Skip to main content

Memory Optimal Dispersion by Anonymous Mobile Robots

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2021)

Abstract

Consider a team of \(k \le n\) autonomous mobile robots initially placed at a node of an arbitrary graph G with n nodes. The dispersion problem asks for a distributed algorithm that allows the robots to reach a configuration in which each robot is at a distinct node of the graph. If the robots are anonymous, i.e., they do not have any unique identifiers, then the problem is not solvable by any deterministic algorithm. However, the problem can be solved even by anonymous robots if each robot is given access to a fair coin which they can use to generate random bits. In this setting, it is known that the robots require \(\varOmega (\log {\varDelta })\) bits of memory to achieve dispersion, where \(\varDelta \) is the maximum degree of G. On the other hand, the best known memory upper bound is \(min \{\varDelta , max\{\log {\varDelta }, \log {D}\}\}\) (D = diameter of G), which can be \(\omega (\log {\varDelta })\), depending on the values of \(\varDelta \) and D. In this paper, we close this gap by presenting an optimal algorithm requiring \(O(\log {\varDelta })\) bits of memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwalla, A., Augustine, J., Moses Jr, W.K., Madhav, S.K., Sridhar, A.K.: Deterministic dispersion of mobile robots in dynamic rings. In: Bellavista, P., Garg, V.K. (eds.) Proceedings of the 19th International Conference on Distributed Computing and Networking, ICDCN 2018, Varanasi, India, January 4–7, 2018, pp. 19:1–19:4. ACM (2018). https://doi.org/10.1145/3154273.3154294

  2. Augustine, J., Moses Jr, W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, ICDCN 2018, Varanasi, India, January 4–7, 2018, pp. 1:1–1:10 (2018). https://doi.org/10.1145/3154273.3154293

  3. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Optimal gathering by asynchronous oblivious robots in hypercubes. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 102–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6_7

    Chapter  Google Scholar 

  4. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Robot. 27(4), 707–717 (2011). https://doi.org/10.1109/TRO.2011.2121170

    Article  Google Scholar 

  5. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008). https://doi.org/10.1145/1383369.1383373

    Article  MathSciNet  MATH  Google Scholar 

  6. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012). https://doi.org/10.1007/s00446-011-0141-9

    Article  MATH  Google Scholar 

  7. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014). https://doi.org/10.1007/s00446-014-0212-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, A., Bose, K., Sau, B.: Memory optimal dispersion by anonymous mobile robots. CoRR abs/2008.00701 (2020). https://arxiv.org/abs/2008.00701

  9. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by energy-constrained mobile robots. Theory Comput. Syst. 62(5), 1223–1240 (2018). https://doi.org/10.1007/s00224-017-9816-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015). https://doi.org/10.1016/j.ic.2014.12.005

    Article  MathSciNet  MATH  Google Scholar 

  11. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. Algorithmica 74(2), 908–946 (2016). https://doi.org/10.1007/s00453-015-9982-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004). https://doi.org/10.1016/j.jalgor.2003.10.002

    Article  MathSciNet  MATH  Google Scholar 

  13. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2(3), 380–402 (2006). https://doi.org/10.1145/1159892.1159897

    Article  MathSciNet  MATH  Google Scholar 

  14. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13284-1_9

    Chapter  Google Scholar 

  15. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S., Wada, K.: Gathering on rings for myopic asynchronous robots with lights. In: 23rd International Conference on Principles of Distributed Systems, OPODIS 2019, December 17–19, 2019, Neuchâtel, Switzerland. LIPIcs, vol. 153, pp. 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.OPODIS.2019.27

  16. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411(34–36), 3235–3246 (2010). https://doi.org/10.1016/j.tcs.2010.05.020

    Article  MathSciNet  MATH  Google Scholar 

  17. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008). https://doi.org/10.1016/j.tcs.2007.09.032

    Article  MathSciNet  MATH  Google Scholar 

  18. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theor. Comput. Sci. 399(1–2), 141–156 (2008). https://doi.org/10.1016/j.tcs.2008.02.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: Proceedings of the 20th International Conference on Distributed Computing and Networking, ICDCN 2019, Bangalore, India, January 04–07, 2019, pp. 218–227 (2019). https://doi.org/10.1145/3288599.3288610

  20. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary graphs. In: Algorithms for Sensor Systems - 15th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2019, Munich, Germany, September 12–13, 2019, Revised Selected Papers, pp. 23–40 (2019). https://doi.org/10.1007/978-3-030-34405-4_2

  21. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the global communication model. In: Mukherjee, N., Pemmaraju, S.V. (eds.) ICDCN 2020: 21st International Conference on Distributed Computing and Networking, Kolkata, India, January 4–7, 2020, pp. 12:1–12:10. ACM (2020). https://doi.org/10.1145/3369740.3369775

  22. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In: Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp. 183–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39881-1_16

    Chapter  Google Scholar 

  23. Luna, G.A.D., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. Theor. Comput. Sci. 811, 79–98 (2020). https://doi.org/10.1016/j.tcs.2018.10.018

    Article  MathSciNet  MATH  Google Scholar 

  24. Miller, A., Pelc, A.: Fast rendezvous with advice. Theor. Comput. Sci. 608, 190–198 (2015). https://doi.org/10.1016/j.tcs.2015.09.025

    Article  MathSciNet  MATH  Google Scholar 

  25. Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic rendezvous in networks. Distrib. Comput. 29(1), 51–64 (2016). https://doi.org/10.1007/s00446-015-0253-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Molla, A.R., Moses, W.K.: Dispersion of mobile robots: the power of randomness. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 481–500. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_30

    Chapter  MATH  Google Scholar 

  27. Molla, A.R., Mondal, K., Moses, W.K.: Efficient dispersion on an anonymous ring in the presence of weak Byzantine robots. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds.) ALGOSENSORS 2020. LNCS, vol. 12503, pp. 154–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62401-9_11

    Chapter  Google Scholar 

  28. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2), 281–295 (1999). https://doi.org/10.1006/jagm.1999.1043

    Article  MathSciNet  MATH  Google Scholar 

  29. Stefano, G.D., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017). https://doi.org/10.1007/s00446-016-0278-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014). https://doi.org/10.1145/2601068

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to thank Pritam Goswami for valuable discussions. The first two authors are supported by UGC, Govt. of India, and NBHM DAE, Govt. of India respectively. We would like to thank the anonymous reviewers for their valuable comments which helped us to improve the quality and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustav Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, A., Bose, K., Sau, B. (2021). Memory Optimal Dispersion by Anonymous Mobile Robots. In: Mudgal, A., Subramanian, C.R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2021. Lecture Notes in Computer Science(), vol 12601. Springer, Cham. https://doi.org/10.1007/978-3-030-67899-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67899-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67898-2

  • Online ISBN: 978-3-030-67899-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics