Skip to main content

Physiologic and Patient-Centered Considerations in Lung Cancer Care

  • Chapter
  • First Online:
Lung Cancer

Part of the book series: Respiratory Medicine ((RM))

  • 343 Accesses

Abstract

The goal of the physiologic evaluation of patients with lung cancer being considered for surgical treatment is to identify those with increased risk of perioperative morbidity, mortality, and long-term disability, the results of which then to be used in informed shared decision-making. Patients with impaired lung function (i.e., predicted postoperative (ppo) FEV1 or ppoDLCO < 60%) should be considered for exercise testing, either with simple field exercise testing and/or cardiopulmonary exercise testing, depending on test availability, patients’ ability to perform the test, and interpretation to guide clinical decision-making. While thresholds used to indicate prohibitive risk vary between clinical guidelines, patients with ppoFEV1 or ppoDLCO < 30%, or ppoFEV1 and/or ppoDLCO 30–60%, and poor performance on exercise testing can be considered high risk for significant perioperative morbidity, mortality, and offered nonsurgical treatment or sub-lobar resection. In addition to physiologic measures, patient values, preferences, health-related quality of life, disability, and team- and center-level characteristics should be considered and discussed, to better arrive at informed shared clinical decision-making and treatment selection. Patients deemed at moderate surgical risk undergoing surgical treatment should be considered for preoperative exercise training and/or postoperative rehabilitation to reduce treatment-related morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ost DE, Jim Yeung SC, Tanoue LT, Gould MK. Clinical and organizational factors in the initial evaluation of patients with lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e121S–e41S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e278S–313S.

    Article  CAS  PubMed  Google Scholar 

  3. Donington J, Ferguson M, Mazzone P, Handy J Jr, Schuchert M, Fernando H, et al. American College of Chest Physicians and Society of Thoracic Surgeons consensus statement for evaluation and management for high-risk patients with stage I non-small cell lung cancer. Chest. 2012;142(6):1620–35.

    Article  PubMed  Google Scholar 

  4. Tabutin M, Couraud S, Guibert B, Mulsant P, Souquet PJ, Tronc F. Completion pneumonectomy in patients with cancer: postoperative survival and mortality factors. J Thorac Oncol. 2012;7(10):1556–62.

    Article  PubMed  Google Scholar 

  5. Thibout Y, Guibert B, Bossard N, Tronc F, Tiffet O, de la Roche E, et al. Is pneumonectomy after induction chemotherapy for non-small cell lung cancer a reasonable procedure? A multicenter retrospective study of 228 cases. J Thorac Oncol. 2009;4(12):1496–503.

    Article  PubMed  Google Scholar 

  6. Win T, Groves AM, Ritchie AJ, Wells FC, Cafferty F, Laroche CM. The effect of lung resection on pulmonary function and exercise capacity in lung cancer patients. Respir Care. 2007;52(6):720–6.

    PubMed  Google Scholar 

  7. Bolliger CT, Jordan P, Soler M, Stulz P, Tamm M, Wyser C, et al. Pulmonary function and exercise capacity after lung resection. Eur Respir J. 1996;9(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  8. Zeiher BG, Gross TJ, Kern JA, Lanza LA, Peterson MW. Predicting postoperative pulmonary function in patients undergoing lung resection. Chest. 1995;108(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  9. Ha D, Ries AL, Lippman SM, Fuster MM. Effects of curative-intent lung cancer therapy on functional exercise capacity and patient-reported outcomes. Supportive Care Cancer. 2020;28(10):4707–20.

    Article  Google Scholar 

  10. Nugent SM, Golden SE, Hooker ER, Sullivan DR, Thomas CR Jr, Deffebach ME, et al. Longitudinal health-related quality of life among individuals considering treatment for stage I non-small-cell lung cancer. Ann Am Thorac Soc. 2020;17(8):988–97.

    Article  PubMed  Google Scholar 

  11. Granger CL, McDonald CF, Irving L, Clark RA, Gough K, Murnane A, et al. Low physical activity levels and functional decline in individuals with lung cancer. Lung Cancer (Amsterdam, Netherlands). 2014;83(2):292–9.

    Article  PubMed  Google Scholar 

  12. Pompili C, Rogers Z, Absolom K, Holch P, Clayton B, Callister M, et al. Quality of life after VATS lung resection and SABR for early-stage non-small cell lung cancer: a longitudinal study. Lung Cancer. 2021;162:71–8.

    Article  CAS  PubMed  Google Scholar 

  13. Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2013;143(5 Suppl):e166S–90S.

    Article  CAS  PubMed  Google Scholar 

  14. Choi H, Mazzone P. Preoperative evaluation of the patient with lung cancer being considered for lung resection. Curr Opin Anaesthesiol. 2015;28(1):18–25.

    Article  PubMed  Google Scholar 

  15. Markos J, Mullan BP, Hillman DR, Musk AW, Antico VF, Lovegrove FT, et al. Preoperative assessment as a predictor of mortality and morbidity after lung resection. Am Rev Respir Dis. 1989;139(4):902–10.

    Article  CAS  PubMed  Google Scholar 

  16. Pierce RJ, Copland JM, Sharpe K, Barter CE. Preoperative risk evaluation for lung cancer resection: predicted postoperative product as a predictor of surgical mortality. Am J Respir Crit Care Med. 1994;150(4):947–55.

    Article  CAS  PubMed  Google Scholar 

  17. Berry MF, Villamizar-Ortiz NR, Tong BC, Burfeind WR Jr, Harpole DH, D’Amico TA, et al. Pulmonary function tests do not predict pulmonary complications after thoracoscopic lobectomy. Ann Thorac Surg. 2010;89(4):1044–51; discussion 1051–2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang R, Lee SM, Wigfield C, Vigneswaran WT, Ferguson MK. Lung function predicts pulmonary complications regardless of the surgical approach. Ann Thorac Surg. 2015;99(5):1761–7.

    Article  PubMed  Google Scholar 

  19. Cao C, Louie BE, Melfi F, Veronesi G, Razzak R, Romano G, et al. Impact of pulmonary function on pulmonary complications after robotic-assisted thoracoscopic lobectomy. Eur J Cardiothorac Surg. 2020;57(2):338–42.

    Article  PubMed  Google Scholar 

  20. Licker MJ, Widikker I, Robert J, Frey JG, Spiliopoulos A, Ellenberger C, et al. Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann Thorac Surg. 2006;81(5):1830–7.

    Article  PubMed  Google Scholar 

  21. Ferguson MK, Little L, Rizzo L, Popovich KJ, Glonek GF, Leff A, et al. Diffusing capacity predicts morbidity and mortality after pulmonary resection. J Thorac Cardiovasc Surg. 1988;96(6):894–900.

    Article  CAS  PubMed  Google Scholar 

  22. Brunelli A, Refai MA, Salati M, Sabbatini A, Morgan-Hughes NJ, Rocco G. Carbon monoxide lung diffusion capacity improves risk stratification in patients without airflow limitation: evidence for systematic measurement before lung resection. Eur J Cardiothorac Surg. 2006;29(4):567–70.

    Article  PubMed  Google Scholar 

  23. Ferguson MK, Vigneswaran WT. Diffusing capacity predicts morbidity after lung resection in patients without obstructive lung disease. Ann Thorac Surg. 2008;85(4):1158–64; discussion 1164–5.

    Article  PubMed  Google Scholar 

  24. Olsen GN, Block AJ, Tobias JA. Prediction of postpneumonectomy pulmonary function using quantitative macroaggregate lung scanning. Chest. 1974;66(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  25. Loewen GM, Watson D, Kohman L, Herndon JE 2nd, Shennib H, Kernstine K, et al. Preoperative exercise Vo2 measurement for lung resection candidates: results of Cancer and Leukemia Group B Protocol 9238. J Thorac Oncol. 2007;2(7):619–25.

    Article  PubMed  Google Scholar 

  26. Benzo R, Kelley GA, Recchi L, Hofman A, Sciurba F. Complications of lung resection and exercise capacity: a meta-analysis. Respir Med. 2007;101(8):1790–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lim E, Baldwin D, Beckles M, Duffy J, Entwisle J, Faivre-Finn C, et al. Guidelines on the radical management of patients with lung cancer. Thorax. 2010;65(Suppl 3):iii1–27.

    Article  PubMed  Google Scholar 

  28. Brunelli A, Charloux A, Bolliger CT, Rocco G, Sculier JP, Varela G, et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J. 2009;34(1):17–41.

    Article  CAS  PubMed  Google Scholar 

  29. Ha D, Mazzone PJ, Ries AL, Malhotra A, Fuster M. The utility of exercise testing in patients with lung cancer. J Thorac Oncol. 2016;11(9):1397–410.

    Article  PubMed  PubMed Central  Google Scholar 

  30. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

    Article  Google Scholar 

  31. Epstein SK, Faling LJ, Daly BD, Celli BR. Inability to perform bicycle ergometry predicts increased morbidity and mortality after lung resection. Chest. 1995;107(2):311–6.

    Article  CAS  PubMed  Google Scholar 

  32. Brunelli A, Refai M, Xiume F, Salati M, Sciarra V, Socci L, et al. Performance at symptom-limited stair-climbing test is associated with increased cardiopulmonary complications, mortality, and costs after major lung resection. Ann Thorac Surg. 2008;86(1):240–7; discussion 247–8.

    Article  PubMed  Google Scholar 

  33. Brunelli A, Xiumé F, Refai M, Salati M, Di Nunzio L, Pompili C, et al. Peak oxygen consumption measured during the stair-climbing test in lung resection candidates. Respiration. 2010;80(3):207–11.

    Article  PubMed  Google Scholar 

  34. Boujibar F, Gillibert A, Gravier FE, Gillot T, Bonnevie T, Cuvelier A, et al. Performance at stair-climbing test is associated with postoperative complications after lung resection: a systematic review and meta-analysis. Thorax. 2020;75(9):791–7.

    Article  PubMed  Google Scholar 

  35. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7.

    Article  Google Scholar 

  36. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–46.

    Article  PubMed  Google Scholar 

  37. Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1447–78.

    Article  PubMed  Google Scholar 

  38. Win T, Jackson A, Groves AM, Sharples LD, Charman SC, Laroche CM. Comparison of shuttle walk with measured peak oxygen consumption in patients with operable lung cancer. Thorax. 2006;61(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  39. Fennelly J, Potter L, Pompili C, Brunelli A. Performance in the shuttle walk test is associated with cardiopulmonary complications after lung resections. J Thorac Dis. 2017;9(3):789–95.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Voorn MJJ, Franssen RFW, Verlinden J, Bootsma GP, de Ruysscher DK, Bongers BC, et al. Associations between pretreatment physical performance tests and treatment complications in patients with non-small cell lung cancer: a systematic review. Crit Rev Oncol Hematol. 2021;158:103207.

    Article  CAS  PubMed  Google Scholar 

  41. Hattori K, Matsuda T, Takagi Y, Nagaya M, Inoue T, Nishida Y, et al. Preoperative six-minute walk distance is associated with pneumonia after lung resection. Interact Cardiovasc Thorac Surg. 2018;26(2):277–83.

    Article  PubMed  Google Scholar 

  42. Lee H, Kim HK, Kang D, Kong S, Lee JK, Lee G, et al. Prognostic value of 6-min walk test to predict postoperative cardiopulmonary complications in patients with non-small cell lung cancer. Chest. 2020;157(6):1665–73.

    Article  PubMed  Google Scholar 

  43. Wesolowski S, Orlowski TM, Kram M. The 6-min walk test in the functional evaluation of patients with lung cancer qualified for lobectomy. Interact Cardiovasc Thorac Surg. 2020;30(4):559–64.

    Article  PubMed  Google Scholar 

  44. Hamada K, Irie M, Fujino Y, Hyodo M, Hanagiri T. Prognostic value of preoperative exercise capacity in patients undergoing thoracoscopic lobectomy for non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands). 2019;128:47–52.

    Article  PubMed  Google Scholar 

  45. Marjanski T, Badocha M, Wnuk D, Dziedzic R, Ostrowski M, Sawicka W, et al. Result of the 6-min walk test is an independent prognostic factor of surgically treated non-small-cell lung cancer. Interact Cardiovasc Thorac Surg. 2019;28(3):368–74.

    Article  PubMed  Google Scholar 

  46. Marjanski T, Wnuk D, Bosakowski D, Szmuda T, Sawicka W, Rzyman W. Patients who do not reach a distance of 500 m during the 6-min walk test have an increased risk of postoperative complications and prolonged hospital stay after lobectomy. Eur J Cardiothorac Surg. 2015;47(5):e213–9.

    Article  PubMed  Google Scholar 

  47. Irie M, Nakanishi R, Yasuda M, Fujino Y, Hamada K, Hyodo M. Risk factors for short-term outcomes after thoracoscopic lobectomy for lung cancer. Eur Respir J. 2016;48(2):495–503.

    Article  CAS  PubMed  Google Scholar 

  48. Granger CL, Denehy L, Parry SM, Martin J, Dimitriadis T, Sorohan M, et al. Which field walking test should be used to assess functional exercise capacity in lung cancer? An observational study. BMC Pulm Med. 2015;15:89.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ha D, Ries AL, Mazzone PJ, Lippman SM, Fuster MM. Exercise capacity and cancer-specific quality of life following curative intent treatment of stage I-IIIA lung cancer. Support Care Cancer. 2018;26(7):2459–69.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brunelli A. Ventilatory efficiency slope: an additional prognosticator after lung cancer surgery. Eur J Cardiothorac Surg. 2016;50(4):780–1.

    Article  PubMed  Google Scholar 

  51. Brunelli A, Belardinelli R, Pompili C, Xiumé F, Refai M, Salati M, et al. Minute ventilation-to-carbon dioxide output (VE/VCO2) slope is the strongest predictor of respiratory complications and death after pulmonary resection. Ann Thorac Surg. 2012;93(6):1802–6.

    Article  PubMed  Google Scholar 

  52. Brunelli A, Refai M, Xiume F, Salati M, Marasco R, Sciarra V, et al. Oxygen desaturation during maximal stair-climbing test and postoperative complications after major lung resections. Eur J Cardiothorac Surg. 2008;33(1):77–82.

    Article  PubMed  Google Scholar 

  53. Ha D, Fuster M, Ries AL, Wagner PD, Mazzone PJ. Heart rate recovery as a preoperative test of perioperative complication risk. Ann Thorac Surg. 2015;100(5):1954–62.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ha D, Choi H, Zell K, Raymond DP, Stephans K, Wang XF, et al. Association of impaired heart rate recovery with cardiopulmonary complications after lung cancer resection surgery. J Thorac Cardiovasc Surg. 2015;149(4):1168–73.e3.

    Article  PubMed  Google Scholar 

  55. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.

    Article  CAS  PubMed  Google Scholar 

  56. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal. 2001;1:323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Walston J, Bandeen-Roche K, Buta B, Bergman H, Gill TM, Morley JE, et al. Moving frailty toward clinical practice: NIA intramural frailty science symposium summary. J Am Geriatr Soc. 2019;67(8):1559–64.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Karunungan KL, Hadaya J, Tran Z, Sanaiha Y, Mandelbaum A, Revels SL, et al. Frailty is independently associated with worse outcomes after elective anatomic lung resection. Ann Thorac Surg. 2021;112(5):1639–46.

    Article  PubMed  Google Scholar 

  59. Kaneda H, Nakano T, Murakawa T. The predictive value of preoperative risk assessments and frailty for surgical complications in lung cancer patients. Surg Today. 2021;51(1):86–93.

    Article  PubMed  Google Scholar 

  60. Ha DM, Zeng C, Chan ED, Gray M, Mazzone PJ, Samet JM, et al. Association of exercise behavior with overall survival in stage I-IIIA lung cancer. Ann Am Thorac Soc. 2021;18(6):1034–42.

    Article  PubMed  Google Scholar 

  61. Komici K, Bencivenga L, Navani N, D’Agnano V, Guerra G, Bianco A, et al. Frailty in patients with lung cancer: a systematic review and meta-analysis. Chest. 2022;162:485.

    Article  PubMed  Google Scholar 

  62. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018;14(9):513–37.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nakamura R, Inage Y, Tobita R, Yoneyama S, Numata T, Ota K, et al. Sarcopenia in resected NSCLC: effect on postoperative outcomes. J Thorac Oncol. 2018;13(7):895–903.

    Article  PubMed  Google Scholar 

  64. Shinohara S, Otsuki R, Kobayashi K, Sugaya M, Matsuo M, Nakagawa M. Impact of sarcopenia on surgical outcomes in non-small cell lung cancer. Ann Surg Oncol. 2020;27(7):2427–35.

    Article  PubMed  Google Scholar 

  65. Voorn MJJ, Beukers K, Trepels CMM, Bootsma GP, Bongers BC, Janssen-Heijnen MLG. Associations between pretreatment nutritional assessments and treatment complications in patients with stage I-III non-small cell lung cancer: a systematic review. Clin Nutr ESPEN. 2022;47:152–62.

    Article  CAS  PubMed  Google Scholar 

  66. Sato S, Nakamura M, Shimizu Y, Goto T, Koike T, Ishikawa H, et al. The impact of emphysema on surgical outcomes of early-stage lung cancer: a retrospective study. BMC Pulm Med. 2019;19(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yasuura Y, Maniwa T, Mori K, Miyata N, Mizuno K, Shimizu R, et al. Quantitative computed tomography for predicting cardiopulmonary complications after lobectomy for lung cancer in patients with chronic obstructive pulmonary disease. Gen Thorac Cardiovasc Surg. 2019;67(8):697–703.

    Article  PubMed  Google Scholar 

  68. Asakura K, Mitsuboshi S, Tsuji M, Sakamaki H, Otake S, Matsuda S, et al. Pulmonary arterial enlargement predicts cardiopulmonary complications after pulmonary resection for lung cancer: a retrospective cohort study. J Cardiothorac Surg. 2015;10:113.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  70. Gooseman MR, Falcoz PE, Decaluwe H, Szanto Z, Brunelli A. Morbidity and mortality of lung resection candidates defined by the American College of Chest Physicians as ‘moderate risk’: an analysis from the European Society of Thoracic Surgeons database. Eur J Cardiothorac Surg. 2021;60(1):91–7.

    Article  PubMed  Google Scholar 

  71. Daly ME, Singh N, Ismaila N, Antonoff MB, Arenberg DA, Bradley J, et al. Management of stage III non-small-cell lung cancer: ASCO guideline. J Clin Oncol. 2022;40(12):1356–84.

    Article  PubMed  Google Scholar 

  72. Lim E, Beckles M, Warburton C, Baldwin D. Cardiopulmonary exercise testing for the selection of patients undergoing surgery for lung cancer: friend or foe? Thorax. 2010;65(10):847–9.

    Article  PubMed  Google Scholar 

  73. Brunelli A, Sabbatini A, Xiume F, Borri A, Salati M, Marasco RD, et al. Inability to perform maximal stair climbing test before lung resection: a propensity score analysis on early outcome. Eur J Cardiothorac Surg. 2005;27(3):367–72.

    Article  PubMed  Google Scholar 

  74. Pennathur A, Brunelli A, Criner GJ, Keshavarz H, Mazzone P, Walsh G, et al. Definition and assessment of high risk in patients considered for lobectomy for stage I non-small cell lung cancer: The American Association for Thoracic Surgery expert panel consensus document. J Thorac Cardiovasc Surg. 2021;162(6):1605–18.e6.

    Article  PubMed  Google Scholar 

  75. Sullivan DR, Eden KB, Dieckmann NF, Golden SE, Vranas KC, Nugent SM, et al. Understanding patients’ values and preferences regarding early stage lung cancer treatment decision making. Lung Cancer. 2019;131:47–57.

    Article  PubMed  Google Scholar 

  76. Gralla RJ, Hollen PJ, Msaouel P, Davis BV, Petersen J. An evidence-based determination of issues affecting quality of life and patient-reported outcomes in lung cancer: results of a survey of 660 patients. J Thorac Oncol. 2014;9(9):1243–8.

    Article  PubMed  Google Scholar 

  77. Salander P, Lilliehorn S. To carry on as before: a meta-synthesis of qualitative studies in lung cancer. Lung Cancer (Amsterdam, Netherlands). 2016;99:88–93.

    Article  PubMed  Google Scholar 

  78. Maguire R, Papadopoulou C, Kotronoulas G, Simpson MF, McPhelim J, Irvine L. A systematic review of supportive care needs of people living with lung cancer. Eur J Oncol Nurs. 2013;17(4):449–64.

    Article  PubMed  Google Scholar 

  79. Colt HG, Murgu SD, Korst RJ, Slatore CG, Unger M, Quadrelli S. Follow-up and surveillance of the patient with lung cancer after curative-intent therapy: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e437S–54S.

    Article  PubMed  Google Scholar 

  80. Mak KS, van Bommel AC, Stowell C, Abrahm JL, Baker M, Baldotto CS, et al. Defining a standard set of patient-centred outcomes for lung cancer. Eur Respir J. 2016;48(3):852–60.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Barry MJ, Edgman-Levitan S. Shared decision making--pinnacle of patient-centered care. N Engl J Med. 2012;366(9):780–1.

    Article  CAS  PubMed  Google Scholar 

  82. Niburski K, Guadagno E, Abbasgholizadeh-Rahimi S, Poenaru D. Shared decision making in surgery: a meta-analysis of existing literature. Patient. 2020;13(6):667–81.

    Article  PubMed  Google Scholar 

  83. Niburski K, Guadagno E, Mohtashami S, Poenaru D. Shared decision making in surgery: a scoping review of the literature. Health Expect. 2020;23(5):1241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, Caughey AB, et al. Screening for lung cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(10):962–70.

    Article  PubMed  Google Scholar 

  85. Mazzone PJ, Silvestri GA, Souter LH, Caverly TJ, Kanne JP, Katki HA, et al. Screening for lung cancer: CHEST guideline and expert panel report. Chest. 2021;160:e427.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Volk RJ, Lowenstein LM, Leal VB, Escoto KH, Cantor SB, Munden RF, et al. Effect of a patient decision aid on lung cancer screening decision-making by persons who smoke: a randomized clinical trial. JAMA Netw Open. 2020;3(1):e1920362.

    Article  PubMed  PubMed Central  Google Scholar 

  87. De Roo AC, Vitous CA, Rivard SJ, Bamdad MC, Jafri SM, Byrnes ME, et al. High-risk surgery among older adults: not-quite shared decision-making. Surgery. 2021;170(3):756–63.

    Article  PubMed  Google Scholar 

  88. Golden SE, Thomas CR Jr, Moghanaki D, Slatore CG. Dumping the information bucket: a qualitative study of clinicians caring for patients with early stage non-small cell lung cancer. Patient Educ Couns. 2017;100(5):861–70.

    Article  PubMed  Google Scholar 

  89. Olling K, Stie M, Winther B, Steffensen KD. The impact of a patient decision aid on shared decision-making behaviour in oncology care and pulmonary medicine-a field study based on real-life observations. J Eval Clin Pract. 2019;25(6):1121–30.

    Article  PubMed  Google Scholar 

  90. Søndergaard SR, Madsen PH, Hilberg O, Jensen KM, Olling K, Steffensen KD. A prospective cohort study of shared decision making in lung cancer diagnostics: impact of using a patient decision aid. Patient Educ Couns. 2019;102(11):1961–8.

    Article  PubMed  Google Scholar 

  91. Spronk I, Meijers MC, Heins MJ, Francke AL, Elwyn G, van Lindert A, et al. Availability and effectiveness of decision aids for supporting shared decision making in patients with advanced colorectal and lung cancer: results from a systematic review. Eur J Cancer Care (Engl). 2019;28(3):e13079.

    Article  PubMed  Google Scholar 

  92. Licker M, Karenovics W, Diaper J, Fresard I, Triponez F, Ellenberger C, et al. Short-term preoperative high-intensity interval training in patients awaiting lung cancer surgery: a randomized controlled trial. J Thorac Oncol. 2017;12(2):323–33.

    Article  PubMed  Google Scholar 

  93. Gravier FE, Smondack P, Prieur G, Medrinal C, Combret Y, Muir JF, et al. Effects of exercise training in people with non-small cell lung cancer before lung resection: a systematic review and meta-analysis. Thorax. 2022;77(5):486–96.

    Article  PubMed  Google Scholar 

  94. Edvardsen E, Skjonsberg OH, Holme I, Nordsletten L, Borchsenius F, Anderssen SA. High-intensity training following lung cancer surgery: a randomised controlled trial. Thorax. 2015;70(3):244–50.

    Article  CAS  PubMed  Google Scholar 

  95. Cavalheri V, Burtin C, Formico VR, Nonoyama ML, Jenkins S, Spruit MA, et al. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer. Cochrane Database Syst Rev. 2019;6:CD009955.

    PubMed  Google Scholar 

  96. Sheikh M, Mukeriya A, Shangina O, Brennan P, Zaridze D. Postdiagnosis smoking cessation and reduced risk for lung cancer progression and mortality : a prospective cohort study. Ann Intern Med. 2021;174(9):1232–9.

    Article  PubMed  Google Scholar 

  97. Lugg ST, Tikka T, Agostini PJ, Kerr A, Adams K, Kalkat MS, et al. Smoking and timing of cessation on postoperative pulmonary complications after curative-intent lung cancer surgery. J Cardiothorac Surg. 2017;12(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mason DP, Subramanian S, Nowicki ER, Grab JD, Murthy SC, Rice TW, et al. Impact of smoking cessation before resection of lung cancer: a Society of Thoracic Surgeons General Thoracic Surgery Database study. Ann Thorac Surg. 2009;88(2):362–70; discussion 370–1.

    Article  PubMed  Google Scholar 

  99. Takenaka T, Shoji F, Tagawa T, Kinoshita F, Haratake N, Edagawa M, et al. Does short-term cessation of smoking before lung resections reduce the risk of complications? J Thorac Dis. 2020;12(12):7127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  100. von Meyenfeldt EM, Gooiker GA, van Gijn W, Post PN, van de Velde CJ, Tollenaar RA, et al. The relationship between volume or surgeon specialty and outcome in the surgical treatment of lung cancer: a systematic review and meta-analysis. J Thorac Oncol. 2012;7(7):1170–8.

    Article  Google Scholar 

  101. Birkmeyer JD, Stukel TA, Siewers AE, Goodney PP, Wennberg DE, Lucas FL. Surgeon volume and operative mortality in the United States. N Engl J Med. 2003;349(22):2117–27.

    Article  CAS  PubMed  Google Scholar 

  102. Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I, et al. Hospital volume and surgical mortality in the United States. N Engl J Med. 2002;346(15):1128–37.

    Article  PubMed  Google Scholar 

  103. Boxer MM, Vinod SK, Shafiq J, Duggan KJ. Do multidisciplinary team meetings make a difference in the management of lung cancer? Cancer. 2011;117(22):5112–20.

    Article  PubMed  Google Scholar 

  104. Coory M, Gkolia P, Yang IA, Bowman RV, Fong KM. Systematic review of multidisciplinary teams in the management of lung cancer. Lung Cancer. 2008;60(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  105. Freeman RK, Ascioti AJ, Dake M, Mahidhara RS. The effects of a multidisciplinary care conference on the quality and cost of care for lung cancer patients. Ann Thorac Surg. 2015;100(5):1834–8; discussion 1838.

    Article  PubMed  Google Scholar 

  106. Freeman RK, Van Woerkom JM, Vyverberg A, Ascioti AJ. The effect of a multidisciplinary thoracic malignancy conference on the treatment of patients with lung cancer. Eur J Cardiothorac Surg. 2010;38(1):1–5.

    Article  PubMed  Google Scholar 

  107. Voong KR, Liang OS, Dugan P, Torto D, Padula WV, Senter JP, et al. Thoracic oncology multidisciplinary clinic reduces unnecessary health care expenditure used in the workup of patients with non-small-cell lung cancer. Clin Lung Cancer. 2019;20(4):e430–e41.

    Article  PubMed  Google Scholar 

  108. Boffa DJ, Mallin K, Herrin J, Resio B, Salazar MC, Palis B, et al. Survival after cancer treatment at top-ranked US cancer hospitals vs affiliates of top-ranked cancer hospitals. JAMA Netw Open. 2020;3(5):e203942.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nicoli CD, Sprague BL, Anker CJ, Lester-Coll NH. Association of rurality with survival and guidelines-concordant management in early-stage non-small cell lung cancer. Am J Clin Oncol. 2019;42(7):607–14.

    Article  PubMed  Google Scholar 

  110. Sineshaw HM, Sahar L, Osarogiagbon RU, Flanders WD, Yabroff KR, Jemal A. County-level variations in receipt of surgery for early-stage non-small cell lung cancer in the United States. Chest. 2020;157(1):212–22.

    Article  PubMed  Google Scholar 

  111. Sineshaw HM, Wu XC, Flanders WD, Osarogiagbon RU, Jemal A. Variations in receipt of curative-intent surgery for early-stage non-small cell lung cancer (NSCLC) by state. J Thorac Oncol. 2016;11(6):880–9.

    Article  PubMed  Google Scholar 

  112. Holden DA, Rice TW, Stelmach K, Meeker DP. Exercise testing, 6-min walk, and stair climb in the evaluation of patients at high risk for pulmonary resection. Chest. 1992;102(6):1774–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc M. Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ha, D.M. (2023). Physiologic and Patient-Centered Considerations in Lung Cancer Care. In: MacRosty, C.R., Rivera, M.P. (eds) Lung Cancer. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-031-38412-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38412-7_13

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-38411-0

  • Online ISBN: 978-3-031-38412-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics