Skip to main content

Designing Controllers with Predefined Convergence-Time Bound Using Bounded Time-Varying Gains

  • Chapter
  • First Online:
Sliding-Mode Control and Variable-Structure Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 490))

Abstract

Recently, there has been a great deal of attention in a class of controllers based on time-varying gains, called prescribed-time controllers, that steer the system’s state to the origin in the desired time, a priori set by the user, regardless of the initial condition. Furthermore, such a class of controllers has been shown to maintain a prescribed-time convergence in the presence of disturbances even if the disturbance bound is unknown. However, such properties require a time-varying gain that becomes singular at the terminal time, which limits its application to scenarios under quantization or measurement noise. This chapter presents a methodology to design a broader class of controllers, called predefined-time controllers, with a prescribed convergence-time bound. Our approach allows designing robust predefined-time controllers based on time-varying gains while maintaining uniformly bounded time-varying gains. We analyze the condition for uniform Lyapunov stability under the proposed time-varying controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the spirit of Filippov’s interpretation of differential equations, solutions of (3) are understood as any absolutely continuous function that satisfies the differential inclusion obtained by applying the Filippov regularization to \(\textbf{f}(\bullet , \bullet )\) (See [9, Page 85]), allowing us to consider \(\textbf{f}(\bullet , \bullet )\) discontinuous in the first argument. In the usual Filippov’s interpretation, it is assumed that \(\Vert \textbf{f}(\textbf{x}, t)\Vert \) has an integrable majorant function of time for any \(\textbf{x}\), ensuring existence and uniqueness of solutions in forward time. However, in this work we deal with \(\textbf{f}(\textbf{x}, t)\) for which no majorant function exists, but existence and uniqueness of solutions are still guaranteed by an argument similar to [2]. In particular, existence of solutions follows directly from the equivalence of solutions to a well-posed Filippov system via the time-scale transformation.

References

  1. Aldana-López, R., Gómez-Gutiérrez, D., Jiménez-Rodríguez, E., Sáanchez-Torres, J.D., Defoort, M.: Enhancing the settling time estimation of a class of fixed-time stable systems. Int. J. Robust Nonlinear Control 29(12), 4135–4148 (2019). https://doi.org/10.1002/rnc.4600

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldana-López, R., Gómez-Gutiéerrez, D., Jiménez-Rodríguez, E., Sáanchez-Torres, J.D., Defoort, M.: On the design of new classes of fixed-time stable systems with predefined upper bound for the settling time. Int. J. Robust Nonlinear Control 95(10), 2802–2814 (2022). https://doi.org/10.1080/00207179.2021.1936190

  3. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008). https://doi.org/10.1137/060675861

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrieu, V., Praly, L., Astolfi, A.: Homogeneity in the bi-limit as a tool for observer and feedback design. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1050–1055 (2009). https://doi.org/10.1109/CDC.2009.5400263

  5. Cao, Y., Wen, C., Tan, S., Song, Y.: Prespecifiable fixed-time control for a class of uncertain nonlinear systems in strict-feedback form. Int. J. Robust Nonlinear Control 30(3), 1203–1222 (2020). https://doi.org/10.1002/RNC.4820

    Article  MathSciNet  MATH  Google Scholar 

  6. Chitour, Y., Ushirobira, R., Bouhemou, H.: Stabilization for a perturbed chain of integrators in prescribed time. SIAM J. Control Optim. 58(2), 1022–1048 (2020). https://doi.org/10.1137/19M1285937

    Article  MathSciNet  MATH  Google Scholar 

  7. Cruz-Zavala, E., Moreno, J.A.: High-order sliding-mode control design homogeneous in the bi-limit. Int. J. Robust Nonlinear Control 31(9), 3380–3416 (2021). https://doi.org/10.1002/RNC.5242

    Article  MathSciNet  Google Scholar 

  8. Ding, S., Levant, A., Li, S.: Simple homogeneous sliding-mode controller. Automatica 67, 22–32 (2016). https://doi.org/10.1016/j.automatica.2016.01.017

  9. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht, The Netherlands (1988)

    Google Scholar 

  10. Gómez-Gutiérrez, D.: On the design of nonautonomous fixed-time controllers with a predefined upper bound of the settling time. Int. J. Robust Nonlinear Control 30(10), 3871–3885 (2020). https://doi.org/10.1002/rnc.4976

  11. Jimenez-Rodriguez, E., Munoz-Vazquez, A.J., Sanchez-Torres, J.D., Defoort, M., Loukianov, A.G.: A Lyapunov-like characterization of predefined-time stability. IEEE Trans. Autom. Control 65(11), 4922–4927 (2020). https://doi.org/10.1109/TAC.2020.2967555

    Article  MathSciNet  MATH  Google Scholar 

  12. Khalil, H.K.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle River, NJ, USA (2002)

    Google Scholar 

  13. Liberzon, D.: Calculus of Variations and Optimal Control Theory. Princeton University Press, Princeton, NJ, USA (2012)

    Google Scholar 

  14. Pal, A.K., Kamal, S., Nagar, S.K., Bandyopadhyay, B., Fridman, L.: Design of controllers with arbitrary convergence time. Automatica 112, 108710 (2020). https://doi.org/10.1016/j.automatica.2019.108710

  15. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012). https://doi.org/10.1109/TAC.2011.2179869

    Article  MathSciNet  MATH  Google Scholar 

  16. Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., Loukianov, A.G.: A class of predefined-time stable dynamical systems. IMA J. Math. Control Inf. 35(1), I1–I29 (2018). https://doi.org/10.1093/imamci/dnx004

    Article  MathSciNet  MATH  Google Scholar 

  17. Sánchez-Torres, J.D., Muñoz-Vázquez, A.J., Defoort, M., Jiménez-Rodríguez, E., Loukianov, A.G.: A class of predefined-time controllers for uncertain second-order systems. Eur. J. Control 53, 52–58 (2020). https://doi.org/10.1016/j.ejcon.2019.10.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Seeber, R.: Convergence time bounds for a family of second-order homogeneous state-feedback controllers. IEEE Control Syst. Lett. 4(4), 1018–1023 (2020). https://doi.org/10.1109/LCSYS.2020.2998673

    Article  MathSciNet  Google Scholar 

  19. Ding, S., Levant, A., Li, S.: New families of high-order sliding-mode controllers. In: Proceedings of the IEEE Conference on Decision and Control, pp. 4752–4757 (2015)

    Google Scholar 

  20. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Observation and Identification via HOSM Observers. In: Sliding Mode Control and Observation, pp. 251–290. Birkhäuser, New York, NY, USA (2014). https://doi.org/10.1007/978-0-8176-4893-0_7

  21. Song, Y., Wang, Y., Holloway, J., Krstic, M.: Time-varying feedback for regulation of normal form nonlinear systems in prescribed finite time. Automatica 83, 243–251 (2017). https://doi.org/10.1016/J.AUTOMATICA.2017.06.008

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, Y., Wang, Y., Krstic, M.: Time-varying feedback for stabilization in prescribed finite time. Int. J. Robust Nonlinear Control 29(3), 618–633 (2019). https://doi.org/10.1002/rnc.4084

    Article  MathSciNet  MATH  Google Scholar 

  23. Sontag, E.D.: Input to state stability: basic concepts and results. In: Nonlinear and Optimal Control Theory 1932, 163–220 Springer, Berlin, Germany (2008). https://doi.org/10.1007/978-3-540-77653-6_3

  24. Tabatabaeipour, S.M., Blanke, M.: Calculation of critical fault recovery time for nonlinear systems based on region of attraction analysis. IFAC Proc. 47(3), 6741–6746 (2014)

    Google Scholar 

  25. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin, Germany (1992). https://doi.org/10.1007/978-3-642-84379-2

  26. Zarchan, P.: Tactical and Strategic Missile Guidance. American Institute of Aeronautics an Astronautics, Reston, VA, USA (2012)

    Google Scholar 

  27. Zimenko, K., Polyakov, A., Efimov, D., Perruquetti, W.: On simple scheme of finite/fixed time control design. Int. J. Control 93(6), 1353–1361 (2020). https://doi.org/10.1080/00207179.2018.1506889

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Work partially supported by the Christian Doppler Research Association, the Austrian Federal Ministry of Labour and Economy and the National Foundation for Research, Technology and Development, by Agencia I+D+i grant PICT 2018-01385, Argentina and by Consejo Nacional de Ciencia y Tecnología (CONACYT-Mexico) scholarship with grant 739841.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gómez-Gutiérrez .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Auxiliary Lemmas

Let us introduce the following Lemmas, on some properties of matrix \(\textbf{Q}_{\rho }\) and the time-varying matrix \(\textbf{K}_{\rho }(t)\).

Lemma 1

Let \(\textbf{D}_{\rho }\in \mathbb {R}^{n\times n}\) and \(\textbf{Q}_{\rho }\in \mathbb {R}^{n\times n}\) be defined as in (32). Then, \(\textbf{Q}_{\rho }\in \mathbb {R}^{n\times n}\) is a lower triangular matrix satisfying

$$\begin{aligned} \textbf{J}+\textbf{A} =\textbf{Q}_{\rho }(\textbf{J}-\alpha \textbf{D}_{\rho })\textbf{Q}_{\rho }^{-1} \end{aligned}$$
(39)

where

$$\begin{aligned} \textbf{A}=\textbf{b}_{n}\textbf{b}_{1}^{T}(\textbf{J}-\alpha \textbf{D}_{\rho })^{n}\textbf{Q}_{\rho }^{-1} \end{aligned}$$
(40)

with \(\textbf{b}_{n}=[0,\cdots ,0,1]^T\in \mathbb {R}^{n\times 1}\).

Proof

Notice that by construction \(\textbf{Q}_{\rho }\) is a lower triangular matrix with ones over the diagonal. Moreover, \(\textbf{J}\) is an upper shift matrix, thus

$$\begin{aligned} \textbf{J} \textbf{Q}_{\rho }= \begin{bmatrix} \textbf{b}_{1}^{T}(\textbf{J}-\alpha \textbf{D}_{\rho })\\ \vdots \\ \textbf{b}_{1}^{T}(\textbf{J}-\alpha \textbf{D}_{\rho })^{n-1}\\ \textbf{0}_n^T \end{bmatrix} \text {\,\, and\,\, } \textbf{J} \textbf{Q}_{\rho } +\textbf{A} \textbf{Q}_{\rho }= \begin{bmatrix} \textbf{b}_{1}^{T}(\textbf{J}-\alpha \textbf{D}_{\rho })\\ \vdots \\ \textbf{b}_{1}^{T}(\textbf{J}-\alpha \textbf{D}_{\rho })^{n-1}\\ \textbf{b}_{1}^{T}(\textbf{J}-\alpha \textbf{D}_{\rho })^{n} \end{bmatrix} \end{aligned}$$

where \(\textbf{0}_n\in \mathbb {R}^n\) is a zero vector. Therefore, \( \textbf{J} \textbf{Q}_{\rho } -\textbf{A} \textbf{Q}_{\rho }=\textbf{Q}_{\rho }(\textbf{J}-\alpha \textbf{D}_{\rho }) \) which completes the proof.    \(\blacksquare \)

Lemma 2

Let \(\kappa (t)\) be given as in (7), with \(\eta \) as in (18), and let

$$\begin{aligned} \textbf{K}_{\rho }(t):=\text {diag}(\kappa (t)^{-\rho },\kappa (t)^{1-\rho },\ldots ,\kappa (t)^{n-\rho -1}), \end{aligned}$$

where \(\rho \in [0,n]\). Then, the following identities hold:

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\textbf{K}_{\rho }(t)^{-1} &= -\alpha \kappa (t)\textbf{D}_{\rho }\textbf{K}_{\rho }(t)^{-1} \end{aligned}$$
(41)
$$\begin{aligned} \textbf{K}_{\rho }^{-1}(t)\textbf{J}\textbf{K}_{\rho }(t)&=\kappa (t)\textbf{J}. \end{aligned}$$
(42)

Proof

A direct calculation yields

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\textbf{K}_{\rho }(t)^{-1} &= \frac{\textrm{d}}{\textrm{d}t}\text {diag}(\kappa (t)^{\rho },\kappa (t)^{\rho -1},\ldots ,\kappa (t)^{\rho -n+1})\\ &=\dot{\kappa }(t)\kappa (t)^{-1}\text {diag}(\rho \kappa (t)^{\rho },\rho -1\kappa (t)^{\rho -1},\ldots ,\rho -n+1\kappa (t)^{\rho -n+1}). \end{aligned}$$

Since \(\dot{\kappa }(t)\kappa (t)^{-1}=\alpha \kappa (t)\), Eq. (41) follows trivially by definition of \(\textbf{D}_{\rho }\).

Now, to show that (42) holds, notice that since \(\textbf{J}\) is an upper shift matrix. Thus,

$$\begin{aligned} \textbf{K}_{\rho }^{-1}(t)\textbf{J}\textbf{K}_{\rho }(t)&=\kappa (t) \textbf{K}_{\rho }^{-1}(t) \begin{bmatrix} 0 &{} \kappa (t)^{-\rho } &{} 0 &{} \cdots &{}0 &{} 0\\ 0 &{} 0 &{} \kappa (t)^{1-\rho } &{} \cdots &{}0 &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \cdots &{} \kappa (t)^{n-3+\rho } &{} 0\\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 &{} \kappa (t)^{n-2+\rho }\\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 &{} 0\\ \end{bmatrix}\\ &=\kappa (t)\textbf{J}, \end{aligned}$$

which completes the proof.    \(\blacksquare \)

1.2 Some Admissible Auxiliary Controllers

Theorem 2

([1, Theorem 3]) Consider a controller

$$\begin{aligned} u = -\left[ (a|x|^{p} + b|x|^{q})^k+\zeta \right] \text{ sign }(x), \end{aligned}$$
(43)

where \(\zeta \ge \varDelta \), \(a,b,p,q,k>0\) are system parameters which satisfy the constraints \(kp<1\), and \(kq>1\). Then, the origin of (8) under the controller (43) is fixed-time stable and the settling-time function satisfies \(\sup _{x_0 \in \mathbb {R}} T(x_0)=\gamma \), where

$$\begin{aligned} \gamma =\frac{\varGamma \left( m_p\right) \varGamma \left( m_q\right) }{a^{k}\varGamma (k) (q-p)}\left( \frac{a}{b}\right) ^{m_p}, \end{aligned}$$
(44)

with \(m_p=\frac{1-k p}{q-p}\) and \(m_q=\frac{k q-1}{q-p}\).

Theorem 3

([1, Theorem 4]) Consider a second-order perturbed chain of integrators, and let \(a_1,a_2,b_1,b_2,p,q,k>0\), \(kp<1\), \(kq>1\), \(T_{f_1},T_{f_2}>0\), \(\zeta \ge \varDelta \), and

$$ \gamma _1=\frac{\varGamma \left( \frac{1}{4}\right) ^2 }{2a_1^{1/2}\varGamma \left( \frac{1}{2}\right) }\left( \frac{a_1}{b_1}\right) ^{1/4}, \gamma _2=\frac{\varGamma \left( m_{p}\right) \varGamma \left( m_{q}\right) }{a_2^{k}\varGamma (k) (q-p)}\left( \frac{a_2}{b_2}\right) ^{m_{p}}, $$

with \(m_{p}=\frac{1-kp}{q-p}\) and \(m_{q}=\frac{kq-1}{q-p}\). If the control input is selected as

$$\begin{aligned} u=-\left[ \frac{\gamma _2}{T_{f_2}}\left( a_2\left|\sigma \right|^{p}+b_2\left|\sigma \right|^{q}\right) ^{k}+\frac{\gamma _1^2}{2T_{f_1}^2}\left( a_1+3b_1x_1^2\right) +\zeta \right] \text{ sign }(\sigma ), \end{aligned}$$

where the sliding variable \(\sigma \) is defined as

$$\begin{aligned} \sigma =x_2+\left\lfloor \left\lfloor x_2\right\rceil ^2+\frac{2\gamma _1^2}{T_{f_1}^2}\left( a_1\left\lfloor x_1\right\rceil ^1+b_1\left\lfloor x_1\right\rceil ^3\right) \right\rceil ^{1/2}, \end{aligned}$$

then the origin \((x_1,x_2)=(0,0)\) of system (4), with \(n=2\), is fixed-time stable with UBST given by \(T_f=T_{f_1}+T_{f_2}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aldana-López, R., Seeber, R., Haimovich, H., Gómez-Gutiérrez, D. (2023). Designing Controllers with Predefined Convergence-Time Bound Using Bounded Time-Varying Gains. In: Oliveira, T.R., Fridman, L., Hsu, L. (eds) Sliding-Mode Control and Variable-Structure Systems. Studies in Systems, Decision and Control, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-37089-2_3

Download citation

Publish with us

Policies and ethics