Skip to main content

Product Manifolds with Improved Spectral Cluster and Weyl Remainder Estimates

  • Chapter
  • First Online:
From Classical Analysis to Analysis on Fractals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. G. Avakumović. Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z., 65:327–344, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. H. Bérard. On the wave equation on a compact Riemannian manifold without conjugate points. Math. Z., 155(3):249–276, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. D. Blair and C. D. Sogge. Concerning Toponogov’s theorem and logarithmic improvement of estimates of eigenfunctions. J. Differential Geom., 109(2):189–221, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. D. Blair and C. D. Sogge. Logarithmic improvements in \(L^p\) bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature. Invent. Math., 217(2):703–748, 2019.

    Google Scholar 

  5. J. Bourgain and C. Demeter. The proof of the \(\ell ^2\) decoupling conjecture. Ann. of Math. (2), 182(1):351–389, 2015.

    Google Scholar 

  6. Y. Canzani and J. Galkowski. Weyl remainders: an application of geodesic beams. preprint, arXiv:2010.03969.

    Google Scholar 

  7. Y. Canzani and J. Galkowski. Eigenfunction concentration via geodesic beams. J. Reine Angew. Math., 775:197–257, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. J. Duistermaat and V. W. Guillemin. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math., 29(1):39–79, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Germain and S. L. R. Myerson. Bounds for spectral projectors on tori. arXiv:2104.13274.

    Google Scholar 

  10. A. Hassell and M. Tacy. Improvement of eigenfunction estimates on manifolds of nonpositive curvature. Forum Mathematicum, 27(3):1435–1451, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Hickman. Uniform \({L}^p\) resolvent estimates on the torus. Mathematics Research Reports, 1:31–45, 2020.

    Google Scholar 

  12. L. Hörmander. The spectral function of an elliptic operator. Acta Math., 121:193–218, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.

    Google Scholar 

  14. A. Iosevich and E. Wyman. Weyl law improvement for products of spheres. Anal. Math., 47(3):593–612, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. M. Levitan. On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order. Izvestiya Akad. Nauk SSSR. Ser. Mat., 16:325–352, 1952.

    MathSciNet  MATH  Google Scholar 

  16. C. D. Sogge. Oscillatory integrals and spherical harmonics. Duke Math. J., 53(1):43–65, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. D. Sogge. On the convergence of Riesz means on compact manifolds. Ann. of Math. (2), 126(2):439–447, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. D. Sogge. Concerning the \(L^p\) norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal., 77(1):123–138, 1988.

    Google Scholar 

  19. C. D. Sogge. Fourier integrals in classical analysis, volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993.

    Book  MATH  Google Scholar 

  20. C. D. Sogge. Hangzhou lectures on eigenfunctions of the Laplacian, volume 188 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2014.

    Book  MATH  Google Scholar 

  21. A. Walfisz. Gitterpunkte in mehrdimensionalen Kugeln. Monografie Matematyczne, Vol. 33. Państwowe Wydawnictwo Naukowe, Warsaw, 1957.

    Google Scholar 

  22. A. Zygmund. On Fourier coefficients and transforms of functions of two variables. Studia Math., 50:189–201, 1974.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported in part by the NSF (DMS-1665373). The authors would like to thank the referee for remarks and corrections that improved the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Sogge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, X., Sogge, C.D., Taylor, M.E. (2023). Product Manifolds with Improved Spectral Cluster and Weyl Remainder Estimates. In: Alonso Ruiz, P., Hinz, M., Okoudjou, K.A., Rogers, L.G., Teplyaev, A. (eds) From Classical Analysis to Analysis on Fractals. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-37800-3_6

Download citation

Publish with us

Policies and ethics