Skip to main content
Log in

Weyl Law Improvement for Products of Spheres

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

The classical Weyl Law says that if NM(λ) denotes the number of eigenvalues of the Laplace operator on a d-dimensional compact manifold M without a boundary that are less than or equal to λ, then

$${N_M}(\lambda ) = c{\lambda ^d} + O({\lambda ^{d - 1}}).$$

This paper explores the prospects of improvements of Weyl remainders on products of manifolds. In particular we obtain a polynomial improvement to the Weyl remainder for products of spheres, demonstrate how Duistermaat and Giullemin’s result implies a little-o improvement to the remainder for products of compact Riemannian manifolds without boundary, and conjecture that polynomial improvements hold for these more general products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., 155 (1977), 249–276.

    Article  MathSciNet  Google Scholar 

  2. J. Bourgain and N. Watt, Mean square of zeta function, circle problem and divisor problem revisited, arXiv:1709.04340 (2017).

  3. N. Burq and C. Zuily, Laplace eigenfunctions and damped wave equation on product manifolds, Appl. Math. Res. Express. AMRX 2015, 296–310.

  4. Y. Canzani and J. Galkowski, Eigenfunction concentration via geodesic beams, arXiv:1903.08461 (2019).

  5. J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39–79.

    Article  MathSciNet  Google Scholar 

  6. F. Fricker, Einführung in die Gitterpunktlehre, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW), Mathematische Reihe, 73, Birkhäuser Verlag (Basel, Boston, Mass., 1982).

    Book  Google Scholar 

  7. V. Guillemin and S. Sternberg, Semi-classical Analysis, International Press (Boston, MA, 2013).

    MATH  Google Scholar 

  8. D. Heath-Brown, Lattice points in the sphere, in: Number Theory in Progress, (Zakopane-Kościelisko, 1997), vol. 2, de Gruyter (Berlin, 2000), 883–892.

    Google Scholar 

  9. S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society (Providence, RI, 2000).

    Book  Google Scholar 

  10. E. Hlawka, Über Integrale auf konvexen Körpern. I, Monatsh. Math., 54 (1950), 1–36.

    Article  MathSciNet  Google Scholar 

  11. M. Huxley, Area, Lattice Points, and Exponential Sums, London Mathematical Society Monographs, New Series, 13, Oxford Science Publications, The Clarendon Press, Oxford University Press (New York, 1996).

    MATH  Google Scholar 

  12. V. Ja. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen., 14 (1980), 25–34.

    Article  MathSciNet  Google Scholar 

  13. E. Kratzel and W. Nowak, Lattice points in large convex bodies. II, Acta Arith., 62 (1992), 285–295.

    Article  MathSciNet  Google Scholar 

  14. C. D. Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, Annals of Mathematics Studies, vol. 188, Princeton University Press (Princeton, NJ, 2014).

    Book  Google Scholar 

  15. C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 210, Cambridge University Press (Cambridge, 2017).

    Book  Google Scholar 

  16. R. S. Strichartz, Another way to look at spectral asymptotics on spheres, J. Fourier Anal. Appl., 21 (2015), 401–404.

    Article  MathSciNet  Google Scholar 

  17. R. S. Strichartz, Average error for spectral asymptotics on surfaces, Comm. Pure Appl. Anal., 15 (2016), 9–39.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wyman.

Additional information

The work of the first listed author was supported in part by the National Science Foundation under grant no. HDR TRIPODS-1934962.

The work of the second listed author was supported in part by the National Science Foundation under grant no. DMS-1502632.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iosevich, A., Wyman, E. Weyl Law Improvement for Products of Spheres. Anal Math 47, 593–612 (2021). https://doi.org/10.1007/s10476-021-0090-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-021-0090-x

Key words and phrases

Mathematics Subject Classification

Navigation