Skip to main content
Log in

Nitrogen Content and Isotopic Composition of Spanish Moss (Tillandsia usneoides L.): Reactive Nitrogen Variations and Source Implications Across an Urban Coastal Air Shed

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

In order to assess the use of Spanish moss (Tillandsia usneoides L.) as a biomonitor for atmospheric reactive nitrogen (Nr), T. usneoides samples were collected in urban Wilmington, NC, USA and at a remote barrier island 30 km away (Bald Head Island, NC, USA), and were analyzed for N content and δ15N. The mean urban N content (n = 64) was 0.8 ± 0.5 % whereas the island samples (n = 4) mean was 0.1 ± 0.04 %. δ15N values for Wilmington samples ranged from −13.9 to +23.6‰ (mean = −2.2 ± 9.3‰) while δ15N for island samples (n = 4) ranged from −12.4 to −9.8‰ (mean = −11.2 ± 1.1‰). Both the N content and δ15N values in the urban air shed were significantly higher than those at the barrier island due to urban anthropogenic Nr emissions including inputs from vehicles. δ15N of T. usneoides was correlated with road density, and δ15N values at a road transect decreased with distance from the road, indicating the importance of vehicle emissions as a source of Nr to urban ecosystems. A 3.5 kg ha−1y−1 bulk N deposition rate was estimated for the air shed using average T. usneoides N content (0.8 %) and a previously developed model relating N content in European moss from 16 countries to bulk N deposition. This deposition is remarkably similar to the N deposition rate (3.19 kg ha−1y−1) measured by the U.S. EPA Clean Air Status and Trends Network at the nearest coastal collection site. This suggests the relationship between European moss N content and bulk N deposition is also true for T. usneoides in the southeastern USA and underscores the efficacy of this method. Results presented here are significant because they indicate that T. usneoides can be used as an effective and inexpensive biomonitor for atmospheric N deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer M, Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118:124–131

    Article  Google Scholar 

  • Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Müller C, Bonsch M, Humpenöder F, Biewald A, Stevanovic M (2014) Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat Commun 5:3858

    Article  Google Scholar 

  • Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hajek T, Hajkovas P, Hansen I, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2005) Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob Chang Biol 11:106–114

    Article  Google Scholar 

  • Davidson EA, David MB, Galloway JN, Goodale CL, Haeuber R, Harrison JA, Howarth RW, Jaynes DB, Lowrance RR, Nolan BT, Peel JL, Pinder RW, Porter E, Snyder CS, Townsend AR, Ward MH (2012) Excess Nitrogen in the U.S. environment: trends, risks, and solutions. Issues Ecol Winter 201

  • Devenish, M (1986) The United Kingdom Precipitation Monitoring Networks LR584(AP), Warren Spring Laboratory

  • Díaz-Álvarez EA, Reyes C, Erick G, Barrera D (2016) A δ15N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico. J Plant Res

  • Ehrlinger J (1989) Carbon isotope ratios and physiological processes in aridland plants. In: Stable Isotopes in Ecological Research. Springer, New York, pp. 41–54

  • EPA (2016) Environmental Protection Agency Clean Air Status and Trends Network. https://www3.epa.gov/castnet/site_pages/BFT142.html

  • Eriksson E (1952) Composition of Atmospheric Precipitation I. Nitrogen Compounds. Tellus 3:215–232

    Article  Google Scholar 

  • Felix JD, Elliott EM (2014) Isotopic composition of passively collected nitrogen dioxide emissions: vehicle, soil and livestock source signatures. Atmos Environ 92:359–366

    Article  Google Scholar 

  • Felix JD, Elliott EM, Gish TJ, McConnell LL, Shaw SL (2013) Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun Mass Spectrom 27:2239–46

    Article  Google Scholar 

  • Felix JD, Elliott EM, Gish T, Maghirang R, Cambal L, Clougherty J (2014) Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios. Atmos Environ 95:563–570

    Article  Google Scholar 

  • Foan L, Leblond S, Thöni L, Raynaud C, Santamaría JM, Sebilo M, Simon V (2014) Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas – Characterization by multivariate analysis. Environ Pollut 184:113–122

    Article  Google Scholar 

  • Fowler D, O’Donoghue M, Muller JB, Smith RI, Dragosits U, Skiba U, Sutton MA, Brimblecombe P (2004) A chronology of nitrogen deposition in the UK between 1900 and 2000. Water, Air, Soil Pollut Focus 4:9–23

    Article  Google Scholar 

  • Freyer BHD, Republic F (1978) Seasonal trends of N : and NO, nitrogen isotope composition in rain collected at Jiilich, Germany. Tellus 30:83–92

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vo CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

  • Galloway JN, Townsend A, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton M (2008) Transformation of the nitrogen cycle : recent trends, questions, and potential solutions. Science 320(80):889–892

    Article  Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R (2002) Element concentrations in the forest moss Hylocomium splendens: variation associated with altitude, net primary production and soil chemistry. Environ Pollut 116:129–135

    Article  Google Scholar 

  • Gerdol R, Marchesini R, Iacumin P, Brancaleoni L (2014) Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere 108:388–395

    Article  Google Scholar 

  • Gordon C, Wynn JM, Woodin SJ (2001) Impacts of increased nitrogen supply on high Arctic heath : the importance of bryophytes and phosphorus availability. New Phytol 149:461–471

    Article  Google Scholar 

  • Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E, Kubin E, Thöni L, Aboal JR, Alber R, Carballeira A, Coşkun M, De Temmerman L, Frolova M, González-Miqueo L, Jeran Z, Leblond S, Liiv S, Maňkovská B, Pesch R, Poikolainen J, Rühling A, Santamaria JM, Simonèiè P, Schröder W, Suchara I, Yurukova L, Zechmeister HG (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159:2852–2860

  • Harmens H, Schnyder E, Thöni L, Cooper DM, Mills G, Leblond S, Mohr K, Poikolainen J, Santamaria J, Skudnik M, Zechmeister HG, Lindroos AJ, Hanus-Illnar A (2014) Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environ Pollut 194:50–59

    Article  Google Scholar 

  • Heaton TH (1987) 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmos Environ 21:843–852

  • Helliker BR, Griffiths H (2007) Toward a plant-based proxy for the isotope ratio of atmospheric water vapor. Glob Chang Biol 13:723–733

    Article  Google Scholar 

  • Hristov AN, Zaman S, Vander Pol M, Ndegwa P, Campbell L, Silva S (2009) Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers. J Environ Qual 38:2438–48

    Article  Google Scholar 

  • ICP-Vegetation (2015) Monitoring of atmospheric deposition of heavy metals, nitrogen and POPs in Europe using bryophytes: monitoring Manual. 2015 Surv

  • Kluge M, Pesch R, Schroder W, Hoffmann A (2013) Accounting for canopy drip effects of spatiotemporal trends of the concentrations of N in mosses, atmospheric N depositions and critical load exceedances : a case study from. Environ Sci Eur 23:1–13

    Google Scholar 

  • Li D, Wang X (2008) Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. Atmos Environ 42:4747–4754

    Article  Google Scholar 

  • Liu XY, Xiao HY, Liu CQ, Li YY, Xiao HW (2008) Stable carbon and nitrogen isotopes of the moss Haplocladium microphyllum in an urban and a background area (SW China): the role of environmental conditions and atmospheric nitrogen deposition. Atmos Environ 42:5413–5423

  • Liu X-Y, Koba K, Liu C-Q, Li X-D, Yoh M (2012a) Pitfalls and new mechanisms in moss isotope biomonitoring of atmospheric nitrogen deposition. Environ Sci Technol 46:12557–66

    Article  Google Scholar 

  • Liu X-Y, Koba K, Takebayashi Y, Liu C-Q, Fang Y-T, Yoh M (2012b) Preliminary insights into δ15N and δ18O of nitrate in natural mosses: a new application of the denitrifier method. Environ Pollut 162:48–55

    Article  Google Scholar 

  • Liu XY, Koba K, Makabe A, Li XD, Yoh M, Liu CQ (2013) Ammonium first: natural mosses prefer atmospheric ammonium but vary utilization of dissolved organic nitrogen depending on habitat and nitrogen deposition. New Phytol 199:407–419

    Article  Google Scholar 

  • Morgan SM, Lee JA, Ashenden TW (1992) Effects of nitrogen oxides on nitrate assimilation in bryophytes. New Phytol 120:89–97

    Article  Google Scholar 

  • NADP (2016) National Atmsopheric Deposition Program, USA. http://nadp.sws.uiuc.edu/NADP/

  • Nathany M, Martinez J (1978) Use of Spanish moss to determine gradients in atmospheric heavy metals adjacent to highways. Trace Subst Environ Heal 12:430–437

    Google Scholar 

  • NCDOT (2013) North Carolina Department of Transportation. http://www.ncdot.gov/travel/statemapping/trafficvolumemaps/

  • NEI (2011) https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data. Natl Emiss Invent

  • Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71:13–50

    Article  Google Scholar 

  • Pearce ISK, Woodin SJ, Van DeWal R (2003) Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytol 160:145–155

    Article  Google Scholar 

  • Pearson J, Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125:283–305

    Article  Google Scholar 

  • Pearson J, Wells D, Seller K, Bennett A, Soares A, Woodall J, Ingrouille MJ (2000) Traffic exposure increases natural & N and heavy metal concentrations in mosses. New Phytol 147:317–326

    Article  Google Scholar 

  • Pitcairn C, Fowler D, Leith I, Sheppard L, Tang S, Sutton M, Famulari D (2006) Diagnostic indicators of elevated nitrogen deposition. Environ Pollut 144:941–950

    Article  Google Scholar 

  • Redling K, Elliott E, Bain D, Sherwell J (2013) Highway contributions to reactive nitrogen deposition: tracing the fate of vehicular NOx using stable isotopes and plant biomonitors. Biogeochemistry

  • Rolfe T, Deakova T, Shortlidge E, Rao M, Rosenstiel TN, Rice AL, George LA (2014) Epiphytic moss as a biomonitor for nitrogen deposition. Am Geophys Union, Fall Meet. 2014, Abstr. #B21H-0166

  • Schroder W, Holy M, Pesch R, Harmens H, Fagerli H, Alber R, Cokun M, De Temmerman L, Frolova M, Gonzlez-Miqueo L, Jeran Z, Kubin E, Leblond S, Liiv S, Makovsk B, Piispanen J, Santamara JM, Simoni P, Suchara I, Yurukova L, Thni L, Zechmeister HG (2010) First Europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses. Atmos Environ 44:3485–3491

    Article  Google Scholar 

  • Schulz H, Gehre M, Hofmann D, Jung K (2001) Nitrogen isotope ratios in pine bark as an indicator of N emissions from anthropogenic sources. Environ Monit Assess 69:283–97

    Article  Google Scholar 

  • Shacklette HT, Connor JJ (1973) Airborne chemical elements in Spanish moss. U.S. Geol Surv 574-E:E1–E46

    Google Scholar 

  • Sheline J, Akselsson R, Winchester J (1976) Trace element similarity groups in North Florida Spanish moss’ evidence for direct uptake of aerosol particles. J Geophys Res 81:1047–1050

    Article  Google Scholar 

  • Solga A, Burkhardt J, Zechmeister HG, Frahm J (2005) Nitrogen content, 15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt. and Scleropodium purum (Hedw.) Limpr. in relation to atmospheric nitrogen deposition. Environ Pollut 134:465–473

  • Solga A, Eichert T, Frahm J (2006) Historical alteration in the nitrogen concentration and 15N natural abundance of mosses in Germany: indication for regionally varying changes in atmospheric nitrogen deposition within the last 140 years. Atmos Environ 40:8044–8055

  • Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, Collinge SK, Dobson AP, Epstein PR, Holland EA, Keeney DR, Mallin MA, Rogers CA, Wayne P, Wolfe AH (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1:240–246

    Article  Google Scholar 

  • US Census Bureau (2014) ESRI USA Road Density

  • Walters WW, Goodwin SR, Michalski G (2015) Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx. Environ Sci Technol 49:2278–2285

  • Wellburn AR (1990) Tansley Review No. 24 Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429

    Article  Google Scholar 

  • Wu Q, Wang X, Zhou Q (2014) Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application. Environ Int 66:28–37

    Article  Google Scholar 

  • Zechmeister HG, Richter A, Smidt S, Hohenwallner D, Roder I, Maringer S, Wanek W (2008) Total nitrogen content and δ15N signatures in moss tissue: indicative value for nitrogen deposition patterns and source allocation on a nationwide scale. Environ Sci Technol 42:8661–8667

Download references

Acknowledgments

We thank Brittany Laraia, Brittany Saleeby and Chris Nelson for assistance in sample preparation and H. Felix, D. Felix and H.R. Lott for collection assistance. We thank Timothy Moss for mapping guidance. We also thank Kim Duernberger for isotope analysis at the University of North Carolina Wilmington Center for Marine Science Stable Isotope Geochemistry Laboratory. The National Science Foundation Grants AGS 1003078 and AGS-1440425 as well as the University of North Carolina Wilmington Department of Chemistry and Biochemistry provided financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Felix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix, J.D., Avery, G.B., Mead, R.N. et al. Nitrogen Content and Isotopic Composition of Spanish Moss (Tillandsia usneoides L.): Reactive Nitrogen Variations and Source Implications Across an Urban Coastal Air Shed. Environ. Process. 3, 711–722 (2016). https://doi.org/10.1007/s40710-016-0195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-016-0195-6

Keywords

Navigation