Skip to main content

Biological Events at the Interface Between the Radicular Part of a Dental Implant and Bone

  • Chapter
  • First Online:
Surgical Research in Implant Dentistry

Abstract

The integration of the endosseous portion of a dental implant relies heavily on interactions in the implant microenvironment. A complex biological cascade forms the basis for osseointegration, using chemical and physical cues from the implant surface to influence the activity of immune and progenitor cells. This further alters the recruitment, migration, proliferation, and maturation of progenitor cells into osteoblasts and stimulates osteoblasts to produce bone. Understanding the biological interactions at the implant surface is important when developing new materials and treatments to enhance osseointegration. The in vitro assays described in this chapter use multiple cell culture techniques, harvest methods, imaging modalities, and biochemical analyses to characterize individual cell types and co-cultures to predict the interaction of these cells in vivo. Surface designs that enhance micro/meso/nano-roughness and alter the free energy of the surface have been shown to alter protein adsorption profiles, promote a wound healing immune resolution, increase net bone apposition to the implant surface, alter osteoclast activity, and create long-term immune tolerance to create a tightly bonded biologic-material interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1α,25(OH)2D3:

1α,25-dihydroxyvitamin D3

BMP:

Bone morphogenetic protein

BSA:

Bovine serum albumin

CCR:

C chemokine receptor

CD:

Cluster of differentiation

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular regulated kinase

FAK:

Focal adhesion kinase

FBGC:

Foreign body giant cell

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

FTIR:

Fourier-transform infrared spectroscopy

GFOGER:

Glycine-phenylalanine-hydroxyproline-glycine-glutamic acid-arginine

HLA-DR:

Human leukocyte antigen—antigen D related

IGF:

Insulin-like growth factor

IL:

Interleukin

IL-1ra:

Interleukin 1 receptor antagonist

ILK:

Integrin-linked kinase

LPS:

Lipopolysaccharide

MALDI-ToF-MS:

Matrix-assisted laser desorption/ionization time of flight mass spectroscopy

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein 1

M-CSF:

Macrophage colony-stimulating factor

MIP-1α :

Macrophage inflammatory protein 1 alpha

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cell

NET:

Neutrophil extracellular trap

NO:

Nitric oxide

NOS2:

Nitric oxide synthase 2

OB:

Osteoblasts

OC:

Osteoclasts

OCN:

Osteocalcin

OCP:

Osteoclast precursors

OPG:

Osteoprotegerin

OPN:

Osteopontin

PBMC:

Peripheral blood mononuclear cell

PGE1:

Prostaglandin E1

PGE2:

Prostaglandin E2

PHA:

Phytohemagglutinin

PLXN:

Plexin

PMN:

Polymorphonuclear leukocytes

RANK:

Receptor activator of nuclear factor kappa B

RANKL:

Receptor activator of nuclear factor kappa B ligand

RGD:

Arginine-glycine-aspartic acid

RUNX2:

Runt-related transcription factor 2

SEM:

Scanning electron microscopy

SEMA:

Semaphorin

SLM:

Selective laser melting

STAT:

Signal transducer and activator of transcription

TGFβ1:

Transforming growth factor beta 1

TNAP:

Tissue non-specific alkaline phosphatase

TNF-α:

Tumor necrosis factor-alpha

TUNNEL:

Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling

VEGF:

Vascular endothelial growth factor

WNT:

Wingless-related integration site

References

  1. Goriainov V, Cook R, Latham M, Dunlop D, Oreffo ROC, Latham JM, et al. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014;10:4043–57. https://doi.org/10.1016/j.actbio.2014.06.004.

    Article  PubMed  Google Scholar 

  2. Bosshardt DD, Stadlinger B, Terheyden H. Cell-to-cell communication—periodontal regeneration. Clin Oral Implants Res. 2015;26:229–39. https://doi.org/10.1111/clr.12543.

    Article  PubMed  Google Scholar 

  3. Davies J. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67:932–49.

    Article  PubMed  Google Scholar 

  4. Terheyden H, Lang NP, Bierbaum S, Stadlinger B. Osseointegration - communication of cells. Clin Oral Implants Res. 2012;23:1127–35. https://doi.org/10.1111/j.1600-0501.2011.02327.x.

    Article  PubMed  Google Scholar 

  5. Joos U, Wiesmann HP, Szuwart T, Meyer U. Mineralization at the interface of implants. Int J Oral Maxillofac Surg. 2006;35:783–90. https://doi.org/10.1016/j.ijom.2006.03.013.

    Article  PubMed  Google Scholar 

  6. Branemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockler B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials. 1983;4:25–8.

    Article  PubMed  Google Scholar 

  7. Schwartz Z, Raines AL, Boyan BD. The effect of substrate microtopography on Osseointegration of titanium implants. Compr Biomater. 2011;7:343–52. https://doi.org/10.1016/B978-0-08-055294-1.00221-X.

    Article  Google Scholar 

  8. Thevenot W, Tang P, Hu L. Surface chemistry influence implant biocompatibility. Curr Top Med Chem. 2008;8:11. https://doi.org/10.1016/j.nano.2008.04.001.SURFACE.

    Article  Google Scholar 

  9. Abaricia JO, Shah AH, Olivares-Navarrete R. Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation. Biomaterials. 2021;271:120715. https://doi.org/10.1016/j.biomaterials.2021.120715.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater. 2021;133:58. https://doi.org/10.1016/j.actbio.2021.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Snyder RJ, Lantis J, Kirsner RS, Shah V, Molyneaux M, Carter MJ. Macrophages: a review of their role in wound healing and their therapeutic use. Wound Repair Regen. 2016;24:613–29. https://doi.org/10.1111/wrr.12444.

    Article  PubMed  Google Scholar 

  12. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404. https://doi.org/10.1038/nri3671.

    Article  PubMed  Google Scholar 

  13. Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol. 2015;33:643. https://doi.org/10.1146/annurev-immunol-032414-112220.

    Article  PubMed  Google Scholar 

  14. Kou PM, Schwartz Z, Boyan BD, Babensee JE. Dendritic cell responses to surface properties of clinical titanium surfaces. Acta Biomater. 2011;7:1354–63. https://doi.org/10.1016/j.actbio.2010.10.020.

    Article  PubMed  Google Scholar 

  15. Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692–709. https://doi.org/10.1016/j.biomaterials.2011.05.078.

    Article  PubMed  Google Scholar 

  16. Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res. 2007;22:286–97. https://doi.org/10.1359/jbmr.061103.

    Article  PubMed  Google Scholar 

  17. Geris L, Gerisch A, Vander SJ, Weiner R, Van OH. Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol. 2008;251:137–58. https://doi.org/10.1016/j.jtbi.2007.11.008.

    Article  PubMed  Google Scholar 

  18. Abshagen K, Schrodi I, Gerber T, Vollmar B. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone®. J Biomed Mater Res Pt A. 2009;91:557–66. https://doi.org/10.1002/jbm.a.32237.

    Article  Google Scholar 

  19. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res Pt A. 1996;32:55–63.

    Article  Google Scholar 

  20. Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, et al. Integrin α2β1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A. 2008;105:15767–72. https://doi.org/10.1073/pnas.0805420105.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Boyan BD, Cheng A, Schwartz Z. Implant surface design regulates mesenchymal stem cell differentiation and maturation. Adv Dent Res. 2016;28:10–7. https://doi.org/10.1177/0022034515624444.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Olivares-Navarrete R, Hyzy SL, Haithcock DA, Cundiff CA, Schwartz Z, Boyan BD. Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins. Bone. 2015;73:208–16. https://doi.org/10.1016/j.bone.2014.12.057.

    Article  PubMed  Google Scholar 

  23. Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, et al. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014;10:2907–18. https://doi.org/10.1016/j.actbio.2014.03.032.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Olivares-Navarrete R, Hyzy SL, Hutton DL, Dunn GR, Appert C, Boyan BD, et al. Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater. 2011;7:2740–50. https://doi.org/10.1016/j.actbio.2011.02.030.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Keselowsky BG, Wang L, Schwartz Z, Garcia AJ, Boyan BD. Integrin a5 controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J Biomed Mater Res Pt A. 2007;80:700–10. https://doi.org/10.1002/jbm.a.

    Article  Google Scholar 

  26. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–80. https://doi.org/10.1007/s00441-009-0834-6.

    Article  PubMed  Google Scholar 

  27. Askari JA, Buckley PA, Mould AP, Humphries MJ. Linking integrin conformation to function. J Cell Sci. 2009;122:165–70. https://doi.org/10.1242/jcs.018556.

    Article  PubMed  Google Scholar 

  28. Lai M, Hermann CD, Cheng A, Olivares-Navarrete R, Gittens RA, Bird MM, et al. Role of A2B1 integrins in mediating cell shape on microtextured titanium surfaces. J Biomed Mater Res Pt A. 2015;103:564–73. https://doi.org/10.1002/jbm.a.35185.

    Article  Google Scholar 

  29. Olivares-Navarrete R, Hyzy SL, Chaudhri RA, Zhao G, Boyan BD, Schwartz Z. Sex dependent regulation of osteoblast response to implant surface properties by systemic hormones. Biol Sex Differ. 2010;1:4. https://doi.org/10.1186/2042-6410-1-4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112:3491–501. https://doi.org/10.1002/jcb.23287.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones. 2007;6:279–94.

    Article  PubMed  Google Scholar 

  32. Lerner UH, Ohlsson C. The WNT system: background and its role in bone. J Intern Med. 2015;277:630–49. https://doi.org/10.1111/joim.12368.

    Article  PubMed  Google Scholar 

  33. Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kühl M, Moon RT. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol. 2003;161:769–77. https://doi.org/10.1083/jcb.200211094.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Doroudi M, Olivares-navarrete R, Boyan BD, Schwartz Z. A review of 1a,25(OH)2D3 dependent Pdia3 receptor complex components in Wnt5a non-canonical pathway signaling. J Steroid Biochem Mol Biol. 2015;152:84–8. https://doi.org/10.1016/j.jsbmb.2015.04.002.

    Article  PubMed  Google Scholar 

  35. Olivares-Navarrete R, Hyzy SL, Park JH, Dunn GR, Haithcock DA, Wasilewski CE, et al. Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials. 2011;32:6399–411. https://doi.org/10.1016/j.biomaterials.2011.05.036.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Olivares-Navarrete R, Lee EM, Smith K, Hyzy SL, Doroudi M, Williams JK, et al. Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PloS One. 2017;12:e0170312. https://doi.org/10.1371/journal.pone.0170312.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone. 1996;19:1S. https://doi.org/10.1016/S8756-3282(96)00138-X.

    Article  PubMed  Google Scholar 

  38. Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, et al. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. 2001;276:14443–50. https://doi.org/10.1074/jbc.M010021200.

    Article  PubMed  Google Scholar 

  39. Greenblatt MB, Shim J-H, Glimcher LH. Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol. 2013;29:63–79. https://doi.org/10.1146/annurev-cellbio-101512-122347.

    Article  PubMed  Google Scholar 

  40. Olivares-Navarrete R, Hyzy SL, Hutton DL, Erdman CP, Wieland M, Boyan BD, et al. Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials. 2010;31:2728–35. https://doi.org/10.1016/j.biomaterials.2009.12.029.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Annunziata M, Guida L. The effect of titanium surface modifications on dental implant Osseointegration. Front Oral Biol. 2015;17:62–77. https://doi.org/10.1159/000381694.

    Article  PubMed  Google Scholar 

  42. Everts V, Korper W, Hoeben KA, Jansen IDC, Bromme D, Cleutjens KBJM, et al. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res. 2006;21:1399–408. https://doi.org/10.1359/jbmr.060614.

    Article  PubMed  Google Scholar 

  43. Troen BR. The regulation of cathepsin K gene expression. Ann N Y Acad Sci. 2006;1068:165–72. https://doi.org/10.1196/annals.1346.018.

    Article  PubMed  Google Scholar 

  44. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants. 2005;20:425–31. https://doi.org/10.1016/S0084-3717(08)70105-3.

    Article  PubMed  Google Scholar 

  45. Boyan BD, Lotz EM, Schwartz Z. (*) Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng Pt A. 2017;23:1479–89. https://doi.org/10.1089/ten.TEA.2017.0048.

    Article  Google Scholar 

  46. Boyce BF, Xing L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 2007;5:98–104. https://doi.org/10.1007/s11914-007-0024-y.

    Article  PubMed  Google Scholar 

  47. Schwartz Z, Olivares-Navarrete R, Wieland M, Cochran DL, Boyan BD. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces. Biomaterials. 2009;30:3390–6. https://doi.org/10.1016/j.biomaterials.2009.03.047.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34:1393–406. https://doi.org/10.1002/jbmr.3822.

    Article  PubMed  Google Scholar 

  49. Deng J, Cohen DJ, Redden J, McClure MJ, Boyan BD, Schwartz Z. Differential effects of Neurectomy and Botox-induced muscle paralysis on bone phenotype and titanium implant Osseointegration. Bone. 2021;153:116145. https://doi.org/10.1016/j.bone.2021.116145.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Verlinden L, Vanderschueren D, Verstuyf A. Semaphorin signaling in bone. Mol Cell Endocrinol. 2016;432:66–74. https://doi.org/10.1016/j.mce.2015.09.009.

    Article  PubMed  Google Scholar 

  51. Negishi-Koga T, Takayanagi H. Bone cell communication factors and Semaphorins. Bonekey Rep. 2012;1:183. https://doi.org/10.1038/bonekey.2012.183.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497:490–3. https://doi.org/10.1038/nature12115.

    Article  PubMed  Google Scholar 

  53. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H. Osteoprotection by semaphorin 3A. Nature. 2012;485:69–74. https://doi.org/10.1038/nature11000.

    Article  PubMed  Google Scholar 

  54. Kim BJ, Koh JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci. 2019;76:1243–53. https://doi.org/10.1007/s00018-018-2981-y.

    Article  PubMed  Google Scholar 

  55. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature. 2003;424:391–8.

    Article  PubMed  Google Scholar 

  56. Takamatsu H, Kumanogoh A. Diverse roles for semaphorin-plexin signaling in the immune system. Trends Immunol. 2012;33:127–35. https://doi.org/10.1016/j.it.2012.01.008.

    Article  PubMed  Google Scholar 

  57. Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol. 2013;24:179–89. https://doi.org/10.1016/j.semcdb.2012.10.005.

    Article  PubMed  Google Scholar 

  58. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast–osteoclast interactions. Connect Tissue Res. 2018;59:99–107. https://doi.org/10.1080/03008207.2017.1290085.

    Article  PubMed  Google Scholar 

  59. Huang S, Li Z, Liu Y, Gao D, Zhang X, Hao J, et al. Neural regulation of bone remodeling: identifying novel neural molecules and pathways between brain and bone. J Cell Physiol. 2019;234:5466–77. https://doi.org/10.1002/jcp.26502.

    Article  PubMed  Google Scholar 

  60. Delaire S, Billard C, Tordjman R, Chédotal A, Elhabazi A, Bensussan A, et al. Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration. J Immunol. 2001;166:4348–54. https://doi.org/10.4049/jimmunol.166.7.4348.

    Article  PubMed  Google Scholar 

  61. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80. https://doi.org/10.1038/nm.2489.

    Article  PubMed  Google Scholar 

  62. Dacquin R, Domenget C, Kumanogoh A, Kikutani H, Jurdic P, Machuca-Gayet I. Control of bone resorption by semaphorin 4D is dependent on ovarian function. PloS One. 2011;6:6. https://doi.org/10.1371/journal.pone.0026627.

    Article  Google Scholar 

  63. Deb Roy A, Yin T, Choudhary S, Rodionov V, Pilbeam CC, Wu YI. Optogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts. Nat Commun. 2017;8:8. https://doi.org/10.1038/ncomms15831.

    Article  Google Scholar 

  64. Takahashi T, Fournier A, Nakamura F, Wang LH, Murakami Y, Kalb RG, et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell. 1999;99:59–69. https://doi.org/10.1016/S0092-8674(00)80062-8.

    Article  PubMed  Google Scholar 

  65. Tamagnone L, Artigiani S, Chen H, He Z, Ming GL, Song HJ, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999;99:71–80. https://doi.org/10.1016/S0092-8674(00)80063-X.

    Article  PubMed  Google Scholar 

  66. Li Z, Hao J, Duan X, Wu N, Zhou Z, Yang F, et al. The role of Semaphorin 3A in bone remodeling. Front Cell Neurosci. 2017;11:1–8. https://doi.org/10.3389/fncel.2017.00040.

    Article  Google Scholar 

  67. Lotz EM, Berger MB, Boyan BD, Schwartz Z. Regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by semaphorin 3A. Bone. 2020;134:115260. https://doi.org/10.1016/j.bone.2020.115260.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aarden EM, Burger EH, Nijweide PJ, Biology C, Leiden AA. Function of osteocytes in bone. J Cell Biochem. 1972;299:287–99.

    Google Scholar 

  69. Compton JT, Lee FY. Current concepts review: a review of osteocyte function and the emerging importance of sclerostin. J Bone Jt Surg Am. 2014;96:1659–68. https://doi.org/10.2106/JBJS.M.01096.

    Article  Google Scholar 

  70. Chrcanovic BR, Albrektsson T, Wennerberg A. Reasons for failures of oral implants. J Oral Rehabil. 2014;41:443–76. https://doi.org/10.1111/joor.12157.

    Article  PubMed  Google Scholar 

  71. Barone A, Varanini P. Deep-frozen allogeneic Onlay bone grafts for reconstruction of atrophic maxillary alveolar ridges: a preliminary study. J Oral Maxillofac Surg. 2009;67:1300–6. https://doi.org/10.1016/j.joms.2008.12.043.

    Article  PubMed  Google Scholar 

  72. Schwartz Z, Hyzy SL, Moore MA, Hunter SA, Ronholdt CJ, Sunwoo M, et al. Osteoinductivity of demineralized bone matrix is independent of donor bisphosphonate use. J Bone Jt Surg. 2011;93:2278–86.

    Article  Google Scholar 

  73. Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater. 2014;10:3363–71. https://doi.org/10.1016/j.actbio.2014.03.037.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pešáková V, Kubies D, Hulejová H, Himmlová L. The influence of implant surface properties on cell adhesion and proliferation. J Mater Sci Mater Med. 2007;18:465–73. https://doi.org/10.1007/s10856-007-2006-0.

    Article  Google Scholar 

  75. Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, et al. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res. 2012;27:1773–83. https://doi.org/10.1002/jbmr.1628.

    Article  PubMed  Google Scholar 

  76. Zhang R, Geoffroy V, Ridall AL, Karsenty G, Tracy T, Bonner AS, et al. Bone resorption by osteoclasts. Science (80- ). 2000;289:1504–8. https://doi.org/10.1126/science.289.5484.1504.

    Article  Google Scholar 

  77. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54. https://doi.org/10.1016/j.dental.2006.06.025.

    Article  PubMed  Google Scholar 

  78. Kim K-H, Ramaswamy N. Electrochemical surface modification of titanium in dentistry. Dent Mater J. 2009;28:20–36. https://doi.org/10.4012/dmj.28.20.

    Article  PubMed  Google Scholar 

  79. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20:172–84. https://doi.org/10.1111/j.1600-0501.2009.01775.x.

    Article  PubMed  Google Scholar 

  80. Berger MB, Bosh KB, Cohen DJ, Boyan BD, Schwartz Z. Benchtop plasma treatment of titanium surfaces enhances cell response. Dent Mater. 2021;37:690–700. https://doi.org/10.1016/j.dental.2021.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41. https://doi.org/10.1016/j.biomaterials.2016.01.012.

    Article  PubMed  Google Scholar 

  82. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res Pt A. 2005;74:49–58. https://doi.org/10.1002/jbm.a.30320.

    Article  Google Scholar 

  83. Cohen DJ, Cheng A, Sahingur K, Clohessy RM, Hopkins LB, Boyan BD, et al. Performance of laser sintered Ti – 6Al – 4V implants with bone-inspired porosity and micro / nanoscale surface roughness in the rabbit femur. Biomed Mater. 2017;12:25021.

    Article  Google Scholar 

  84. Cheng A, Cohen DJ, Kahn A, Clohessy RM, Sahingur K, Newton JB, et al. Laser sintered porous Ti–6Al–4V implants stimulate vertical bone growth. Ann Biomed Eng. 2017;45:2025–35. https://doi.org/10.1007/s10439-017-1831-7.

    Article  PubMed  Google Scholar 

  85. Cheng A, Cohen DJ, Boyan BD, Schwartz Z. Laser-sintered constructs with bio-inspired porosity and surface micro/nano-roughness enhance mesenchymal stem cell differentiation and matrix mineralization in vitro. Calcif Tissue Int. 2016;99:625–37. https://doi.org/10.1007/s00223-016-0184-9.

    Article  PubMed  Google Scholar 

  86. Hyzy SL, Cheng A, Cohen DJ, Yatzkaier G, Whitehead AJ, Clohessy RM, et al. Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti–6Al–4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. J Biomed Mater Res Pt A. 2016;104:2086–98. https://doi.org/10.1002/jbm.a.35739.

    Article  Google Scholar 

  87. Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26:111–9. https://doi.org/10.1016/0021-9290(93)90042-D.

    Article  PubMed  Google Scholar 

  88. Wieding J, Wolf A, Bader R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J Mech Behav Biomed Mater. 2014;37:56–68. https://doi.org/10.1016/j.jmbbm.2014.05.002.

    Article  PubMed  Google Scholar 

  89. Assal PA. The osseointegration of zirconia dental implants. Schweiz Monatsschr Zahnmed. 2013;123:644–54.

    PubMed  Google Scholar 

  90. Özkurt Z, Kazazoğlu E. Zirconia dental implants: a literature review. J Oral Implantol. 2011;37:367–76. https://doi.org/10.1563/AAID-JOI-D-09-00079.

    Article  PubMed  Google Scholar 

  91. Steinemann G. Titanium—the material of choice? Periodontol 2000. 1998;17:7–21.

    Article  PubMed  Google Scholar 

  92. Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res. 2012;14:538–45. https://doi.org/10.1111/j.1708-8208.2010.00289.x.

    Article  PubMed  Google Scholar 

  93. Tugulu S, Löwe K, Scharnweber D, Schlottig F. Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. J Mater Sci Mater Med. 2010;21:2751–63. https://doi.org/10.1007/s10856-010-4138-x.

    Article  PubMed  Google Scholar 

  94. Cei S, Karapetsa D, Aleo E, Graziani F. Protein adsorption on a laser-modified titanium implant surface. Implant Dent. 2015;24:134–41. https://doi.org/10.1097/id.0000000000000214.

    Article  PubMed  Google Scholar 

  95. Divya Rani VV, Manzoor K, Menon D, Selvamurugan N, Nair SV. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology. 2009;20:195101. https://doi.org/10.1088/0957-4484/20/19/195101.

    Article  PubMed  Google Scholar 

  96. Boyd AR, Burke GA, Duffy H, Holmberg M, O’Kane C, Meenan BJ, et al. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS. J Mater Sci Mater Med. 2011;22:74–84. https://doi.org/10.1007/s10856-010-4180-8.

    Article  Google Scholar 

  97. Buchanan LA, El-Ghannam A. Effect of bioactive glass crystallization on the conformation and bioactivity of adsorbed proteins. J Biomed Mater Res Pt A. 2010;93:537–46. https://doi.org/10.1002/jbm.a.32561.

    Article  Google Scholar 

  98. Ota-Tsuzuki C, Datte CE, Nomura KA, Gouvea Cardoso LA, Shibli JA. Influence of titanium surface treatments on formation of the blood clot extension. J Oral Implantol. 2011;37:641–7. https://doi.org/10.1563/AAID-JOI-D-09-00125.1.

    Article  PubMed  Google Scholar 

  99. Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A. Quantitative evaluation of the fibrin clot extension on diffferent implant surfaces: an in vitro study. J Biomed Mater Res Pt B Appl Biomater. 2005;74:636–42. https://doi.org/10.1002/jbm.b.30251.

    Article  Google Scholar 

  100. Yang J, Zhou Y, Wei F, Xiao Y. Blood clot formed on rough titanium surface induces early cell recruitment. Clin Oral Implants Res. 2015;27:1031–8. https://doi.org/10.1111/clr.12672.

    Article  PubMed  Google Scholar 

  101. Browne MM, Lubarsky GV, Davidson MR, Bradley RH. Protein adsorption onto polystyrene surfaces studied by XPS and AFM. Surf Sci. 2004;553:155–67. https://doi.org/10.1016/j.susc.2004.01.046.

    Article  Google Scholar 

  102. Cullen DC, Lowe CR. AFM studies of protein adsorption. 1. Time-resolved protein adsorption to highly oriented pyrolytic graphite. J Colloid Interface Sci. 1994;166:102–8. https://doi.org/10.1006/jcis.1994.1276.

    Article  Google Scholar 

  103. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22:349–56. https://doi.org/10.1111/j.1600-0501.2011.02172.x.

    Article  PubMed  Google Scholar 

  104. Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: in-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res Pt A. 2015;103:2661–72. https://doi.org/10.1002/jbm.a.35401.

    Article  Google Scholar 

  105. Schildhauer TA, Peter E, Muhr G, Koller M. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials. J Biomed Mater Res Pt A. 2009;88:332–41. https://doi.org/10.1002/jbm.a.31850.

    Article  Google Scholar 

  106. Bogdanski D, Esenwein SA, Prymak O, Epple M, Muhr G, Köller M. Inhibition of PMN apoptosis after adherence to dip-coated calcium phosphate surfaces on a NiTi shape memory alloy. Biomaterials. 2004;25:4627–32. https://doi.org/10.1016/j.biomaterials.2003.12.001.

    Article  PubMed  Google Scholar 

  107. Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000;301:5–17. https://doi.org/10.1007/s004410000193.

    Article  PubMed  Google Scholar 

  108. Köller M, Esenwein SA, Bogdanski D, Prymak O, Epple M, Muhr G. Regulation of leukocyte adhesion molecules by leukocyte/biomaterial- conditioned media: a study with calcium-phosphate-coated and non-coated NiTi-shape memory alloys. Materwiss Werksttech. 2006;37:558–62. https://doi.org/10.1002/mawe.200600037.

    Article  Google Scholar 

  109. Rich A, Harris AK. Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J Cell Sci. 1981;50:1–7.

    Article  PubMed  Google Scholar 

  110. Salthouse TN. Some aspects of macrophage behavior at the implant interface. J Biomed Mater Res. 1984;18:395–401. https://doi.org/10.1002/jbm.820180407.

    Article  PubMed  Google Scholar 

  111. Wójciak-Stothard B, Madeja Z, Korohoda W, Curtis A, Wilkinson C. Activation of macrophage-like cells by multiple grooved substrata. Topographical control of cell behaviour. Cell Biol Int. 1995;19:485–90. https://doi.org/10.1006/cbir.1995.1092.

    Article  PubMed  Google Scholar 

  112. Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016;31:425–34. https://doi.org/10.1016/j.actbio.2015.12.003.

    Article  PubMed  Google Scholar 

  113. Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res. 2004;70A:194–205. https://doi.org/10.1002/jbm.a.30075.

    Article  Google Scholar 

  114. Hotchkiss KM, Ayad NB, Hyzy SL, Boyan BD, Olivares-Navarrete R. Dental implant surface chemistry and energy alter macrophage activation in vitro. Clin Oral Implants Res. 2016;28:1–10. https://doi.org/10.1111/clr.12814.

    Article  Google Scholar 

  115. Barbeck M, Booms P, Unger R, Hoffmann V, Sader R, Kirkpatrick CJ, et al. Multinucleated giant cells in the implant bed of bone substitutes are foreign body giant cells—new insights into the material-mediated healing process. J Biomed Mater Res Pt A. 2017;105:1105–11. https://doi.org/10.1002/jbm.a.36006.

    Article  Google Scholar 

  116. Moreno JL, Mikhailenko I, Tondravi MM, Keegan AD. IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J Leukoc Biol. 2007;82:1542–53. https://doi.org/10.1189/jlb.0107058.

    Article  PubMed  Google Scholar 

  117. Trindade R, Albrektsson T, Tengvall P, Wennerberg A. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res. 2016;18:192–203. https://doi.org/10.1111/cid.12274.

    Article  PubMed  Google Scholar 

  118. Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8:5671–701. https://doi.org/10.3390/ma8095269.

    Article  PubMed  Google Scholar 

  119. Holt DJ, Chamberlain LM, Grainger DW. Cell-cell signaling in co-cultures of macrophages and fibroblasts. Biomaterials. 2010;31:9382–94. https://doi.org/10.1016/j.biomaterials.2010.07.101.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chan EP, Mhawi A, Clode P, Saunders M, Filgueira L, et al. Effects of titanium(iv) ions on human monocyte-derived dendritic cells. Metallomics. 2009;1:166–74. https://doi.org/10.1039/b820871a.

    Article  PubMed  Google Scholar 

  121. Wang JY, Tsukayama DT, Wicklund BH, Gustilo RB. Inhibition of T and B cell proliferation by titanium, cobalt, and chromium: role of IL-2 and IL-6. J Biomed Mater Res. 1996;32:655–61.

    Article  PubMed  Google Scholar 

  122. Thomas P, Iglhaut G, Wollenberg A, Cadosch D, Summer B. Allergy or tolerance: reduced inflammatory cytokine response and concomitant il-10 production of lymphocytes and monocytes in symptom-free titanium dental implant patients. Biomed Res Int. 2013;2013:539834. https://doi.org/10.1155/2013/539834.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res. 1995;29:389–401. https://doi.org/10.1002/jbm.820290314.

    Article  PubMed  Google Scholar 

  124. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res. 1999;13:38–48. https://doi.org/10.1177/08959374990130011301.

    Article  PubMed  Google Scholar 

  125. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, et al. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3. J Biomed Mater Res. 1998;39:77–85.

    Article  PubMed  Google Scholar 

  126. Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci. 1997;110:2187–96.

    Article  PubMed  Google Scholar 

  127. Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD, Tannenbaum R, et al. The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials. 2012;33:7386–93. https://doi.org/10.1016/j.biomaterials.2012.06.066.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Brunette DM. The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants. 1988;3:231–46.

    PubMed  Google Scholar 

  129. Brunette DM. Spreading and orientation of epithelial cells on grooved substrata. Exp Cell Res. 1986;167:203–17. https://doi.org/10.1016/0014-4827(86)90217-X.

    Article  PubMed  Google Scholar 

  130. Boyan BD, Lossdörfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Cells Mater. 2003;6:22–7.

    Article  Google Scholar 

  131. Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD, et al. Pretreatment of bone with osteoclasts affects phenotypic expression of osteoblast-like cells. J Orthop Res. 2003;21:638–47. https://doi.org/10.1016/S0736-0266(02)00261-9.

    Article  PubMed  Google Scholar 

  132. Schwartz Z, Lohmann CH, Vocke AK, Sylvia VL, Cochran DL, Dean DD, et al. Osteoblast response to titanium surface roughness and 1α,25-(OH)2D3 is mediated through the mitogen-activated protein kinase (MAPK) pathway. J Biomed Mater Res. 2001;56:417–26. https://doi.org/10.1002/1097-4636(20010905)56:3<417::AID-JBM1111>3.0.CO;2-K.

    Article  PubMed  Google Scholar 

  133. Kim MJ, Choi MU, Kim CW. Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell. Biomaterials. 2006;27:5502–11. https://doi.org/10.1016/j.biomaterials.2006.06.023.

    Article  PubMed  Google Scholar 

  134. M. Fang R, Olivares-Navarrete, Wieland M, Cochran DL, Boyan BD, Schwartz Z. The role of phospholipase D in osteoblast response to titanium surface microstructure Mimi. J Biomed Mater Res Pt A. 2010;93:897–909. https://doi.org/10.1016/j.neuron.2009.10.017.A.

    Article  Google Scholar 

  135. Mustafa K, Rubinstein J, Lopez BS, Arvidson K. Production of transforming growth factor beta1 and prostaglandin E2 by osteoblast-like cells cultured on titanium surfaces blasted with TiO2 particles. Clin Oral Implants Res. 2003;14:50–6.

    Article  PubMed  Google Scholar 

  136. Lohmann CH, Dean DD, Bonewald LF, Schwartz Z, Boyan BD. Nitric oxide and prostaglandin E2 production in response to ultra-high molecular weight polyethylene particles depends on osteoblast maturation state. J Bone Jt Surg. 2002;84:411–9.

    Article  Google Scholar 

  137. Boyan BD, Lohmann CH, Sisk M, Liu Y, Sylvia VL, Cochran DL, et al. Both cyclooxygenase-1 and cyclooxygenase-2 mediate osteoblast response to titanium surface roughness. J Biomed Mater Res. 2001;55:350–9. https://doi.org/10.1002/1097-4636(20010605)55:3<350::AID-JBM1023>3.0.CO;2-M.

    Article  PubMed  Google Scholar 

  138. Schwartz Z, Dennis R, Bonewald L, Swain L, Gomez R, Boyan BD. Differential regulation of prostaglandin E2 synthesis and phospholipase A2 activity by 1,25-(OH)2D3 in three osteoblast-like cell lines (MC-3T3-E1, ROS 17/2.8, and MG-63). Bone. 1992;13:51–8. https://doi.org/10.1016/8756-3282(92)90361-Y.

    Article  PubMed  Google Scholar 

  139. Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 2004;93:1210–30. https://doi.org/10.1002/jcb.20284.

    Article  PubMed  Google Scholar 

  140. Hyzy SL, Olivares-Navarrete R, Schwartz Z, Boyan BD. BMP2 induces osteoblast apoptosis in a maturation state and noggin-dependent manner. J Cell Biochem. 2012;113:3236–45. https://doi.org/10.1002/jcb.24201.

    Article  PubMed  Google Scholar 

  141. Berger MB, Bosh KB, Jacobs TW, Joshua Cohen D, Schwartz Z, Boyan BD. Growth factors produced by bone marrow stromal cells on nanoroughened titanium–aluminum–vanadium surfaces program distal MSCs into osteoblasts via BMP2 signaling. J Orthop Res. 2020;39:1908. https://doi.org/10.1002/jor.24869.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Oetgen ME, Richards BS. Complications associated with the use of bone morphogenetic protein in pediatric patients. J Pediatr Orthop. 2010;30:192–8. https://doi.org/10.1097/BPO.0b013e3181d075ab.

    Article  PubMed  Google Scholar 

  143. Smoljanovic T, Cimic M, Bojanic I. Aggressive end plate decortication as a cause of osteolysis after rhBMP-2 use in cervical spine interbody fusion. Spine J. 2010;10:187–8. https://doi.org/10.1016/j.spinee.2009.10.001.

    Article  PubMed  Google Scholar 

  144. Hyzy SL, Olivares-navarrete R, Hutton DL, Tan C, Boyan BD, Schwartz Z. Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2. Acta Biomater. 2013;9:5821–9. https://doi.org/10.1016/j.actbio.2012.10.030.

    Article  PubMed  Google Scholar 

  145. Abe E. Function of BMPs and BMP antagonists in adult bone. Ann N Y Acad Sci. 2006;1068:41–53. https://doi.org/10.1196/annals.1346.007.

    Article  PubMed  Google Scholar 

  146. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12:203–21. https://doi.org/10.1038/nrendo.2016.12.

    Article  PubMed  Google Scholar 

  147. Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD. Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials. 2010;31:4909–17. https://doi.org/10.1016/j.biomaterials.2010.02.071.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cheng A, Humayun A, Cohen DJ, Boyan BD, Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication. 2014;6:45007. https://doi.org/10.1088/1758-5082/6/4/045007.

    Article  Google Scholar 

  149. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C. 2016;59:690–701. https://doi.org/10.1016/j.msec.2015.10.069.

    Article  Google Scholar 

  150. Cox SC, Jamshidi P, Eisenstein NM, Webber MA, Hassanin H, Attallah MM, et al. Adding functionality with additive manufacturing: fabrication of titanium-based antibiotic eluting implants. Mater Sci Eng C. 2016;64:407–15. https://doi.org/10.1016/j.msec.2016.04.006.

    Article  Google Scholar 

  151. Alrabeah GO, Brett P, Knowles JC, Petridis H. The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators. J Dent. 2017;66:91–101. https://doi.org/10.1016/j.jdent.2017.08.002.

    Article  PubMed  Google Scholar 

  152. Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ. The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med. 2007;18:399–404. https://doi.org/10.1007/s10856-006-0705-6.

    Article  PubMed  Google Scholar 

  153. Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25:4731–9. https://doi.org/10.1016/j.biomaterials.2003.12.002.

    Article  PubMed  Google Scholar 

  154. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29:970–83. https://doi.org/10.1016/j.biomaterials.2007.11.009.

    Article  PubMed  Google Scholar 

  155. Cheng A, Chen H, Schwartz Z, Boyan BD. Imaging analysis of the interface between osteoblasts and microrough surfaces of laser-sintered titanium alloy constructs. J Microsc. 2017;270:41. https://doi.org/10.1111/jmi.12648.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, et al. Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int. 2002;71:519–29. https://doi.org/10.1007/s00223-001-1114-y.

    Article  PubMed  Google Scholar 

  157. Lohmann CH, Bonewald LF, Sisk MA, Sylvia VL, Cochran DL, Dean DD, et al. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-Dihydroxyvitamin D3. J Bone Miner Res. 2000;15:1169–80. https://doi.org/10.1359/jbmr.2000.15.6.1169.

    Article  PubMed  Google Scholar 

  158. Braun G, Kohavi D, Amir D, Luna M, Caloss R, Sela J, et al. Markers of primary mineralization are correlated with bone-bonding ability of titanium or stainless steel in vivo. Clin Oral Implants Res. 1995;6:1–13. https://doi.org/10.1034/j.1600-0501.1995.060101.x.

    Article  PubMed  Google Scholar 

  159. Ritter NM, Farach-Carson MC, Butler WT. Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res. 1992;7:877–85. https://doi.org/10.1002/jbmr.5650070804.

    Article  PubMed  Google Scholar 

  160. Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J. A role for osteocalcin in osteoclast differentiation. J Cell Biochem. 1991;45:292–302. https://doi.org/10.1002/jcb.240450312.

    Article  PubMed  Google Scholar 

  161. Atkin I, Dean DD, Muniz OE, Agundez A, Castiglione G, Cohen G, et al. Enhancement of osteoinduction by vitamin D metabolites in rachitic host rats. J Bone Miner Res. 1992;7:863–75. https://doi.org/10.1002/jbmr.5650070803.

    Article  PubMed  Google Scholar 

  162. Dean DD, Schwartz ZVI, Muniz OE, Gomez R, Swain LD, Howell DS, et al. Matrix vesicles contain metalloproteinases that degrade proteoglycans. Bone Miner. 1992;17:172–6. https://doi.org/10.1016/0169-6009(92)90731-R.

    Article  PubMed  Google Scholar 

  163. Lotz EM, Berger MB, Schwartz Z, Boyan BD. Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater. 2018;68:296–307. https://doi.org/10.1016/j.actbio.2017.12.039.

    Article  PubMed  Google Scholar 

  164. Shah FA, Wang X, Thomsen P, Grandfield K, Palmquist A. High-resolution visualization of the osteocyte Lacuno-Canalicular network juxtaposed to the surface of nanotextured titanium implants in human. ACS Biomater Sci Eng. 2015;1:1. https://doi.org/10.1021/ab500127y.

    Article  Google Scholar 

  165. Schwartz Z, Lohmann CH, Sisk M, Cochran DL, Sylvia VL, Simpson J, et al. Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1,25-(OH)2D3 is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials. 2001;22:731–41.

    Article  PubMed  Google Scholar 

  166. Lossdörfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res Pt A. 2004;70A:361–9. https://doi.org/10.1002/jbm.a.30025.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the ITI Foundation (Waldenburg, Switzerland); Institut Straumann AG (Basel, Switzerland); Medtronic/Titan Spine LLC (Mequon, Wisconsin, USA); AB Dental (Ashdod, Israel); and the National Institutes of Health (AR052102, AR072500, and T32 GM08433). In addition, the authors acknowledge Caroline Bivens for her artistic contributions to the present work.

Author Disclosure Statement

BDB is an unpaid consultant for Institut Straumann AG and a paid consultant for Medtronic Spine. ZS is an unpaid consultant for AB Dental.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara D. Boyan .

Editor information

Editors and Affiliations

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyan, B.D., Lotz, E.M., Berger, M.B., Deng, J., Cohen, D.J., Schwartz, Z. (2023). Biological Events at the Interface Between the Radicular Part of a Dental Implant and Bone. In: Dard, M.M. (eds) Surgical Research in Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37234-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37234-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37233-9

  • Online ISBN: 978-3-031-37234-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics