed  Google Scholar 

  • Central Ground Water Board (CGWB). (2014). Ground water year book 2012–13 Rajasthan State. Government of India, Ministry of Water Resources, Regional Office Data Centre Western Region Rajasthan.

    Google Scholar 

  • CGWB. (2010). Groundwater quality in shallow aquifers of India. Ministry of Water Resource, Faridabad. http://cgwb.gov.in/

  • Chandrajith, R., Padmasiri, J. P., Dissanayake, C. B., & Prematilaka, K. M. (2012). Spatial distribution of fluoride in groundwater of Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 40, 4.

    Article  Google Scholar 

  • Chouhan, S., & Flora, S. J. (2010). Arsenic and fluoride: Two major ground water pollutants. Indian Journal of Experimental Biology, 48(7), 666–678.

    CAS  PubMed  Google Scholar 

  • Dey, R. K., Swain, S. K., Mishra, S., Sharma, P., Patnaik, T., Singh, V. K., Dehury, B. N., Jha, U., & Patel, R. K. (2012). Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. Environmental Monitoring and Assessment, 184, 3279–3291. https://doi.org/10.1007/s10661-011-2188-2

  • Dharmaratne, R. W. (2015). Fluoride in drinking water and diet: The causative factor of chronic kidney diseases in the North Central Province of Sri Lanka. Environmental Health and Preventive Medicine, 20(4), 237–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diawara, C. K., Diop, S. N., Diallo, M. A., Farcy, M., & Deratani, A. (2011). Performance of nanofiltration (NF) and low pressure reverse osmosis (LPRO) membranes in the removal of fluorine and salinity from brackish drinking water. Journal of Water Resource and Protection, 3(12), 912.

    Article  CAS  Google Scholar 

  • Dubey, S., Agarwal, M., & Gupta, A. B. (2021). Fluoride removal using Alum & PACl in batch & continuous mode with subsequent microfiltration. Membrane and Water Treatment, 12(2), 83–93.

    Google Scholar 

  • Farooqi, A., & Farooqi, A. (2015). Status of As and F groundwater and soil pollution in Pakistan. Arsenic and Fluoride Contamination: A Pakistan Perspective, 21–33.

    Google Scholar 

  • Garcia, M. G., & Borgnino, L. (2015). Fluoride in the context of the environment. In V. R. Preedy (Ed.), Fluorine: Chemistry, analysis, function and effects (pp. 3–18). The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Ghorai, S., & Pant, K. K. (2004). Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed. Chemical Engineering Journal, 98(1–2), 165–173.

    Article  CAS  Google Scholar 

  • Ghosh, A., Mukherjee, K., Ghosh, S. K., & Saha, B. (2013). Sources and toxicity of fluoride in the environment. Research on Chemical Intermediates, 39, 2881–2915. https://doi.org/10.1007/s11164-012-0841-1

  • Gupta, S. K., Deshpande, R. D., Agarwal, M., & Raval, B. R. (2005). Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India. Hydrogeology Journal, 13, 596–605. https://doi.org/10.1007/s10040-004-0389-2

    Article  CAS  Google Scholar 

  • Hayat, E., & Baba, A. (2017). Quality of groundwater resources in Afghanistan. Environmental Monitoring and Assessment, 189, 1–16.

    Google Scholar 

  • Heikens, A., Sumarti, S., Van Bergen, M., Widianarko, B., Fokkert, L., Van Leeuwen, K., & Seinen, W. (2005). The impact of the hyperacid Ijen Crater Lake: Risks of excess fluoride to human health. Science of the Total Environment, 346(1–3), 56–69.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hoinkis, J., Valero-Freitag, S., Caporgno, M. P., & Pätzold, C. (2011). Removal of nitrate and fluoride by nanofiltration—A comparative study. Desalination and Water Treatment, 30(1–3), 278–288.

    Article  CAS  Google Scholar 

  • Hu, K., & Dickson, J. M. (2006). Nanofiltration membrane performance on fluoride removal from water. Journal of Membrane Science, 279(1–2), 529–538.

    Article  CAS  Google Scholar 

  • Hu, S., Luo, T., & Jing, C. (2013). Principal component analysis of fluoride geochemistry of groundwater in Shanxi and Inner Mongolia, China. Journal of Geochemical Exploration, 135, 124–129.

    Article  CAS  Google Scholar 

  • Itai, K., Onoda, T., Nohara, M., et al. (2010). Serum ionic fluoride concentrations are related to renal function and menopause status but not to age in a Japanese general population. Clinica Chimica Acta, 411(3–4), 263–266.

    Article  CAS  Google Scholar 

  • Jabal, M. S. A., Abustan, I., Rozaimy, M. R., & Al-Najar, H. (2014). Fluoride enrichment in groundwater of semi-arid urban area: Khan Younis City, southern Gaza Strip (Palestine). Journal of African Earth Sciences, 100, 259–266.

    Article  ADS  Google Scholar 

  • Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 162, 306–325. https://doi.org/10.1016/j.jenvman.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  • Kabir, H., Gupta, A. K., & Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50(11), 1116–1193.

    Article  CAS  Google Scholar 

  • Karthikeyan, K., Nanthakumar, K., Velmurugan, P., Tamilarasi, S., & Lakshmanaperumalsamy, P. (2010). Prevalence of certain inorganic constituents in groundwater samples of Erode district, Tamilnadu, India, with special emphasis on fluoride, fluorosis and its remedial measures. Environmental Monitoring and Assessment, 160, 141–155. https://doi.org/10.1007/s10661-008-0664-0

  • Keshavarzi, B., Moore, F., Esmaeili, A., & Rastmanesh, F. (2010). The source of fluoride toxicity in Muteh area, Isfahan, Iran. Environmental Earth Sciences, 61, 777–786.

    Article  ADS  CAS  Google Scholar 

  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716

  • Khursheed, D. A., Abdulateeef, D. S., Fatah, A. O., & Rauf, A. M. (2015). Fluoride concentration of well water in different areas of Sulaimani province. Sulaimani Dental Journal, 2, 67–71.

    Article  Google Scholar 

  • Kimambo, V., Bhattacharya, P., Mtalo, F., Mtamba, J., & Ahmad, A. (2019). Fluoride occurrence in groundwater systems at global scale and status of defluoridation–state of the art. Groundwater for Sustainable Development, 9, 100223. https://doi.org/10.1016/j.gsd.2019.100223

    Article  Google Scholar 

  • Kumar, M., Das, A., Das, N., Goswami, R., & Singh, U. K. (2016). Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere, 150, 227–238. https://doi.org/10.1016/j.chemosphere.2016.02.019

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kumari, S., & Kumar, A. (2011). Fluoride toxicity enhances phagocytic activity of macrophages in spleen of rats. Asian Journal of Experimental Biological Sciences, 2(2), 283–287.

    CAS  Google Scholar 

  • Kundu, M. C., & Mandal, B. (2009). Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. Environmental Monitoring and Assessment, 152, 97–103. https://doi.org/10.1007/s10661-008-0299-1

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Gao, X., & Wang, Y. (2015). Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Science of the Total Environment, 508, 155–165.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Long, H., Jin, Y., Lin, M., Sun, Y., Zhang, L., & Clinch, C. (2009). Fluoride toxicity in the male reproductive system. Fluoride, 42(4), 260–276.

    CAS  Google Scholar 

  • Malago, J., Makoba, E., & Muzuka, A. N. (2017). Fluoride levels in surface and groundwater in Africa: A review. American Journal of Water Science and Engineering, 3(1), 1–17. https://doi.org/10.11648/j.ajwse.20170301.11

  • Marbaniang, D. G., Diengdoh, D. F., & Nongpiur, C. L. (2014). Preliminary investigation of the physico-chemical properties of a geothermal spring (hot spring) located at Jakrem, Meghalaya, India. Keanean Journal of Science, 3, 35–42.

    Google Scholar 

  • Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC)—Science and applications. Journal of Hazardous Materials, 84(1), 29–41.

    Google Scholar 

  • Msonda, K. W. M., Masamba, W. R. L., & Fabiano, E. (2007). A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 32(15–18), 1178–1184.

    Article  ADS  Google Scholar 

  • Mukherjee, A. (2018). Overview of the groundwater of South Asia (pp. 3–20). Springer. https://doi.org/10.1007/978-981-10-3889-1_1

  • Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health, 40(6), 2259–2301.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa, K., Nagafuchi, O., Okano, K., Osaka, K. I., Hamabata, E., Tsogtbaatar, J., & Choijil, J. (2016). Non-carcinogenic risk assessment of groundwater in South Gobi, Mongolia. Journal of Water and Health, 14(6), 1009–1018.

    Article  PubMed  Google Scholar 

  • Nandimandalam, J. R. (2012). Evaluation of hydrogeochemical processes in the Pleistocene aquifers of middle Ganga Plain, Uttar Pradesh, India. Environmental Earth Sciences, 65, 1291–1308. https://doi.org/10.1007/s12665-011-1377-1

  • Ncube, E. J., & Schutte, C. F. (2005). The occurrence of fluoride in South African groundwater: A water quality and health problem. Water SA, 31(1), 35–40. https://doi.org/10.4314/wsa.v31i1.5118

  • Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021). Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using Cu (I)-polyaninile composite. Polymers, 13(20), 3490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojekunle, O. Z., Ojekunle, O. V., Adeyemi, A. A., et al. (2016). Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. Springerplus, 5(1), 1–16.

    Article  CAS  Google Scholar 

  • Oruc, N. (2008). Occurrence and problems of high fluoride waters in Turkey: An overview. Environmental Geochemistry and Health, 30(4), 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Ozsvath, D. L. (2009). Fluoride and environmental health: A review. Reviews in Environmental Science and Bio/technology, 8, 59–79. https://doi.org/10.1007/s11157-008-9136-9

    Article  CAS  Google Scholar 

  • Pettenati, M., Perrin, J., Pauwels, H., & Ahmed, S. (2013). Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: Application to a crystalline aquifer of Southern India. Applied Geochemistry, 29, 102–116. https://doi.org/10.1016/j.apgeochem.2012.11.001

  • Pini, N. I. P., Sundfeld-Neto, D., Aguiar, F. H. B., Sundfeld, R. H., Martins, L. R. M., Lovadino, J. R., & Lima, D. A. N. L. (2015). Enamel microabrasion: An overview of clinical and scientific considerations. World Journal of Clinical Cases: WJCC, 3(1), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj, D., & Shaji, E. (2017). Fluoride contamination in groundwater resources of Alleppey, southern India. Geoscience Frontiers, 8(1), 117–124. https://doi.org/10.1016/j.gsf.2016.01.002

    Article  CAS  Google Scholar 

  • Rango, T., Bianchini, G., Beccaluva, L., & Tassinari, R. (2010). Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic. Journal of African Earth Sciences, 57(5), 479–491. https://doi.org/10.1016/j.jafrearsci.2009.12.005

  • Ranjan, R., & Ranjan, A. (2015). Fluoride toxicity in animals. SpringerBriefs in Animal Sciences (1st ed.). Springer.

    Book  Google Scholar 

  • Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., Abiola, O., Ali, S., & Nasim, W. (2018). A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environmental Geochemistry and Health, 40, 1265–1281.

    Google Scholar 

  • Raza, M., Farooqi, A., Niazi, N. K., & Ahmad, A. (2016). Geochemical control on spatial variability of fluoride concentrations in groundwater from rural areas of Gujrat in Punjab, Pakistan. Environmental Earth Sciences, 75, 1–16.

    Article  CAS  Google Scholar 

  • Reddy, D. V., Nagabhushanam, P., & Ramesh, G. (2013). Turnover time of Tural and Rajvadi hot spring waters, Maharashtra, India. Current Science, 1419–1424.

    Google Scholar 

  • Rukah, Y. A., & Alsokhny, K. (2004). Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan. Geochemistry, 64(2), 171–181.

    Article  CAS  Google Scholar 

  • Sahu, B. L., Banjare, G. R., Ramteke, S., Patel, K. S., & Matini, L. (2017). Fluoride contamination of groundwater and toxicities in dongargaon block, Chhattisgarh, India. Exposure and Health, 9, 143–156. https://doi.org/10.1007/s12403-016-0229-3

    Article  Google Scholar 

  • Sahu, P. (2019). Fluoride pollution in groundwater. In Groundwater development and management: Issues and challenges in South Asia (pp. 329–350).https://doi.org/10.1007/978-3-319-75115-3_14

  • Scaillet, B., & Macdonald, R. (2004). Fluorite stability in silicic magmas. Contributions to Mineralogy and Petrology, 147, 319–329. https://doi.org/10.1007/s00410-004-0559-1

    Article  ADS  CAS  Google Scholar 

  • Sehn, P. (2008). Fluoride removal with extra low energy reverse osmosis membranes: Three years of large scale field experience in Finland. Desalination, 223(1–3), 73–84.

    Article  CAS  Google Scholar 

  • Shams, M., Nabizadeh Nodehi, R., Hadi Dehghani, M., Younesian, M., & Hossein Mahvia, A. (2010). Efficiency of granular ferric hydroxide (GFH) for removal of fluoride from water. Fluoride, 43(1), 61.

    CAS  Google Scholar 

  • Shamsuddin, M. K. N., Suratman, S., Ramli, M. F., Sulaiman, W. N. A., & Sefie, A. (2016, July). Hydrochemical assessment of surfacewater and groundwater quality at bank infiltration site. In IOP Conference Series: Materials Science and Engineering (Vol. 136, No. 1, p. 012073). IOP Publishing.

    Google Scholar 

  • Sharma, S., Jha, P. K., Ranjan, M. R., Singh, U. K., Kumar, M., & Jindal, T. (2017). Nutrient chemistry of River Yamuna, India. Asian Journal of Water, Environmental Pollution, 14, 61–70. https://doi.org/10.3233/AJW-170016

    Article  Google Scholar 

  • Singh, A., Patel, A. K., & Kumar, M. (2020). Mitigating the risk of arsenic and fluoride contamination of groundwater through a multi-model framework of statistical assessment and natural remediation techniques. In Emerging issues in the water environment during Anthropocene: A South East Asian perspective (pp. 285–300). https://doi.org/10.1007/978-981-32-9771-5_15

  • Subba Rao, N., Dinakar, A., Surya Rao, P., Rao, P. N., Madhnure, P., Prasad, K. M., & Sudarshan, G. (2016). Geochemical processes controlling fluoride-bearing groundwater in the granitic aquifer of a semi-arid region. Journal of the Geological Society of India, 88, 350–356. https://doi.org/10.1007/s12594-016-0497-3

  • Susheela, A. K. (2003). A treatise on fluorosis, revised second edition (pp. 13–14). Fluorosis Research and Rural Development Foundation.

    Google Scholar 

  • Susheela, A. K., Mondal, N. K., & Singh, A. (2013). Exposure to fluoride in smelter workers in a primary aluminium industry in India. The International Journal of Occupational and Environmental Medicine, 4(2), 61–72.

    CAS  PubMed  Google Scholar 

  • Tahaikt, M., El Habbani, R., Haddou, A. A., et al. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212(1–3), 46–53.

    Google Scholar 

  • Tavener, S. J., & Clark, J. H. (2006). Fluorine: Friend or Foe? A green chemist’s perspective. In A. Tressaud (Ed.), Fluorine and the environment: Agrochemicals, archaeology, green chemistry and water (Chapter 5) (pp. 177–202). Elsevier.

    Google Scholar 

  • Velazquez-Jimenez, L. H., Vences-Alvarez, E., Flores-Arciniega, J. L., Flores-Zuniga, H., & Rangel-Mendez, J. R. (2015). Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: A review. Separation and Purification Technology, 150, 292–307.

    Article  CAS  Google Scholar 

  • Vike, E. (2005). Uptake, deposition and wash off of fluoride and aluminium in plant foliage in the vicinity of an aluminium smelter in Norway. Water, Air, and Soil Pollution, 160, 145–159. https://doi.org/10.1007/s11270-005-3862-1

  • Vithanage, M., & Bhattacharya, P. (2015). Fluoride in the environment: Sources, distribution and defluoridation. Environmental Chemistry Letters, 13, 131–147.

    Article  CAS  Google Scholar 

  • Waghmare, S. S., & Arfin, T. (2015a). Fluoride removal by clays, geomaterials, minerals, low cost materials and zeolites by adsorption: A review. International Journal of Science, Engineering and Technology Research, 4(11), 3663–3676.

    Google Scholar 

  • Waghmare, S. S., & Arfin, T. (2015b). Fluoride removal by industrial, agricultural, and biomass wastes as adsorbents. International Journal of Advance Research and Innovative Ideas in Education, 1, 628–653.

    Google Scholar 

  • Wang, H., Yang, Z., Zhou, B., Gao, H., Yan, X., & Wang, J. (2009). Fluoride-induced thyroid dysfunction in rats: Roles of dietary protein and calcium level. Toxicology and Industrial Health, 25(1), 49–57.

    Article  PubMed  Google Scholar 

  • World Health Organization (WHO). (2002). Fluorides, I. P. C. S. International Programme on Chemical Safety (Environmental Health Criteria 227). Geneva.

    Google Scholar 

  • Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., … Cho, J. (2019a). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 182, 109362.

    Google Scholar 

  • Yadav, K. K., Kumar, V., Gupta, N., Kumar, S., Rezania, S., & Singh, N. (2019b). Human health risk assessment: Study of a population exposed to fluoride through groundwater of Agra city, India. Regulatory Toxicology and Pharmacology, 106, 68–80.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, N., Rani, K., Yadav, S. S., Yadav, D. K., Yadav, V. K., & Yadav, N. (2018). Soil and water pollution with fluoride, geochemistry, food safety issues and reclamation—A review. International Journal of Current Microbiology and Applied Sciences, 7, 1147–1162.

    Article  Google Scholar 

  • Zhang, S., Zhang, X., Liu, H., Qu, W., Guan, Z., Zeng, Q., Jiang, C., Gao, H., Zhang, C., Lei, R., Xia, T., Wang, Z., Yang, L., Chen, Y., Wu, X., Cui, Y., Yu, L., & Wang, A. (2015). Modifying effect of COMT gene polymorphism and a predictive role for proteomics analysis in children’s intelligence in endemic fluorosis area in Tianjin, China. Toxicological Sciences, 144(2), 238–245.

    Google Scholar 

  • Zhang, Y., Sun, X., Sun, G., Liu, S., & Wang, L. (2006). DNA damage induced by fluoride in rat osteoblasts. Fluoride, 39(3), 191–194.

    Google Scholar 

  • Zuo, H., Chen, L., Kong, M., et al. (2018). Toxic effects of fluoride on organisms. Life Sciences, 198, 18–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author is grateful to the DAIC, Ministry of Social Justice and Empowerment, Govt. of India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonam Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Mishra, N., Kumar, A., Yadav, A.K. (2023). Fluoride Pollution in Subsurface Water: Challenges and Opportunities. In: Yadav, A.K., Shirin, S., Singh, V.P. (eds) Advanced Treatment Technologies for Fluoride Removal in Water. Water Science and Technology Library, vol 125 . Springer, Cham. https://doi.org/10.1007/978-3-031-38845-3_2

Download citation

Publish with us

Policies and ethics