Skip to main content

Tillandsia usneoides L. (Spanish Moss) Air Plant and Its Important Potential for Sustainable Technical Textile Applications

  • Chapter
  • First Online:
Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry

Abstract

Tillandsia usneoides (L.), an epiphytic member of the Bromeliaceae (pineapple family), has exceptional properties and biomimetic potential for technical textile applications. Tillandsia are referred to as “air plants” or “atmospheric bromeliads” since they absorb water and nutrients directly from the air through the trichomes that cover their leaves, rather than from the soil or organic material. The plant uses its roots only for clings to the place where it is found. It has long, curly, grayish leaves that grow downward and usually hang from the branches of trees. The plant is native primarily to the American South and has been used by locals for a variety of purposes for many years. Although its use as a filler is one of the oldest uses, thanks to its insulating properties, the forked growth structure of the plant’s leaves and its ability to absorb moisture and nutrients from the air into the cell without needing roots, thanks to the trichomes on the leaves, are of great importance in biomimetic studies. In recent years, there have been many studies investigating its use as a biomonitor, especially in studies measuring air pollution. In addition, architectural applications have been developed that biomimetically mimic the fiber surface and cell structure and ceiling and wall systems with various properties, such as ambient moisture dissipation and ventilation. Based on these studies, the use of the unusual properties of the air plant Tillandsia Usneoides (L.) (Spanish moss) as a textile material and their application to textile materials as biomimetics have significant potential in terms of qualified technical textile applications. As a textile material, it has properties that are important for textile structures, such as comfort, durability, breathability, thermal insulation, and shock absorption. It also promises environmentally friendly production, thanks to its self-growth in nature, absence of chemicals or pesticides in production, natural structure, and biodegradable properties. In this chapter, the structure and properties of the air plant Tillandsia Usneoides L. (Spanish moss), its use as a textile material, and the importance and potential of biomimetic applications were thoroughly investigated using the literature with regard to sustainable technical textile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Kalayci, O. Avinc, A. Yavas, S. Coskun, Responsible textile design and manufacturing: Environmentally conscious material selection, in Responsible Manufacturing: Issues Pertaining to Sustainability, ed. by A.Y. Alqahtani, E. Kongar, K.K. Pochampally, S.M. Gupta, (Taylor & Francis, 2019)

    Google Scholar 

  2. S.S. Muthu, Sustainability in the Textile Industry (Springer, 2017)

    Book  Google Scholar 

  3. S.S. Muthu, M.A. Gardetti, Sustainability in the Textile and Apparel Industries (Springer, 2020)

    Book  Google Scholar 

  4. S.S. Muthu, Roadmap to Sustainable Textiles and Clothing: Eco-Friendly Raw Materials, Technologies, and Processing Methods (Springer, 2014)

    Book  Google Scholar 

  5. E. Kalayci, O. Avinc, K.B. Turkoglu, Importance of asclepias syriaca (milkweed) fibers in sustainable fashion and textile industry and its potential end-uses, in Sustainable Approaches in Textiles and Fashion: Fibres, Raw Materials and Product Development, ed. by S.S. Muthu, (Springer Nature, Singapore, 2022), pp. 1–21

    Google Scholar 

  6. K.B. Turkoglu, E. Kalayci, O. Avinc, A. Yavas, Oleofilik buoyans özellikli kapok lifleri ve yenilikçi yaklaşımlar. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 7(1), 61–89 (2019)

    Article  Google Scholar 

  7. E. Kalayci, O.O. Avinc, A. Bozkurt, A. Yavas, Tarımsal atıklardan elde edilen sürdürülebilir tekstil lifleri: Ananas yaprağı lifleri. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 20(2), 203–221 (2016)

    Article  Google Scholar 

  8. F. Unal, O. Avinc, A. Yavas, Sustainable textile designs made from renewable biodegradable sustainable natural abaca fibers, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), pp. 1–30

    Google Scholar 

  9. M. Kurban, A. Yavas, O. Avinc, Nettle biofibre bleaching with ozonation/Albirea biofibrei din urzica prin ozonizare. Ind. Text. 67(1), 46 (2016)

    CAS  Google Scholar 

  10. C.B. Kalayci, M. Gündoğan, E. Kalayci, O. Avinc, Color strength estimation of coir fibers bleached with peracetic acid. Ann. Univ. Oradea Fascicle of Text. Leatherwork. 2019(2), 65–70 (2019)

    Google Scholar 

  11. E. Kalayci, O. Avinc, A. Yavas, Usage of horse hair as a textile fiber and evaluation of color properties. Ann. Univ. Oradea Fascicle of Text. Leatherwork. 2019(1), 57–62 (2019)

    Google Scholar 

  12. S. Amaducci, HEMP-SYS: design, development and up-scaling of a sustainable production system for hemp textiles – An integrated quality systems approach. J. Ind. Hemp. 8(2), 79–83 (2003)

    Article  Google Scholar 

  13. H. Chung, T.Y. Kim, S.Y. Lee, Recent advances in production of recombinant spider silk proteins. Curr. Opin. Biotechnol. 23(6), 957–964 (2012)

    Article  CAS  Google Scholar 

  14. E. Kalayci, O. Avinc, A. Yavas, Yarının Yüksek Performanslı Liflerine Doğal Bir Yaklaşım: Balık Asalağı Salgısı Lifleri. Marmara Fen Bilimleri Dergisi. 27(4), 135–142 (2015)

    Article  Google Scholar 

  15. J.T. Van Stan, A. Stubbins, T. Bittar, J.S. Reichard, K.A. Wright, R.B. Jenkins, Tillandsia usneoides (L.) L. (Spanish moss) water storage and leachate characteristics from two maritime oak forest settings. Ecohydrology 8(6), 988–1004 (2015)

    Article  Google Scholar 

  16. W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant Surfaces: Structures and Functions for Biomimetic Applications, Springer handbook of nanotechnology (Springer, 2017), pp. 1265–1305

    Google Scholar 

  17. C.E. Martin, J.N. Siedow, Crassulacean acid metabolism in the epiphyte tillandsia usneoides L. (Spanish Moss) responses of CO2 exchange to controlled environmental conditions. Plant Physiol. 68(2), 335–339 (1981)

    Article  CAS  Google Scholar 

  18. M. Carocci, Clad with the ‘Hair of Trees’: A history of Native American Spanish moss textile industries. Text. Hist. 41(1), 3–27 (2010)

    Article  Google Scholar 

  19. G.M. Allen, M.D. Bond, M.B. Main, 50 common native plants important in Florida’s ethnobotanical history: Circular 1439/UW152, 12/2002. EDIS. 2003(13) (2003)

    Google Scholar 

  20. A.C.W. Borst, Food and Furniture: Disentangling Trophic and Non-trophic Interactions Within Foundation Species Communities (Sl, sn, 2019)

    Google Scholar 

  21. E. Estrella-Parra, M. Flores-Cruz, G. Blancas-Flores, S.D. Koch, F.J. Alarcón-Aguilar, The Tillandsia genus: history, uses, chemistry, and biological activity. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 18(3) (2019)

    Google Scholar 

  22. H.W. Smith, M.F. Conservation, An investigation into the use of traditional upholstery materials and non-animal products in relation to allergies and sustainability.

    Google Scholar 

  23. W.H. Welch, ed., Presidential address: Mosses and their uses. Proc. Indiana Acad. Sci. (1948)

    Google Scholar 

  24. L. Claudio, Planting Healthier Indoor Air (National Institute of Environmental Health Sciences, 2011)

    Book  Google Scholar 

  25. G. Zizka, M. Schmidt, K. Schulte, P. Novoa, R. Pinto, K. König, Chilean Bromeliaceae: diversity, distribution and evaluation of conservation status. Biodivers. Conserv. 18(9), 2449–2471 (2009)

    Article  Google Scholar 

  26. A. Flower, Margaret Mee – Botanical artist. J. Bromeliad Soc. 58(6), 278–279 (2008)

    Google Scholar 

  27. H.T. Shacklette, J.J. Connor, Airborne Chemical Elements in Spanish Moss (US Government Printing Office, 1973)

    Book  Google Scholar 

  28. Unknown, What Is That Gray Hair- Like Material in The Trees? (2022), Available from https://www.nps.gov/common/uploads/teachers/lessonplans/Background%20reading%20-%20spanish%20moss.pdf

  29. J.T. Milanich, E.M. Milanich, Timucua: VNR AG (1996)

    Google Scholar 

  30. N. Hémard, New Orleans Nostalgia, Remembering New Orleans History, Culture and Traditions, vol. 3 (2012), Retrieved November 2009

    Google Scholar 

  31. F.H. Billings, A study of Tillandsia usneoides. Bot. Gaz. 38(2), 99–121 (1904)

    Article  Google Scholar 

  32. D. Browning, Air Plants: The Curious World of Tillandsias (New York TIMES, New York, 2014)

    Google Scholar 

  33. M. Vutchkov, G. Lalor, J. Preston, Biomonitoring of air pollution in Jamaica through trace-element analysis of epiphytic plants using nuclear and related analytical techniques (1999)

    Google Scholar 

  34. M. Fonseca, W. Bastos, F. Pinto, M.D.F. Rebelo, J. Torres, J. Guimarães, et al., Can the biomonitor Tillandsia usneoides be used to estimate occupational and environmental mercury levels in the air? (2007)

    Google Scholar 

  35. M. Dematte, Information on Brazilian ornamental species of the genus Tillandsia L.(Bromeliaceae). Acta Hortic. 683, 293 (2005)

    Article  Google Scholar 

  36. D.H. Benzing, K. Henderson, B. Kessel, J. Sulak, The absorptive capacities of bromeliad trichomes. Am. J. Bot. 63(7), 1009–1014 (1976)

    Article  Google Scholar 

  37. S. Carbone, I.M. N’siala, A. Gatti, F. Capitani, G. Vianello, L.V. Antisari, Exposure of Tillandisa Usneoides at Silver Naloparticles, vol. 10 (Brno, 2012), pp. 23–25

    Google Scholar 

  38. Z. Sengo, Air Plants the Curious World of Tillandsias (Timber Press, 2014)

    Google Scholar 

  39. J. Sewards, S.P. Brown, Spanish moss, ball moss, and lichens-harmless epiphytes: ENH1224/EP485, 9/2013. EDIS. 2013(10) (2013)

    Google Scholar 

  40. M. Pearce, The Truth About Slime Molds, Spanish Moss, Lichens and Mistletoe (University of Georgia, 2009)

    Google Scholar 

  41. W. Fang, Z. Xiaosong, T. Junjie, L. Xiuwei, The thermal performance of double skin façade with Tillandsia usneoides plant curtain. Energy Build. 43(9), 2127–2133 (2011)

    Article  Google Scholar 

  42. A.T. Guard, M. Hen, Reproduction of Spanish moss, Tillandsia usneoides L., by seeds. Bull. Torrey Bot. Club., 327–330 (1968)

    Google Scholar 

  43. S. Chaipong, Indoor plant species survival under different environment in indoor vertical garden. GEOMATE J. 18(68), 15–20 (2020)

    Google Scholar 

  44. B. Bennett, The Florida bromeliads: Tillandsia usneoides. J. Bromeliad Soc. 36(4), 149–160 (1986)

    Google Scholar 

  45. C. Aldrich, M. DeBlieux, F.B. Kniffen, The Spanish moss industry of Louisiana. Econ. Geogr. 19(4), 347–357 (1943)

    Article  Google Scholar 

  46. R.E. Garth, The ecology of Spanish moss (Tillandsia usneoides): Its growth and distribution. Ecology 45(3), 470–481 (1964)

    Article  Google Scholar 

  47. C.E. Martin, C.A. Eades, R.A. Pitner, Effects of irradiance on crassulacean acid metabolism in the epiphyte Tillandsia usneoides L.(Bromeliaceae). Plant Physiol. 80(1), 23–26 (1986)

    Article  CAS  Google Scholar 

  48. W. Brewster, The yellow—Throated Warbler (DENDRŒCA DOMINICA). Bull. Nuttall Ornithol. Club. 2(4), 102–106 (1877)

    Google Scholar 

  49. W.H. Schlesinger, P. Marks, Mineral cycling and the niche of Spanish moss, Tillandsia usneoides L. Am. J. Bot. 64(10), 1254–1262 (1977)

    Article  CAS  Google Scholar 

  50. S.J. Krause, T.B. Haddock, D.L. Vezie, P.G. Lenhert, W.F. Hwang, G.E. Price, et al., Morphology and properties of rigid-rod poly(p-phenylene benzobisoxazole) (PBO) and stiff-chain poly(2,5(6)-benzoxazole) (ABPBO) fibres. Polymer 29(8), 1354–1364 (1988)

    Article  CAS  Google Scholar 

  51. B.B. Robinson, Minor fiber industries. Econ. Bot., 47–56 (1947)

    Google Scholar 

  52. J. Males, Think tank: Water relations of Bromeliaceae in their evolutionary context. Bot. J. Linn. Soc. 181(3), 415–440 (2016)

    Article  Google Scholar 

  53. B. Beßler, S. Schmitgen, F. Kühnemann, R. Gäbler, W. Urban, Light-dependent production of ethylene in Tillandsia usneoides L. Planta 205(1), 140–144 (1998)

    Article  Google Scholar 

  54. K. Koch, B. Bhushan, W. Barthlott, Multifunctional Plant Surfaces and Smart Materials, Springer handbook of nanotechnology (Springer, 2010), pp. 1399–1436

    Google Scholar 

  55. J. Zhang, S.J. Severtson, Fabrication and use of artificial superhydrophilic surfaces. J. Adhes. Sci. Technol. 28(8-9), 751–768 (2014)

    Article  Google Scholar 

  56. S. Pierce, The use of Tillandsia species in ritual adornment in Qosqo, Peru. J. Bromeliad Soc. 50, 195–201 (2000)

    Google Scholar 

  57. W.V. Bergen, W. Krauss, Textile fiber atlas. A collection of photomicrographs of old and new textile fibers (1942)

    Google Scholar 

  58. G.E. Wickens, What is economic botany? Econ. Bot. 44(1), 12–28 (1990)

    Article  Google Scholar 

  59. L.E. Wise, A. Meer, The cellulose of Spanish moss. Proc. Flo. Acad. Sci.: JSTOR (1936)

    Google Scholar 

  60. G.E. Wickens, Vegetable Fibres. Economic Botany (Springer, 2001), pp. 263–279

    Book  Google Scholar 

  61. A.C W, Textile fibers used in eastern aboriginal North, in Anthropological Papers of The American Museum Of Natural History Volume Xxxviii, Part I. Xxxviii, ed. by A.C W (New York, 1941)

    Google Scholar 

  62. S. Gardner, Tillandsias at Christmas in Mexico (Journal-Bromeliad Society (USA), 1982)

    Google Scholar 

  63. N. Weerawong, N.C. van Beem, K-A. Techato, Feasibility of using tillandsia usneoides L. as biomass

    Google Scholar 

  64. J. Kaal, Z. Gilmore, Z. Gilmore, Itla-okla (Tillandsia usneoides) fibre temper in pre-Columbian ceramics. Analytics Pyrol. Lett., APL002 (2018)

    Google Scholar 

  65. N.J. Wallis, Z.I. Gilmore, A.S. Cordell, T.J. Pluckhahn, K.H. Ashley, M.D. Glascock, The ceramic ecology of florida: Compositional baselines for pottery provenance studies. Star Sci. Technol. Archaeol. Res. 1(2), 30–49 (2015)

    Google Scholar 

  66. K.E. Sassaman, W. Rudolphi, Communities of practice in the early pottery traditions of the American Southeast. J. Anthropol. Res. 57(4), 407–425 (2001)

    Article  Google Scholar 

  67. M.C. Sanger, Investigating pottery vessel manufacturing techniques using radiographic imaging and computed tomography: Studies from the Late Archaic American Southeast. J. Archaeol. Sci. Rep. 9, 586–598 (2016)

    Google Scholar 

  68. Z.I. Gilmore, Direct radiocarbon dating of Spanish moss (Tillandsia usneoides) from early fiber-tempered pottery in the southeastern US. J. Archaeol. Sci. 58, 1–8 (2015)

    Article  CAS  Google Scholar 

  69. J.A. Green Jr, Native American pottery and pottery making facts (2004)

    Google Scholar 

  70. C. Lévi-Strauss, The use of wild plants in tropical South America. Reprint. Smithson. Inst. Bur. Am. Eth. Handb. S. Am. Ind. 6, 465–486 (1950)

    Google Scholar 

  71. C. Lévi-Strauss, The use of wild plants in tropical South America. Econ. Bot. 6(3), 252–270 (1952)

    Article  Google Scholar 

  72. C. Ifrim, Indoor plants cultivated in botanical garden iassy used in traditional medicine. Rev. Bot. 10(1), 115–120 (2015)

    Google Scholar 

  73. C. Andrighetti-Fröhner, T. Sincero, A. Da Silva, L. Savi, C. Gaido, J. Bettega, et al., Antiviral evaluation of plants from Brazilian atlantic tropical forest. Fitoterapia 76(3–4, 374), –8 (2005)

    Google Scholar 

  74. L. Kwon, B. Paik, J. Shim, D. Shin, Y. Kim, T. Lee, et al., Inventors anti-aging cosmetic composition containing methyl inositol (2013)

    Google Scholar 

  75. T. Sangkakool, The Application Air-Plant Green Roof for Residential Building in Hot-Humid Climate (Prince of Songkla University, 2018)

    Google Scholar 

  76. G.M. Cabrera, M. Gallo, A.M. Seldes, Cycloartane derivatives from Tillandsia usneoides. J. Nat. Prod. 59(4), 343–347 (1996)

    Article  CAS  Google Scholar 

  77. E.S. Alves, B.B. Moura, M. Domingos, Structural analysis of Tillandsia usneoides L. exposed to air pollutants in São Paulo City–Brazil. Water Air Soil Pollut. 189(1), 61–68 (2008)

    Article  CAS  Google Scholar 

  78. G. Zheng, R. Pemberton, P. Li, Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides. J. Environ. Radioact. 152, 23–27 (2016)

    Article  CAS  Google Scholar 

  79. M. de Souza Pereira, D. Heitmann, W. Reifenhäuser, R.O. Meire, L.S. Santos, J.P.M. Torres, et al., Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia usneoides (L.) in an industrialized area in Rio de Janeiro state, southeast Brazil–Part II: PCB and PAH. Chemosphere 67(9), 1736–1745 (2007)

    Article  Google Scholar 

  80. G. Amado Filho, L. Andrade, M. Farina, O. Malm, Hg localisation in Tillandsia usneoides L.(Bromeliaceae), an atmospheric biomonitor. Atmos. Environ. 36(5), 881–887 (2002)

    Article  CAS  Google Scholar 

  81. C. Calasans, O. Malm, Elemental mercury contamination survey in a chlor-alkali plant by the use of transplanted Spanish moss, Tillandsia usneoides (L.). Sci. Total Environ. 208(3), 165–177 (1997)

    Article  CAS  Google Scholar 

  82. A.N. Marques Junior, D.P. Panetto, F. Lamego, F.O. Nepomuceno, F. Monna, R. Losno, et al., Tracking atmospheric dispersion of metals in Rio de Janeiro Metropolitan region (Brazil) with epiphytes as bioindicators. An. Acad. Bras. Cienc. 90, 2991–3005 (2018)

    Article  Google Scholar 

  83. L.B. Santos, A.C. Almeida, J.M. Godoy, Alternative source apportionment in the surrounding region of a large steel industry applying Tillandsia usneoides as biomonitor. Química Nova. 41, 55–60 (2018)

    Google Scholar 

  84. P. Giampaoli, N.V. Capelli, A.R. Tavares, F.F. Fernandes, M. Domingos, E.S. Alves, Anomalous scales of Tillandsia usneoides (L.) L.(Bromeliaceae) exposed in the Metropolitan Region of Campinas, SP, Brazil as air pollution markers. Hoehnea. 42, 749–757 (2015)

    Article  Google Scholar 

  85. L.F. Amato-Lourenco, T.C.L. Moreira, V.C. de Oliveira Souza, F. Barbosa Jr., M. Saiki, P.H.N. Saldiva, et al., The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil. Environ. Pollut. 216, 125–134 (2016)

    Article  CAS  Google Scholar 

  86. A. Figueiredo, A. Alcalá, R. Ticianelli, M. Domingos, M. Saiki, The use of Tillandsia usneoides L. as bioindicator of air pollution in São Paulo, Brazil. J. Radioanal. Nucl. Chem. 259(1), 59–63 (2004)

    Article  CAS  Google Scholar 

  87. A.M.G. Figueiredo, C. Nogueira, B. Markert, H. Heidenreich, S. Fränzle, G. Liepelt, et al., The use of an epiphyte (Tillandsia usneoides L.) as bioindicator of heavy metal pollution in São Pauo, Brazil, in Highway and Urban Environment, (Springer, 2007), pp. 249–257

    Chapter  Google Scholar 

  88. A. Whitford, Textile fibers used in eastern aboriginal North America: DigiCat (2022)

    Google Scholar 

  89. S.D. Feurt, L.E. Fox, The pharmacological activity of substances extracted from spanish moss, Tillandsia usneoides L. J. Am. Pharm. Assoc. 41(8), 453–454 (1952)

    Article  CAS  Google Scholar 

  90. J.T. Weld, The antibiotic action of Tillandsia usneoides (Spanish moss). Proc. Soc. Exp. Biol. Med. 59(1), 40–41 (1945)

    Article  CAS  Google Scholar 

  91. N.A. Vianna, D. Gonçalves, F. Brandão, R.P. de Barros, R.O. Meire, J.P.M. Torres, et al., Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor. Environ. Sci. Pollut. Res. 18(3), 416–427 (2011)

    Article  CAS  Google Scholar 

  92. J. Rodriguez, S. Weller, E. Wannaz, A. Klumpp, M. Pignata, Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris. Ecol. Indic. 11(6), 1673–1680 (2011)

    Article  CAS  Google Scholar 

  93. E.D. Wannaz, H.A. Carreras, C.A. Pérez, M.L. Pignata, Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Sci. Total Environ. 361(1–3), 267–278 (2006)

    Article  CAS  Google Scholar 

  94. P. Li, G. Zheng, X. Chen, R. Pemberton, Potential of monitoring nuclides with the epiphyte Tillandsia usneoides: Uptake and localization of 133Cs. Ecotoxicol. Environ. Saf. 86, 60–65 (2012)

    Article  Google Scholar 

  95. M. Martínez-Carrillo, C. Solís, E. Andrade, K. Isaac-Olivé, M. Rocha, G. Murillo, et al., PIXE analysis of Tillandsia usneoides for air pollution studies at an industrial zone in Central Mexico. Microchem. J. 96(2), 386–390 (2010)

    Article  Google Scholar 

  96. K. Isaac-Olivé, C. Solís, M. Martínez-Carrillo, E. Andrade, C. López, L. Longoria, et al., Tillandsia usneoides L, a biomonitor in the determination of Ce, La and Sm by neutron activation analysis in an industrial corridor in Central Mexico. Appl. Radiat. Isot. 70(4), 589–594 (2012)

    Article  Google Scholar 

  97. F. Pyatt, J. Grattan, D. Lacy, A. Pyatt, M. Seaward, Comparative effectiveness of Tillandsia usneoides L. and Parmotrema praesorediosum (Nyl.) Hale as bio-indicators of atmospheric pollution in Louisiana (USA). Water Air Soil Pollut. 111(1), 317–326 (1999)

    Article  CAS  Google Scholar 

  98. E. McWilliams, D.A. Harp, Use osf Spanish moss (Tillandsia Usneoides L.) as an indicator of trace elements in urban areas. HortScience 30(3), 433f (1995)

    Article  Google Scholar 

  99. K.T. Sutton, R.A. Cohen, S.P. Vives, Evaluating relationships between mercury concentrations in air and in Spanish moss (Tillandsia usneoides L.). Ecol. Indic. 36, 392–399 (2014)

    Article  CAS  Google Scholar 

  100. J.D. Felix, G.B. Avery, R.N. Mead, R.J. Kieber, J.D. Willey, Nitrogen content and isotopic composition of Spanish Moss (Tillandsia usneoides L.): Reactive nitrogen variations and source implications across an urban coastal air shed. Environ. Process. 3(4), 711–722 (2016)

    Article  Google Scholar 

  101. K. Techato, A. Salaeh, N.C. van Beem, Use of atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) as biomonitor. APCBEE Proc 10, 49–53 (2014)

    Article  CAS  Google Scholar 

  102. C.E. Martin, G. Rux, W.B. Herppich, Responses of epidermal cell turgor pressure and photosynthetic activity of leaves of the atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) after exposure to high humidity. J. Plant Physiol. 170(1), 70–73 (2013)

    Article  CAS  Google Scholar 

  103. E. Pellegrini, G. Lorenzini, S. Loppi, C. Nali, Evaluation of the suitability of Tillandsia usneoides (L.) L. as biomonitor of airborne elements in an urban area of Italy, Mediterranean basin. Atmospheric. Pollut. Res. 5(2), 226–235 (2014)

    Article  CAS  Google Scholar 

  104. A. Papini, G. Tani, P. Di Falco, L. Brighigna, The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome. Flora-Morphol. Distrib. Funct. Ecol. Plants 205(2), 94–100 (2010)

    Article  Google Scholar 

  105. A. Figueiredo, C. Nogueira, M. Saiki, F. Milian, M. Domingos, Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environ. Pollut. 145(1), 279–292 (2007)

    Article  CAS  Google Scholar 

  106. E. Schreck, J. Viers, I. Blondet, Y. Auda, M. Macouin, C. Zouiten, et al., Tillandsia usneoides as biomonitors of trace elements contents in the atmosphere of the mining district of Cartagena-La Unión (Spain): New insights for element transfer and pollution source tracing. Chemosphere 241, 124955 (2020)

    Article  CAS  Google Scholar 

  107. S. Kumartasli, O. Avinc, Recycling of marine litter and ocean plastics: A vital sustainable solution for increasing ecology and health problem. Sustain. Text. Apparel Ind. 117 (2020)

    Google Scholar 

  108. S. Kumartasli, O. Avinc, Important step in sustainability: Polyethylene terephthalate recycling and the recent developments. Sustain. Text. Apparel Ind. 1 (2020)

    Google Scholar 

  109. P. Emenike, O. Araoye, S. Academe, P. Unokiwedi, D. Omole (eds.), The Effects of Microplastics in Oceans and Marine Environment on Public Health–A Mini-Review, IOP Conference Series: Earth and Environmental Science (IOP Publishing, 2022)

    Google Scholar 

  110. Q. Sun, J. Li, C. Wang, A. Chen, Y. You, S. Yang, et al., Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Front. Environ. Sci. Eng. 16(1), 1–14 (2022)

    Article  Google Scholar 

  111. L. Ding, D. Huang, Z. Ouyang, X. Guo, The effects of microplastics on soil ecosystem: A review. Curr. Opin. Environ. Sci. Health 26, 100344 (2022)

    Article  Google Scholar 

  112. S. He, Y. Wei, C. Yang, Z. He, Interactions of microplastics and soil pollutants in soil-plant systems. Environ. Pollut. 315, 120357 (2022)

    Article  CAS  Google Scholar 

  113. M.J. Nematollahi, B. Keshavarzi, F. Mohit, F. Moore, R. Busquets, Microplastic occurrence in urban and industrial soils of Ahvaz metropolis: A city with a sustained record of air pollution. Sci. Total Environ. 819, 152051 (2022)

    Article  CAS  Google Scholar 

  114. G. Kutralam-Muniasamy, V. Shruti, F. Pérez-Guevara, P.D. Roy, Microplastic diagnostics in humans:“The 3Ps” progress, problems, and prospects. Sci. Total Environ. 856, 159164 (2022)

    Article  Google Scholar 

  115. F. Ribeiro, J.W. O’Brien, T. Galloway, K.V. Thomas, Accumulation and fate of nano-and micro-plastics and associated contaminants in organisms. TrAC Trends Anal. Chem. 111, 139–147 (2019)

    Article  CAS  Google Scholar 

  116. A. Ragusa, M. Matta, L. Cristiano, R. Matassa, E. Battaglione, A. Svelato, et al., Deeply in plasticenta: Presence of microplastics in the intracellular compartment of human placentas. Int. J. Environ. Res. Public Health 19(18), 11593 (2022)

    Article  CAS  Google Scholar 

  117. S. Falsini, I. Colzi, D. Chelazzi, M. Dainelli, S. Schiff, A. Papini, et al., Plastic is in the air: Impact of micro-nanoplastics from airborne pollution on Tillandsia usneoides (L.) L.(Bromeliaceae) as a possible green sensor. J. Hazard. Mater., 129314 (2022)

    Google Scholar 

  118. B. Bhushan, Biomimetics: Lessons from nature – An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009(367), 1445–1486 (1893)

    Google Scholar 

  119. K. Değer, H. Başak, Green ergonomics, biomimetic, energy and exergy. Int. J. Energy Eng. Sci. 7(1), 1–26

    Google Scholar 

  120. E. Faller, S. Kanes, A. Zajmi, M. Ramli, In vitro antibacterial activity of spanish moss (Tillandsia usneoides) crude extract against skin infection in wound healing. Int. J. Pharmacogn. Phytochem. Res. 9, 1344–1352 (2017)

    Google Scholar 

  121. P.S. Raux, S. Gravelle, J. Dumais, Design of a unidirectional water valve in Tillandsia. Nat. Commun. 11(1), 1–7 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Avinc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalayci, E., Gokmen Isanc, E., Avinc, O. (2023). Tillandsia usneoides L. (Spanish Moss) Air Plant and Its Important Potential for Sustainable Technical Textile Applications. In: Muthu, S.S. (eds) Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37323-7_3

Download citation

Publish with us

Policies and ethics