Skip to main content

Distance-2-Dispersion: Dispersion with Further Constraints

  • Conference paper
  • First Online:
Networked Systems (NETYS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14067))

Included in the following conference series:

Abstract

The aim of the dispersion problem is to place a set of \(k~(\le n)\) mobile robots in the nodes of an unknown graph consisting of n nodes such that in the final configuration each node contains at most one robot, starting from any arbitrary initial configuration of the robots on the graph. In this work, we propose a variant of the dispersion problem, namely Distance-2-Dispersion, in short, D-2-D, where we start with any number of robots, and put an additional constraint that no two adjacent nodes contain robots in the final configuration. However, if a maximal independent set is already formed by the nodes which contain a robot each, then any other unsettled robot, if exists, will not find a node to settle. Hence we allow multiple robots to sit on some nodes only if there is no place to sit. If \(k\ge n\), it is guaranteed that the nodes with robots form a maximal independent set of the underlying network.

The graph \(G=(V, E)\) is a port-labelled graph having n nodes and m edges, where nodes are anonymous. The robots have unique ids in the range [1, L], where \(L \ge k\). Co-located robots can communicate among themselves. We provide an algorithm that solves D-2-D starting from a rooted configuration (i.e., initially all the robots are co-located) and terminates after \(2\varDelta (8m-3n+3)\) synchronous rounds using \(O(\log \varDelta )\) memory per robot without using any global knowledge of the graph parameters m, n and \(\varDelta \), the maximum degree of the graph. We also provide \(\varOmega (m\varDelta )\) lower bound on the number of rounds for the D-2-D problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is known as the Face-to-Face communication model and has already been considered while studying problems related to mobile robots including exploration [11, 12] and dispersion [1, 13].

  2. 2.

    A configuration where all the robots are initially placed on a single node.

  3. 3.

    We mean \(O(\log \varDelta )\) additional memory, i.e., memory apart from what it requires to store its id.

References

  1. John Augustine and William K. Moses Jr. Dispersion of mobile robots: a study of memory-time trade-offs. In: ICDCN, pp. 1:1–1:10 (2018)

    Google Scholar 

  2. Molla, A.R., Mondal, K., Moses Jr., W.K.: Byzantine dispersion on graphs. In: IPDPS, pp. 942–951. IEEE (2021)

    Google Scholar 

  3. Molla, A.R., Moses, W.K.: Dispersion of mobile robots: the power of randomness. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 481–500. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_30

    Chapter  MATH  Google Scholar 

  4. Molla, A.R., Mondal, K., Moses, W.K., Jr.: Optimal dispersion on an anonymous ring in the presence of weak byzantine robots. Theor. Comput. Sci. 887, 111–121 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shintaku, T., Sudo, Y., Kakugawa, H., Masuzawa, T.: Efficient dispersion of mobile agents without global knowledge. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 280–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_22

    Chapter  Google Scholar 

  6. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots using global communication. J. Parallel Distrib. Comput. 161, 100–117 (2022)

    Article  Google Scholar 

  7. Barun Gorain, Partha Sarathi Mandal, Kaushik Mondal, and Supantha Pandit. Collaborative dispersion by silent robots. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds.) SSS, vol. 13751, pp. 254–269. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21017-4_17

  8. Das, A., Bose, K., Sau, B.: Memory optimal dispersion by anonymous mobile robots. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 426–439. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9_34

    Chapter  Google Scholar 

  9. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In: Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp. 183–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39881-1_16

    Chapter  Google Scholar 

  10. Agarwalla, A., Augustine, J., Moses Jr., W.K., Sankar Madhav, K., Sridhar, A.K.: Deterministic dispersion of mobile robots in dynamic rings. In: ICDCN, pp. 19:1–19:4. ACM (2018)

    Google Scholar 

  11. Das, S.:: Graph explorations with mobile agents. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 403–422. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_16

  12. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kshemkalyani, A.D., Sharma, G.: Near-optimal dispersion on arbitrary anonymous graphs. OPODIS 8:1–8:19 (2021)

    Google Scholar 

  14. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. J. ACM 63(3), 20:1-20:45 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elkin, M., Pettie, S., Su, H.-H.: (2\(\Delta \) - l)-edge-coloring is much easier than maximal matching in the distributed setting. In: SODA, pp. 355–370 (2015)

    Google Scholar 

  17. Fischer, M., Noever, A.: Tight analysis of parallel randomized greedy MIS. In: SODA, pp. 2152–2160 (2018)

    Google Scholar 

  18. Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: SODA, pp. 270–277 (2016)

    Google Scholar 

  19. Harris, D.G., Schneider, J., Su, H.-H.: Distributed (\(\Delta +1\))-coloring in sublogarithmic rounds. In: STOC, pp. 465–478 (2016)

    Google Scholar 

  20. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63(2), 17:1-17:44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lenzen, C., Wattenhofer, R.: MIS on trees. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 41–48 (2011)

    Google Scholar 

  22. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: STOC, pp. 1–10 (1985)

    Google Scholar 

  23. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN, pp. 218–227 (2019)

    Google Scholar 

  24. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary graphs. In: ALGOSENSORS, pp. 23–40 (2019)

    Google Scholar 

  25. Barrière, L., Flocchini, P., Barrameda, E.M., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009)

    Google Scholar 

  26. Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of mobile agents in asynchronous rings. J. Parallel Distributed Comput. 119, 92–106 (2018)

    Article  MATH  Google Scholar 

  28. Pramanick, S., Samala, S.V., Pattanayak, D., Mandal, P.S.: Filling MIS vertices of a graph by myopic luminous robots. In: Molla, A.R., Sharma, G., Kumar, P., Rawat, S. (eds.) ICDCIT 2023. LNCS, vol. 13776, pp. 3–19. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24848-1_1

Download references

Funding

Tanvir Kaur acknowledges the support of the Council of Scientific & Industrial Research (CSIR) during this work (Grant no. 09/1005(0048)/2020-EMR-I). This work was partially supported by the FIST program of the Department of Science and Technology, Government of India, Reference No. SR/FST/MS-I/2018/22(C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, T., Mondal, K. (2023). Distance-2-Dispersion: Dispersion with Further Constraints. In: Mohaisen, D., Wies, T. (eds) Networked Systems. NETYS 2023. Lecture Notes in Computer Science, vol 14067. Springer, Cham. https://doi.org/10.1007/978-3-031-37765-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37765-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37764-8

  • Online ISBN: 978-3-031-37765-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics