Skip to main content
Log in

Periodic adaptive stabilization of rapidly time-varying linear systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Adaptive control deals with systems that have unknown and/or time-varying parameters. Most techniques are proven for the case in which any time variation is slow, with results for systems with fast time variations limited to those for which the time variation is of a known form or for which the plant has stable zero dynamics. In this paper, a new adaptive controller design methodology is proposed in which the time variation can be rapid and the plant may have unstable zero dynamics. Under the structural assumptions that the plant is relative degree one and that the plant uncertainty is a single scalar variable, as well as some mild regularity assumptions, it is proven that the closed-loop system is exponentially stable under fast parameter variations with persistent jumps. The proposed controller is nonlinear and periodic, and in each period the parameter is estimated and an appropriate stabilizing control signal is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The value of \( \alpha (t)\) is not available to the control law.

  2. In [38], it is actually argued that an asymptotic form of stability is achievable if, and only if, it is achievable by a controller of the form (2). However, it is easy to prove that the controller (2) asserted to exist by Theorem 3.1 of [38] actually provides exponential stability.

  3. This definition of \(\mathcal {H}_\infty \) is not to be confused with the Hardy space of the same name.

  4. Since \(Q( \alpha ) \in \mathcal {H}_\infty \), it can be shown that \(\lambda ^* < 0\).

  5. It is important to note that by using Proposition 3 the estimation error will be upper-bounded by the entire closed-loop state, including v(t).

References

  1. Goodwin GC, Ramadge PJ, Caines PE (1980) Discrete-time multivariable adaptive control. IEEE Trans Autom Control 25(3):449–456

    Article  MathSciNet  Google Scholar 

  2. Morse AS (1980) Global stability of parameter-adaptive control systems. IEEE Trans Autom Control 25(3):433–439

    Article  MathSciNet  Google Scholar 

  3. Narendra KS, Lin YH, Valavani LS (1980) Stable adaptive controller design, part II: proof of stability. IEEE Trans Autom Control 25(3):440–448

    Article  Google Scholar 

  4. Rohrs CE, Valavani L, Athans M, Stein G (1985) Robustness of adaptive control algorithms in the presence of unmodeled dynamics. IEEE Trans Autom Control 30(9):881–889

    Article  Google Scholar 

  5. Ioannou PA, Sun J (1996) Robust adaptive control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  6. Byrnes CI, Willems JC (1984) Adaptive stabilization of multivariable linear systems. In: The 23rd IEEE conference on decision and control vol 23, 1574–1577

  7. Miller DE, Davison EJ (1991) An adaptive controller which provides arbitrarily good transient and steady-state response. IEEE Trans Autom Control 36(1):68–81

    Article  MathSciNet  Google Scholar 

  8. Morse AS (1996) Supervisory control of families of linear set-point controllers—part I: exact matching. IEEE Trans Autom Control 41(10):1413–1431

    Article  Google Scholar 

  9. Morse AS (1997) Supervisory control of families of linear set-point controllers—part II: robustness. IEEE Trans Autom Control 42(11):1500–1515

    Article  Google Scholar 

  10. Narendra KS, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control 42(2):171–187

    Article  MathSciNet  Google Scholar 

  11. Hocherman-Frommer J, Kulkarni SR, Ramadge PJ (1998) Controller switching based on output prediction errors. IEEE Trans Autom Control 43(5):596–607

    Article  MathSciNet  Google Scholar 

  12. Hespanha JP, Liberzon D, Morse AS (2003) Overcoming the limitations of adaptive control by means of logic based switching. Syst Control Lett 49(1):49–65

    Article  MathSciNet  Google Scholar 

  13. Kreisselmeir G (1986) Adaptive control of a class of slowly time-varying plants. Syst Control Lett 8(2):97–103

    Article  Google Scholar 

  14. Middleton RH, Goodwin GC (1988) Adaptive control of time-varying linear systems. IEEE Trans Autom Control 33(2):150–155

    Article  MathSciNet  Google Scholar 

  15. Tsakalis KS, Ioannou PA (1989) Adaptive control of linear time-varying plants: a new model reference controller structure. IEEE Trans Autom Control 34(10):1038–1046

    Article  MathSciNet  Google Scholar 

  16. Voulgaris PG, Dahleh MA, Valavani LS (1994) Robust adaptive control: a slowly varying systems approach. Automatica 30(9):1455–1461

    Article  MathSciNet  Google Scholar 

  17. Dimogianopoulos D, Lozano R (2001) Adaptive control for linear slowly time-varying systems using direct least-squares estimation. Automatica 37(2):251–256

    Article  MathSciNet  Google Scholar 

  18. Fidan B, Zhang Y, Ioannou P (2005) Adaptive control of a class of slowly time-varying systems with modelling uncertainties. IEEE Trans Autom Control 50(6):915–920

    Article  Google Scholar 

  19. Vu L, Liberzon D (2011) Supervisory control of uncertain linear time-varying systems. IEEE Trans Autom Control 56(1):27–42

    Article  MathSciNet  Google Scholar 

  20. Vale JR, Miller DE (2011) Step tracking in the presence of persistent plant changes. IEEE Trans Autom Control 56(1):43–58

    Article  MathSciNet  Google Scholar 

  21. Miller DE, Vale JR (2014) Pole placement adaptive control with persistent jumps in the plant parameters. Math Control Signals Syst 16:177–214

    Article  MathSciNet  Google Scholar 

  22. Tsakalis KS, Ioannou PA (1990) A new indirect adaptive control scheme for time-varying plants. IEEE Trans Autom Control 35(6):697–705

    Article  MathSciNet  Google Scholar 

  23. Tian Z, Narendra KS (2009) Adaptive control of linear periodic systems. 2009 American Control Conference, June 2009

  24. Annaswamy AM, Narendra KS (1989) Adaptive control of a first order plant with a time-varying parameter. American Control Conference, pp 975–980

  25. Miller DE (2003) A new approach to model reference adaptive control. IEEE Trans Autom Control 48(5):743–757

    Article  MathSciNet  Google Scholar 

  26. Ilchmann A, Ryan EP, Trenn S (2005) Tracking control: performance funnels and prescribed transient behaviour. Syst Control Lett 54(7):655–670

    Article  MathSciNet  Google Scholar 

  27. Hackl CM, Hopfe N, Ilchmann A, Mueller M, Trenn S (2013) Funnel control for systems with relative degree two. SIAM J Control Optim 51(2):965–995

    Article  MathSciNet  Google Scholar 

  28. Marino R, Tomei P (2003) Adaptive control of linear time-varying systems. Automatica 39(4):651–659

    Article  MathSciNet  Google Scholar 

  29. Miller DE, Mansouri N (2010) Model reference adaptive control using simultaneous probing, estimation, and control. IEEE Trans Autom Control 55(9):2014–2029

    Article  MathSciNet  Google Scholar 

  30. Rudko V, Miller D (2016) Nonlinear periodic adaptive control for linear time-varying plants. American Control Conference

  31. Rugh WJ (1991) Analytical framework for gain scheduling. IEEE Control Syst 11(1):79–84

    Article  Google Scholar 

  32. Shamma JS, Athans M (1990) Analysis of gain scheduled control for nonlinear plants. IEEE Trans Autom Control 35(8):898–907

    Article  MathSciNet  Google Scholar 

  33. Rugh WJ, Shamma JS (2000) Research on gain scheduling. Automatica 36:1401–1425

    Article  MathSciNet  Google Scholar 

  34. Blanchini F (1991) Ultimate boundedness control for uncertain discrete-time systems via set-induced lyapunov functions. In: Proceeding of the 30th IEEE conference on decision and control, vol 2, 1755–1760

  35. Blanchini F (1995) Nonquadratic lyapunov functions for robust control. Automatica 31(3):451–461

    Article  MathSciNet  Google Scholar 

  36. Blanchini F (2000) The gain scheduling and the robust state feedback stabilization problems. IEEE Trans Autom Control 45(11):2061–2070

    Article  MathSciNet  Google Scholar 

  37. Blanchini F, Miani S, Savorgnan C (2007) Stability results for linear parameter varying and switching systems. Automatica 43(10):1817–1823

    Article  MathSciNet  Google Scholar 

  38. Blanchini F, Casagrande D, Miani S, Viaro U (2010) Stable LPV realization of parametric transfer functions and its application to gain-scheduling control design. IEEE Trans Autom Control 55(10):2271–2281

    Article  MathSciNet  Google Scholar 

  39. Miller DE (2006) Near optimal LQR performance for a compact set of plants. IEEE Trans Autom Control 51(9):1423–1439

    Article  MathSciNet  Google Scholar 

  40. Rudko V (2013) Nonlinear period adaptive control for linear time-varying plants. Master’s thesis, University of Waterloo, Canada. Available: https://uwspace.uwaterloo.ca/handle/10012/7775

  41. Vidyasagar M (1985) Control system synthesis: a factorization approach. The MIT Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Nielsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Nielsen and D. E. Miller: Research supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Appendix A: Proofs

Appendix A: Proofs

1.1 A.1 Proof of Lemma 1

Let \(u \in PC_{\infty }\), \(w_{n} \in PC_{\infty }\), \(w_{d} \in PC_{\infty }\), \( \alpha \in PS^{1}(\mathcal {A},T_0,\delta _{ \alpha })\), and \(x_0 \in \mathbb {R} ^n\) be arbitrary. The proof is organized into three steps:

  1. 1.

    Motivated by Eq. (9), define matrices \( R_{e} \), \( A_e( \alpha ) \), and \( C_e( \alpha ) \), with \( R_{e} \) non-singular, so that \( R_{e} A_e( \alpha ) + L( \alpha ) C_e( \alpha ) = Q( \alpha ) R_{e} \).

  2. 2.

    Use the equation from step 1 to bound a yet to be defined extended state \( x_e(t) \).

  3. 3.

    Use the bound on \( x_e(t) \) to bound the plant’s state \( x(t) \).

Step 1

Let v be the number of columns of the constant full rank matrix \( R \) from Assumption 2. Let \( \bar{R} \in \mathbb {R} ^{v \times (v-n)}\) be any matrix so that \( R_{e} := \begin{bmatrix} R&\bar{R} \end{bmatrix} \) is non-singular, and then define

$$\begin{aligned} \begin{bmatrix} A_{12}( \alpha ) \\ A_{22}( \alpha ) \end{bmatrix} := R_{e} ^{-1} Q( \alpha ) \bar{R} , \end{aligned}$$

where \( A_{12}( \alpha ) \in \mathbb {R} ^{n \times (v-n)}\), \( A_{22}( \alpha ) \in \mathbb {R} ^{(v-n) \times (v-n)}\). Then, by the definition of \( R \), \( R_{e} \), \(A_{12}\), and \(A_{22}\),

$$\begin{aligned} \underbrace{ \begin{bmatrix} A( \alpha )&A_{12}( \alpha ) \\ 0&A_{22}( \alpha ) \end{bmatrix} }_{=:A_e(\alpha )} + R_{e} ^{-1} L( \alpha ) \underbrace{ \begin{bmatrix} C( \alpha )&0 \end{bmatrix} }_{=:C_e(\alpha )} = R_{e} ^{-1} Q( \alpha ) R_{e} . \end{aligned}$$
(45)

Step 2

Consider the control system

$$\begin{aligned} \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix}= & {} \begin{bmatrix} A( \alpha (t))&A_{12}( \alpha (t)) \\ 0&A_{22}( \alpha (t)) \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + \begin{bmatrix} B( \alpha (t)) \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} w_{d}(t) \\ 0 \end{bmatrix} \\ y_{e}(t)= & {} \begin{bmatrix} C( \alpha (t))&0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + w_{n}(t) , \end{aligned}$$

where \( x_{1}(t) \in \mathbb {R} ^n\), \( x_{2}(t) \in \mathbb {R} ^{v-n}\). Define \(x_{e} :=(x_{1}, x_{2})\); then,

$$\begin{aligned} \dot{x}_{e}(t)= & {} \Bigg ( \begin{bmatrix} A( \alpha (t))&A_{12}( \alpha (t)) \\ 0&A_{22}( \alpha (t)) \end{bmatrix} + R_{e} ^{-1} L( \alpha (t)) \begin{bmatrix} C( \alpha (t))&0 \end{bmatrix} \Bigg ) x_{e}(t) \\&- R_{e} ^{-1} L( \alpha (t)) \Big ( y_{e}(t) - w_{n}(t) \Big ) + \begin{bmatrix} B( \alpha (t)) \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} w_{d}(t) \\ 0 \end{bmatrix} . \end{aligned}$$

Using (45), we can write

$$\begin{aligned} \dot{x}_{e}(t)= & {} R_{e} ^{-1} Q( \alpha (t)) R_{e} x_e(t) - R_{e} ^{-1} L( \alpha (t)) y_{e}(t) + R_{e} ^{-1} L( \alpha (t)) w_{n}(t) \\&+ \begin{bmatrix} B( \alpha (t)) \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} w_{d}(t) \\ 0 \end{bmatrix} . \end{aligned}$$

The solution to this differential equation, for \(t \ge 0\) and any \(x_{e}(0) \in \mathbb {R} ^{v}\), is

$$\begin{aligned} \begin{aligned} x_e(t)&= \Phi (t,0) x_{e}(0) + \int _{0}^{t} \Phi (t,\tau ) \Bigg ( \begin{bmatrix} B( \alpha (\tau )) \\ 0 \end{bmatrix} u(\tau ) - R_{e} ^{-1} L( \alpha (\tau )) y_{e}(\tau ) \Bigg ) \mathrm {d} \tau \\&\quad + \int _{0}^{t} \Phi (t,\tau ) \Bigg ( R_{e} ^{-1} L( \alpha (\tau )) w_{n}(\tau ) + \begin{bmatrix} w_{d}(\tau ) \\ 0 \end{bmatrix} \Bigg ) \mathrm {d} \tau , \end{aligned} \end{aligned}$$

where \( \Phi (t,0) \) is the state transition function of the unforced system

$$\begin{aligned} \dot{z}(t) = R_{e} ^{-1} Q( \alpha (t)) R_{e} z(t), \quad t \ge 0. \end{aligned}$$

Consider the change of coordinates \(p = R_{e} z\), where \( R_{e} \) is the non-singular matrix from Step 1. Then, \(\dot{p} = Q( \alpha (t)) p\) with \( Q( \alpha (t)) \in \mathcal {H}_{\infty }\) so that, by Proposition 2, there exist \(\gamma \ge 1\) and \(\lambda < 0\) such that

$$\begin{aligned} \left\| p(t) \right\| \le \gamma \mathrm {e} ^{\lambda t} \left\| p(0) \right\| , \quad t \ge 0. \end{aligned}$$

Again, following the proof of [40, Proposition 1], the constant \(\lambda \) can be taken to be the same as that in the filter (15). Then, there exists a constant \(c_{1}\) such that for all \(t \ge 0\), \(\left\| z(t) \right\| \le c_{1} \mathrm {e} ^{\lambda t} \left\| z(0) \right\| \), so we conclude that \(\left\| \Phi (t,0) \right\| \le c_{1} \mathrm {e} ^{\lambda t}\) for \(t \ge 0\). Using this bound on \( \Phi (t,0) \) in the expression for \(x_{e}(t)\), we get

$$\begin{aligned} \begin{aligned}&\left\| x_e(t) \right\| \\&\quad \le c \mathrm {e} ^{\lambda t} \left\| x_{e}(0) \right\| + c \int _{0}^{t} \mathrm {e} ^{\lambda (t - \tau )} \Big ( \left\| u(\tau ) \right\| + \left\| y_{e}(\tau ) \right\| \Big ) \mathrm {d} \tau + c \Big ( \left\| w_{n} \right\| _{\infty } + \left\| w_{d} \right\| _{\infty } \Big ), \end{aligned} \end{aligned}$$
(46)

with c defined as

$$\begin{aligned} c :=c_{1} \max \limits _{ \alpha \in \mathcal {A}} \Big \{1, \left\| R_{e} ^{-1} \right\| \left\| L( \alpha ) \right\| , \left\| B( \alpha ) \right\| , -\frac{\left\| R_{e} ^{-1} \right\| \left\| L( \alpha ) \right\| }{\lambda }, -\frac{1}{\lambda } \Big \}. \end{aligned}$$

Step 3

The subspace \(\{x_e: x_2 = 0\}\) is invariant for the extended system. Let x(t) be the solution of the plant’s ODE (14a) with initial condition x(0). Then, the initial condition \(x_{e}(0) = (x(0), 0)\) admits the solution \(x_{e}(t) = (x(t),0)\) and \(y_{e}(t) = y(t)\). Therefore, using (46),

$$\begin{aligned} \left\| x(t) \right\|= & {} \left\| x_e(t) \right\| \le c \mathrm {e} ^{\lambda t} \left\| x(0) \right\| + c \int _{0}^{t} \mathrm {e} ^{\lambda (t - \tau )} \Big ( \left\| u(\tau ) \right\| \\&+ \left\| y(\tau ) \right\| \Big ) \hbox {d}\tau + c \Big ( \left\| w_{n} \right\| _{\infty } + \left\| w_{d} \right\| _{\infty } \Big ). \end{aligned}$$

The solution v(t) of (15) equals the integral in the RHS of the above inequality, so we get the desired result. \(\square \)

1.2 A.2 Proof of Lemma 2

In the proofs of Lemmas 2 and 3, we utilize a crude bound on the maximum growth of the plant’s state over a single period.

Proposition 3

There exist constants \(\overline{T} > 0\) and \(c > 0\) so that for every \(T \in (0, \overline{T})\), \(w_{d} \in PC_{\infty }\), \( \alpha \in PS^{1}(\mathcal {A},T_0,\delta _{ \alpha })\), and \(x[k] \in \mathbb {R} ^n\), when the controller given by (15), (17)–(19), and (21), (22) is applied to the plant (14):

$$\begin{aligned}&\left\| x(t) - x[k] \right\| \\&\quad \le c T \Bigg ( v[k] + \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \left\| s[k] \right\| _{\infty } + \left\| w_{d} \right\| _{\infty } \Bigg ), \quad t \in [kT, (k+1)T]. \end{aligned}$$

Proof of Proposition 3

Let \(w_{d} \in PC_{\infty }\), \( \alpha \in PS^{1}(\mathcal {A},T_0,\delta _{ \alpha })\), and \(x[k] \in \mathbb {R} ^n\) be arbitrary. The solution x(t) to (14) with initial condition x[k] satisfies

$$\begin{aligned}&x(t) - x[k] \\&\quad = \int _{kT}^{t} \Big ( A( \alpha (\tau )) x[k] + B( \alpha (\tau )) u(\tau ) + w_{d}(\tau ) \Big ) \mathrm {d} \tau \\&\qquad + \int _{kT}^{t} A( \alpha (\tau )) \Big ( x(\tau ) - x[k] \Big ) \mathrm {d} \tau . \end{aligned}$$

Taking norms and substituting the expression for u(t) over \([kT, (k+1)T]\), we get the upper bound

$$\begin{aligned} \begin{aligned} \left\| x(t) - x[k] \right\|&\le T \Big ( \max \limits _{ \alpha \in \mathcal {A}}\left\| A( \alpha ) \right\| \left\| x[k] \right\| + \max \limits _{ \alpha \in \mathcal {A}}\left\| B( \alpha ) \right\| ( \max \limits _{ \alpha \in \mathcal {A}}\left\| H( \alpha ) \right\| + \rho ) \left\| z[k] \right\| \\&\quad + \max \limits _{ \alpha \in \mathcal {A}}\left\| B( \alpha ) \right\| ( \max \limits _{ \alpha \in \mathcal {A}}\left\| K( \alpha ) \right\| \left\| M \right\| + \rho ) \left\| r[k] \right\| \\&\quad + \max \limits _{ \alpha \in \mathcal {A}}\left\| B( \alpha ) \right\| \rho v[k] + \left\| w_{d} \right\| _{\infty } \Big ) \\&\quad + \max \limits _{ \alpha \in \mathcal {A}}\left\| A( \alpha ) \right\| \int _{kT}^{t} \left\| x(t) - x[k] \right\| \mathrm {d} \tau , \quad t \in [kT,(k+1)T]. \end{aligned} \end{aligned}$$

Using the definition of \(\bar{x}\), \(\bar{z}\), and s given in (24) and invoking the Bellman–Gronwall inequality, there exist constants \(c_{1} > 0\) and \(c_{2} > 0\) so that

$$\begin{aligned} \left\| x(t) - x[k] \right\| \le c_{1} T \Bigg ( v[k] + \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \left\| s[k] \right\| _{\infty } \Bigg ) \mathrm {e} ^{c_{2} T} + c_{1} T \left\| w_{d} \right\| _{\infty } \mathrm {e} ^{c_{2} T}. \end{aligned}$$

Then, for sufficiently small \(\overline{T}\), there exists a constant \(c > 0\) so that, for all \(T \in (0, \overline{T})\),

$$\begin{aligned} \left\| x(t) - x[k] \right\| \le c T \Bigg ( v[k] + \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \left\| s[k] \right\| _{\infty } + \left\| w_{d} \right\| _{\infty } \Bigg ). \end{aligned}$$
(47)

\(\square \)

Proof of Lemma 2

Fix \(\epsilon > 0\) and \( \overline{\delta } > 0\); let \(w_{n} \in PC_{\infty }\), \(w_{d} \in PC_{\infty }\), \( \alpha \in PS^{1}(\mathcal {A},T_0,\delta _{ \alpha })\), \(k \in \mathbb {Z} _+\), and \(x_0 \in \mathbb {R} ^n\) be arbitrary. We start with a claim.

Claim 1

There exist constants \(c > 0\) and \(\overline{T} > 0\), so that if \(T \in (0, \overline{T})\), \(v[k] + \left\| z[k] \right\| + \left\| r[k] \right\| > \epsilon \left\| x[k] \right\| \), and \( \alpha (t)\) is a.c. for \(t \in [kT, (k+1)T]\), then

$$\begin{aligned} \left\| C( \alpha ((k+1)T)) B( \alpha ((k+1)T)) - \widehat{CB}[k+1] \right\| \le c T + c \frac{ \left\| w_{d} \right\| _{\infty } }{\delta [k]} + c T^{-1} \frac{ \left\| w_{n} \right\| _{\infty } }{\delta [k]}. \end{aligned}$$
(48)

Proof of Claim 1

By hypothesis, \(v[k] + \left\| z[k] \right\| + \left\| r[k] \right\| > \epsilon \left\| x[k] \right\| \), which implies that \(\delta [k] \ne 0\). Then,

$$\begin{aligned} -2 h \widehat{CB}[k+1] \delta [k]= & {} y(kT+2h) - 2 y(kT+h) + y(kT) \nonumber \\= & {} \Big ( y_{nf}(kT+2h) - y_{nf}(kT+h) \Big ) \nonumber \\&- \Big ( y_{nf}(kT+h) - y_{nf}(kT) \Big ) \nonumber \\&+\, w_{n}(kT+2h) - 2 w_{n}(kT+h) + w_{n}(kT), \end{aligned}$$
(49)

where, with some abuse of notation, \( y_{nf}(t) := C(t) x(t) \) is the noise-free output signal. By this definition of \( y_{nf}(t) \), it follows that

$$\begin{aligned} \dot{y}_{nf}(t) = \Big (\dot{C}(t) + C(t)A(t) \Big ) x(t) + C(t) B(t) u(t) + C(t) w_{d}(t) \end{aligned}$$

for almost every \(t \in [kT, (k+1)T]\). Then, by the Fundamental Theorem of Calculus and the structure of the control signal (19), we have

$$\begin{aligned} y_{nf}(kT+h) - y_{nf}(kT)= & {} \int _{kT}^{kT+h} \Big ( \dot{C}(\tau ) + C(\tau )A(\tau ) \Big ) x(\tau ) \mathrm {d} \tau \\&+ \int _{kT}^{kT+h} C(\tau )B(\tau ) \mathrm {d} \tau \delta [k] \\&+ \int _{kT}^{kT+h} C(\tau )B(\tau ) \mathrm {d} \tau \bigg ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \bigg ) \\&+ \int _{kT}^{kT+h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau . \end{aligned}$$

In a similar fashion,

$$\begin{aligned} y_{nf}(kT+2h) - y_{nf}(kT+h)= & {} \int _{kT+h}^{kT+2h} \Big ( \dot{C}(\tau ) + C(\tau )A(\tau ) \Big ) x(\tau ) \mathrm {d} \tau \\&- \int _{kT+h}^{kT+2h} C(\tau )B(\tau ) \mathrm {d} \tau \delta [k] \\&+ \int _{kT+h}^{kT+2h} C(\tau )B(\tau ) \mathrm {d} \tau \\&\times \, \bigg ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \bigg ) \\&+ \int _{kT+h}^{kT+2h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau . \end{aligned}$$

Substituting the previous two expressions into (49) yields

$$\begin{aligned}&-2 h \widehat{CB}[k+1] \delta [k]\\&\quad = \int _{kT+h}^{kT+2h} \Big ( C(\tau ) A(\tau ) + \dot{C}(\tau ) \Big ) x(\tau ) \mathrm {d} \tau + \int _{kT+h}^{kT+2h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau \\&\qquad + \int _{kT+h}^{kT+2h} C(\tau ) B(\tau ) \mathrm {d} \tau \Big ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \Big ) \\&\qquad - \int _{kT}^{kT+h} C(\tau ) B(\tau ) \mathrm {d} \tau \Big ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \Big ) \\&\qquad -\int _{kT}^{kT+2h} C(\tau ) B(\tau ) \mathrm {d} \tau \delta [k] - \int _{kT}^{kT+h} \Big ( C(\tau ) A(\tau ) + \dot{C}(\tau ) \Big ) x(\tau ) \mathrm {d} \tau \\&\qquad - \int _{kT}^{kT+h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau + w_{n}(kT+2h) - 2 w_{n}(kT+h) + w_{n}(kT)\\&\quad = - 2 h C(kT+2h) B(kT+2h) \delta [k] \\&\qquad + \int _{kT}^{kT+2h} \Bigg ( C(kT+2h) B(kT+2h) - C(\tau ) B(\tau ) \Bigg ) \mathrm {d} \tau \delta [k] \\&\qquad + \int _{kT+h}^{kT+2h} \Bigg ( \Big ( C(\tau ) A(\tau ) + \dot{C}(\tau ) \Big ) x(\tau ) \\&\qquad - \Big ( C(\tau - h) A(\tau - h) + \dot{C}(\tau - h) \Big ) x(\tau - h) \Bigg ) \mathrm {d} \tau \\&\qquad + \int _{kT+h}^{kT+2h} \Bigg ( C(\tau ) B(\tau ) - C(\tau - h) B(\tau - h) \Bigg ) \mathrm {d} \tau \\&\qquad \times \Big ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \Big ) \\&\qquad + \int _{kT+h}^{kT+2h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau - \int _{kT}^{kT+h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau \\&\qquad + w_{n}(kT+2h) - 2 w_{n}(kT+h) + w_{n}(kT). \end{aligned}$$

Then, we have

$$\begin{aligned}&\left\| C(kT+2h) B(kT+2h) - \widehat{CB}[k+1] \right\| \\&\quad \le \frac{1}{2 h} \int _{kT}^{kT+2h} \left\| C(kT+2h) B(kT+2h) - C(\tau ) B(\tau ) \right\| \mathrm {d} \tau \\&\qquad + \frac{1}{2 h \delta [k]} \int _{kT+h}^{kT+2h} \left\| \Big ( C(\tau ) A(\tau ) + \dot{C}(\tau ) \Big ) x(\tau ) - \Big ( C(\tau - h) A(\tau - h) + \dot{C}(\tau - h) \Big ) x(\tau - h) \right\| \mathrm {d} \tau \\&\qquad + \frac{1}{2 h \delta [k]} \int _{kT+h}^{kT+2h} \left\| C(\tau ) B(\tau ) - C(\tau - h) B(\tau - h) \right\| \mathrm {d} \tau \Big ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \Big ) \\&\qquad + \frac{1}{2 h \delta [k]} \left\| \int _{kT+h}^{kT+2h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau - \int _{kT}^{kT+h} C(\tau ) w_{d}(\tau ) \mathrm {d} \tau \right\| \\&\qquad + \frac{1}{2 h \delta [k]} \left\| w_{n}(kT+2h) - 2 w_{n}(kT+h) + w_{n}(kT) \right\| . \end{aligned}$$

Utilizing order notation, Proposition 3, and applying Assumption 5 to boundFootnote 5 the Lipschitz continuous functions, we can write this concisely as

$$\begin{aligned}&\left\| C(kT+2h) B(kT+2h) - \widehat{CB}[k+1] \right\| \\&\quad = \mathcal {O}(T) + \mathcal {O}(T) \frac{v[k] + \left\| x[k] \right\| + \left\| z[k] \right\| + \left\| r[k] \right\| }{\delta [k]} \\&\qquad + \mathcal {O}(1) \frac{ \left\| w_{d} \right\| _{\infty } }{\delta [k]} + \mathcal {O}(T^{-1}) \frac{ \left\| w_{n} \right\| _{\infty } }{\delta [k]}. \end{aligned}$$

By hypothesis, we have

$$\begin{aligned} \frac{\left\| x[k] \right\| + v[k] + \left\| z[k] \right\| + \left\| r[k] \right\| }{\delta [k]} \le \Big ( \frac{1}{\epsilon } + 1 \Big ) \frac{\big ( v[k] + \left\| z[k] \right\| + \left\| r[k] \right\| \big )}{\rho ( v[k] + \left\| z[k] \right\| + \left\| r[k] \right\| )} = \frac{1}{\rho }\Big ( \frac{1}{\epsilon } + 1 \Big ), \end{aligned}$$

so for all \(T \in (0, \overline{T})\), with \(\overline{T}\) sufficiently small, we get the desired result:

$$\begin{aligned} \left\| C((k+1)T) B((k+1)T) - \widehat{CB}[k+1] \right\| = \mathcal {O}(T) + \mathcal {O}(1) \frac{ \left\| w_{d} \right\| _{\infty } }{\delta [k]} + \mathcal {O}(T^{-1}) \frac{ \left\| w_{n} \right\| _{\infty } }{\delta [k]} . \end{aligned}$$

\(\square \)

By hypotheses (i) and (iii) and Claim 1, the bound (48) holds. By hypothesis (ii) and the definition of \(\delta [k]\),

$$\begin{aligned} \frac{ \left\| w_{n} \right\| _{\infty } }{T \delta [k]} + \frac{ \left\| w_{d} \right\| _{\infty } }{\delta [k]} < \frac{1}{\rho c}. \end{aligned}$$
(50)

With \(c_{1}\) the constant from Claim 1, substituting (50) into (48) yields

$$\begin{aligned} \left\| C((k+1)T) B((k+1)T) - \widehat{CB}[k+1] \right\| < c_{1} \Bigg ( T + \frac{1}{\rho c} \Bigg ). \end{aligned}$$
(51)

We want to bound \(\Vert C( \alpha ((k+1)T) B( \alpha ((k+1)T) - \Pi _{\mathcal {F}}( \widehat{CB}[k+1] ) \Vert \), so we must account for the effect of the projection, \(\Pi _{\mathcal {F}}\). To ensure that \(\Pi _{\mathcal {F}}\) projects onto the interval of \(\mathcal {F}\) containing \(C((k+1)T)B((k+1)T)\), it is sufficient that the upper bound in (51) be less than half the minimum distance between intervals of \(\mathcal {F}\). By Assumptions 3 and 5, the image of \(\mathcal {A}\) under f has the form \(\mathcal {F} = [\underline{f}_{1}, \overline{f}_{1}] \cup \cdots \cup [\underline{f}_{q}, \overline{f}_{q}]\), where \(\overline{f}_{i} < \underline{f}_{i+1}\), \(i = 1, \ldots , q-1\), for some \(q \in \mathbb {N}\). Let \(d_{\min } :=\min \nolimits _{j} ( \underline{f}_{j+1} - \overline{f}_{j} ) \text {, } j = 1,\ldots , q-1\), and let \(T_1 :=\frac{1}{c_{1}} \min \{\frac{d_{\min }}{4}, \frac{ \overline{\delta } }{2 \ell } \}\), where \(\ell \) is the Lipschitz constant of \(f^{-1}\) on \(\mathcal {F}\). Then, from (51), for any \(c > \frac{c_{1}}{\rho } \max \{ \frac{4}{d_{\min }}, \frac{2 \ell }{ \overline{\delta } } \}\) and any \(T \in (0, T_1)\), we get

$$\begin{aligned} \left\| C((k+1)T) B((k+1)T) - \widehat{CB}[k+1] \right\| < \frac{c_{1} d_{\min }}{4 c_{1}} + \frac{c_{1} \rho d_{\min }}{4 c_{1} \rho } = \frac{d_{\min }}{2}, \end{aligned}$$

so it follows that

$$\begin{aligned}&\left\| C((k+1)T) B((k+1)T) - \Pi _{\mathcal {F}}( \widehat{CB}[k+1] ) \right\| \\&\quad \le \left\| C((k+1)T) B((k+1)T) - \widehat{CB}[k+1] \right\| . \end{aligned}$$

By Assumption 4, we have

$$\begin{aligned} \left\| \alpha ((k+1)T) - \hat{ \alpha } [k+1] \right\|\le & {} \ell \left\| C((k+1)T) B((k+1)T) - \Pi _{\mathcal {F}}( \widehat{CB}[k+1] ) \right\| \\< & {} c_{1} \ell \Bigg ( T + \frac{1}{\rho c} \Bigg ) < \frac{c_{1} \ell \overline{\delta } }{2 c_{1} \ell } + \frac{c_{1} \ell \rho \overline{\delta } }{2 c_{1} \ell \rho } = \overline{\delta } , \end{aligned}$$

where we have used the fact that \(\rho c > \frac{2 c_1 \ell }{\overline{\delta }}\). \(\square \)

1.3 A.3 Proof of Lemma 3

Let \(w_{n} \in PC_{\infty }\), \(w_{d} \in PC_{\infty }\), \( \alpha \in PS^{1}(\mathcal {A},T_0,\delta _{ \alpha })\), \(k \in \mathbb {Z}_{+}\), and \(x_0 \in \mathbb {R} ^n\) be arbitrary.

Proof of (iii)

In order to accomplish this, we proceed as follows:

  • Analyze all states at the sample points (Steps 1, 2, and 3),

  • Upper-bound a transformed closed-loop state (Step 4).

Step 1: Filter sample point analysis

At the sample points, the filter (15) satisfies

$$\begin{aligned} v[k+1] = \mathrm {e} ^{\lambda T} v[k] + \int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \left\| u(\tau ) \right\| \mathrm {d} \tau + \int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \left\| y(\tau ) \right\| \mathrm {d} \tau . \end{aligned}$$

By (19), the input term satisfies

$$\begin{aligned}&\int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \left\| u(\tau ) \right\| \mathrm {d} \tau \\&\quad = -\frac{1}{\lambda } \Big ( 1 - \mathrm {e} ^{\lambda h} \Big ) \Bigg [ \left\| H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] + \delta [k] \right\| \mathrm {e} ^{\lambda h} \\&\qquad + \left\| H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] - \delta [k] \right\| \Bigg ]\\&\quad \le -\frac{1}{\lambda } \Bigg (- \frac{\lambda T}{2} \Bigg ) \Bigg ( 2( \max \limits _{ \alpha \in \mathcal {A}}\left\| H( \alpha ) \right\| + \rho ) \left\| z[k] \right\| \\&\qquad + 2( \max \limits _{ \alpha \in \mathcal {A}}\left\| K( \alpha ) \right\| \left\| M \right\| + \rho ) \left\| r[k] \right\| + 2 \rho v[k] \Bigg ). \end{aligned}$$

Employing order notation, we can write this compactly as

$$\begin{aligned} \int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \left\| u(\tau ) \right\| \mathrm {d} \tau= & {} T \rho v[k] + \mathcal {O}(T) \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \mathcal {O}(T) \left\| s[k] \right\| _{\infty } , \end{aligned}$$

where \(\bar{x}\), \(\bar{z}\), and s are defined in (24). The output term satisfies

$$\begin{aligned}&\int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \left\| y(\tau ) \right\| \mathrm {d} \tau \\&\quad \le \int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \mathrm {d} \tau \overbrace{\left\| C( \alpha (kT)) x[k] \right\| }^{ = \mathcal {O}(1) \left\| x[k] \right\| } \\&\qquad + \int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \Big ( \underbrace{\left\| C( \alpha (\tau )) - C( \alpha (kT)) \right\| \left\| x[k] \right\| }_{ = \mathcal {O}(T) \left\| x[k] \right\| } \\&\qquad + \underbrace{\left\| C( \alpha (\tau )) \right\| \left\| x(\tau ) - x[k] \right\| }_{\text {bound using Proposition}~3} + \left\| w_{n} \right\| _{\infty } \Big ) \mathrm {d} \tau . \end{aligned}$$

Employing order notation, and utilizing Assumption 5 and Proposition 3, we can write this compactly as

$$\begin{aligned} \int _{kT}^{(k+1)T} \mathrm {e} ^{\lambda ((k+1)T - \tau )} \left\| y(\tau ) \right\| \mathrm {d} \tau= & {} \mathcal {O}(T) \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \mathcal {O}(T^2) v[k] + \mathcal {O}(T^2) \left\| s[k] \right\| _{\infty } \\&+ \mathcal {O}(T) \left\| w_{n} \right\| _{\infty } + \mathcal {O}(T^2) \left\| w_{d} \right\| _{\infty } . \end{aligned}$$

Combining these upper bounds, for sufficiently small T there exist constants \(e_1 > 0\), \(\gamma _1 > 0\), \(\gamma _2 > 0\), and \(w_1 > 0\) such that, for all such T and all \(k \in \mathbb {Z} _+\),

$$\begin{aligned} v[k+1]\le & {} \big ( 1 + (\lambda + \rho )T + e_1 T^2 \big ) v[k] + \gamma _1 T \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \gamma _2 T \left\| s[k] \right\| _{\infty } \nonumber \\&+ w_1 T \left\| w_{n} \right\| _{\infty } + w_1 T^2 \left\| w_{d} \right\| _{\infty } . \end{aligned}$$
(52)

Step 2: Controller sample point analysis

Starting with \( z[k+1] \), define

$$\begin{aligned} e_{z1} [k] :=T \Big ( F( \hat{ \alpha } [k]) - F( \alpha (kT)) \Big ) z[k] + T \Big ( G( \hat{ \alpha } [k]) - G( \alpha (kT)) \Big ) M r[k] , \end{aligned}$$

so that we can write

$$\begin{aligned} z[k+1] = \begin{bmatrix} 0&I + T F( \alpha (kT))&T G( \alpha (kT)) M \end{bmatrix} \begin{bmatrix} x[k] \\ z[k] \\ r[k] \end{bmatrix} + e_{z1} [k]. \end{aligned}$$

By Assumptions 5 and 6 (see Remark 1), there exists a constant \(\ell _1 > 0\) so that we have

$$\begin{aligned} \left\| e_{z1} [k] \right\| \le T \ell _1 \left\| \tilde{ \alpha } (kT) \right\| \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + T \ell _1 \left\| \tilde{ \alpha } (kT) \right\| \left\| s[k] \right\| _{\infty }, \end{aligned}$$

where \( \tilde{ \alpha } (kT) = \alpha (kT) - \hat{ \alpha } [k]\) denotes the parameter estimation error at time kT. By hypothesis \(\left\| \tilde{ \alpha } (kT) \right\| \le \overline{\delta } \), so

$$\begin{aligned} \left\| e_{z1} [k] \right\| \le T \ell _1 \overline{\delta } \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + T \ell _1 \overline{\delta } \left\| s[k] \right\| _{\infty }. \end{aligned}$$
(53)

We can treat \( r[k+1] \) similarly and define

$$\begin{aligned} \begin{aligned} e_{z2} [k] :=&- T \Big ( L( \hat{ \alpha } [k]) - L( \alpha (kT)) \Big ) C( \alpha (kT)) x[k] \\&+ T R \Big ( B( \hat{ \alpha } [k]) H( \hat{ \alpha } [k]) - B( \alpha (kT)) H( \alpha (kT)) \Big ) z[k] \\&+ T \Big ( ( Q( \hat{ \alpha } [k]) - Q( \alpha (kT)) ) + R ( B( \hat{ \alpha } [k]) K( \hat{ \alpha } [k]) - B( \alpha (kT)) K( \alpha (kT)) ) \Big ) r[k] \\&- T L( \hat{ \alpha } [k]) w_{n}[k], \end{aligned} \end{aligned}$$

so that

$$\begin{aligned} r[k+1]= & {} -T L( \alpha (kT)) C( \alpha (kT)) x[k] + T R B( \alpha (kT)) H( \alpha (kT)) z[k] \\&+ \Big (I + T \Big ( Q( \alpha (kT)) + R B( \alpha (kT)) K( \alpha (kT)) M \Big )\Big ) r[k] \\&+ e_{z2} [k]. \end{aligned}$$

Again, by Assumptions 5 and 6, there exists a constant \(\ell _2 > 0\) such that

$$\begin{aligned} \left\| e_{z2} [k] \right\| \le T \ell _2 \overline{\delta } \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + T \ell _2 \overline{\delta } \left\| s[k] \right\| _{\infty } + T \ell _2 \left\| w_{n} \right\| _{\infty } . \end{aligned}$$
(54)

Finally, we will use

$$\begin{aligned} e_{u} [k] :=\Big ( H( \hat{ \alpha } [k]) - H( \alpha (kT)) \Big ) z[k] + \Big ( K( \hat{ \alpha } [k]) - K( \alpha (kT)) \Big ) M r[k] , \end{aligned}$$

to write

$$\begin{aligned} \begin{aligned} u[k] - \delta (t)&= H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \\&= \begin{bmatrix} H( \alpha (kT))&K( \alpha (kT)) M \end{bmatrix} \begin{bmatrix} z[k] \\ r[k] \end{bmatrix} + e_{u} [k], \qquad t \in [kT, (k+1)T). \end{aligned} \end{aligned}$$

Again, by Assumptions 5 and 6, there exists a constant \(\ell _3 > 0\) such that

$$\begin{aligned} \left\| e_{u} [k] \right\| \le \ell _3 \overline{\delta } \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \ell _3 \overline{\delta } \left\| s[k] \right\| _{\infty }. \end{aligned}$$
(55)

Step 3: Plant sample point analysis

The value of the plant state at time \(t = (k+1)T\) is

$$\begin{aligned} x[k+1]= & {} x[k] + \int _{kT}^{(k+1)T} A( \alpha (\tau )) x(\tau ) \mathrm {d} \tau + \int _{kT}^{(k+1)T} B( \alpha (\tau )) u(\tau ) \mathrm {d} \tau \\&\quad + \int _{kT}^{(k+1)T} w_{d}(\tau ) \mathrm {d} \tau , \end{aligned}$$

so that, using the structure of the control signal (19),

$$\begin{aligned} x[k+1]= & {} (I + T A( \alpha (kT)) ) x[k] \\&+ T B( \alpha (kT)) \Bigg ( \begin{bmatrix} H( \alpha (kT))&K( \alpha (kT)) \end{bmatrix} \begin{bmatrix} z[k] \\ r[k] \end{bmatrix} + e_{u} [k] \Bigg ) \\&+ \int _{kT}^{(k+1)T} ( A( \alpha (\tau )) - A( \alpha (kT)) ) \mathrm {d} \tau x[k] \\&+ \int _{kT}^{(k+1)T} A( \alpha (\tau )) ( x(\tau ) - x[k]) \mathrm {d} \tau \\&+ \int _{kT}^{(k+1)T} ( B( \alpha (\tau )) - B( \alpha (kT)) ) \mathrm {d} \tau \Big ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \Big ) \\&+ \int _{kT}^{(k+1)T} B( \alpha (\tau )) \delta (\tau ) \mathrm {d} \tau + \int _{kT}^{(k+1)T} w_{d}(\tau ) \mathrm {d} \tau . \end{aligned}$$

Define

$$\begin{aligned} e_{p} [k]:= & {} \int _{kT}^{(k+1)T} ( A( \alpha (\tau )) - A( \alpha (kT)) ) \mathrm {d} \tau x[k] + \int _{kT}^{(k+1)T} A( \alpha (\tau )) ( x(\tau ) - x[k]) \mathrm {d} \tau \\&+ \int _{kT}^{(k+1)T} ( B( \alpha (\tau )) - B( \alpha (kT)) ) \mathrm {d} \tau \Big ( H( \hat{ \alpha } [k]) z[k] + K( \hat{ \alpha } [k]) M r[k] \Big ) \\&+ \int _{kT}^{(k+1)T} B( \alpha (\tau )) \delta (\tau ) \mathrm {d} \tau + \int _{kT}^{(k+1)T} w_{d}(\tau ) \mathrm {d} \tau , \end{aligned}$$

to be able to compactly write

$$\begin{aligned} \begin{aligned} x[k+1] =&\begin{bmatrix} I + T A( \alpha (kT))&T B( \alpha (kT)) H( \alpha (kT))&T B( \alpha (kT)) K( \alpha (kT)) M \end{bmatrix} \begin{bmatrix} x[k] \\ z[k] \\ r[k] \end{bmatrix} \\&+ T B( \alpha (kT)) e_{u} [k] + e_{p} [k]. \end{aligned} \end{aligned}$$

By Assumptions 5 and 6 (see Remark 1) and Proposition 3, there exists a constant \(\ell _4 > 0\) such that for small T

$$\begin{aligned} \left\| e_{p} [k] \right\| \le T^2 \ell _4 v[k] + T^2 \ell _4 \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + T^2 \ell _4 \left\| s[k] \right\| _{\infty } + T \ell _4 \left\| w_{d} \right\| _{\infty } . \end{aligned}$$
(56)

Step 4: Closed-loop difference inequality

Combining the analysis of the plant and the controller, we obtain

$$\begin{aligned}&\begin{bmatrix} x[k+1] \\ z[k+1] \\ r[k+1] \end{bmatrix} \\&\quad = \left( I + T \begin{bmatrix} A( \alpha (kT))&B( \alpha (kT)) H( \alpha (kT))&B( \alpha (kT)) K( \alpha (kT)) M \\ 0&F( \alpha (kT))&G( \alpha (kT)) M \\ - L( \alpha (kT)) C( \alpha (kT))&R B( \alpha (kT)) H( \alpha (kT))&Q( \alpha (kT)) + R B( \alpha (kT)) K( \alpha (kT)) M \end{bmatrix} \right) \\&{\times } \begin{bmatrix} x[k] \\ z[k] \\ r[k] \end{bmatrix} + \begin{bmatrix} T B( \alpha (kT)) e_{u} [k] + e_{p} [k] \\ e_{z1} [k] \\ e_{z2} [k] \end{bmatrix} . \end{aligned}$$

In \((\bar{x}, \bar{z}, s)\)-coordinates, making use of (9) and (13), we have

$$\begin{aligned} \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \\ s[k+1] \end{bmatrix}= & {} \Bigg ( I + T \begin{bmatrix} P( \alpha (kT))&- \begin{bmatrix} X \\ Z \end{bmatrix} ^{-1} \begin{bmatrix} B( \alpha (kT)) K( \alpha (kT)) M \\ G( \alpha (kT)) M \end{bmatrix} \\ \begin{matrix} 0&0 \end{matrix}&Q( \alpha (kT)) \end{bmatrix} \Bigg ) \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \\ s[k] \end{bmatrix} \\&+ \begin{bmatrix} \begin{bmatrix} X \\ Z \end{bmatrix} ^{-1} \begin{bmatrix} T B( \alpha (kT)) e_{u} [k] + e_{p} [k] \\ e_{z1} [k] \end{bmatrix} \\ T R B( \alpha (kT)) e_{u} [k] + R e_{p} [k] - e_{z2} [k] \end{bmatrix} . \end{aligned}$$

To construct the decrescent norm, we define a difference inequality and apply two similarity transformations. We start by upper-bounding the transformed plant and controller states:

$$\begin{aligned} \left\| \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \end{bmatrix} \right\| _{1}\le & {} \left\| I + T P( \alpha (kT)) \right\| _{1} \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} \\&+ T \left\| \begin{bmatrix} X \\ Z \end{bmatrix} ^{-1} \begin{bmatrix} B( \alpha (kT)) K( \alpha (kT)) M \\ G( \alpha (kT)) M \end{bmatrix} \right\| _{1} \left\| s[k] \right\| _{1} \\&+ \left\| \begin{bmatrix} X \\ Z \end{bmatrix} ^{-1} \begin{bmatrix} T B( \alpha (kT)) e_{u} [k] + e_{p} [k] \\ e_{z1} [k] \end{bmatrix} \right\| _{1}. \end{aligned}$$

Next, we take advantage of the \(\mathcal {H}_{1}\) property that \( P( \alpha ) \) enjoys: By Proposition 1 there exists a constant \(\lambda _{1} < 0\) so that \(\left\| I + T P( \alpha ) \right\| _{1} \le 1 + \lambda _{1}T\) for all sufficiently small T; similarly, we can take advantage of the \(\mathcal {H}_\infty \) property that \(Q(\alpha )\) enjoys: There exists a constant \(\lambda _2 < 0\) so that \(\Vert I + TQ(\alpha )\Vert _\infty \le 1 + \lambda _2T\) for all sufficiently small T; clearly, we can choose \(\lambda _1\) and \(\lambda _2\) so that \(\lambda _2< \lambda _1 < 0\). Then, using (53), (55), and (56), there exist constants \(e_2 > 0\), \(\gamma _3 > 0\), and \(w_2 > 0\) such that for small T

$$\begin{aligned} \left\| \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \end{bmatrix} \right\| _{1}\le & {} \big ( 1 + \lambda _1 T + e_2 T ( \overline{\delta } + T) \big ) \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} \nonumber \\&+ \big ( \gamma _3 T + e_2 T ( \overline{\delta } + T) \big ) \left\| s[k] \right\| _{\infty } \nonumber \\&+ e_2 T^2 v[k] + w_2 T \left\| w_{d} \right\| _{\infty } . \end{aligned}$$
(57)

In a similar fashion, we have an upper bound on \(s[k+1]\):

$$\begin{aligned} \begin{aligned} \left\| s[k+1] \right\| _{\infty }&\le \left\| I + T Q( \alpha (kT)) \right\| _{\infty } \left\| s[k] \right\| _{\infty } + T \left\| R B( \alpha (kT)) e_{u} [k] \right\| _{\infty } \\&\quad + \left\| R e_{p} [k] \right\| _{\infty } + \left\| e_{z2} [k] \right\| _{\infty }\\&\le (1 + \lambda _2 T) \left\| s[k] \right\| _{\infty } + T \left\| R B( \alpha (kT)) \right\| \left\| e_{u} [k] \right\| _{\infty } + \left\| R \right\| \left\| e_{p} [k] \right\| _{\infty } \\&\quad + \left\| e_{z2} [k] \right\| _{\infty }, \end{aligned} \end{aligned}$$

and using (54), (55), and (56), there exist constants \(e_3 > 0\) and \(w_3 > 0\) such that for small T

$$\begin{aligned} \left\| s[k+1] \right\| _{\infty }\le & {} \big ( 1 + \lambda _2 T + e_3 T ( \overline{\delta } + T) \big ) \left\| s[k] \right\| _{\infty } + e_3 T ( \overline{\delta } + T) \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} \nonumber \\&+ e_3 T^2 v[k] + w_3 T \left\| w_{n} \right\| _{\infty } + w_3 T \left\| w_{d} \right\| _{\infty } . \end{aligned}$$
(58)

Now, we combine the bounds on the states. Recall that the controller parameter \(\rho \) was chosen to satisfy \(\rho \in (0, -\lambda )\), which means that \(\lambda + \rho < 0\); now fix

$$\begin{aligned} \bar{\lambda } \in \left( \max \{\lambda _1, \lambda _2, \lambda + \rho \}, 0\right) , \end{aligned}$$

which means that

$$\begin{aligned} \lambda _2< \lambda _1< \bar{\lambda } < 0. \end{aligned}$$
(59)

Combining the bounds given in (52), (57), and (58) yields, for small T:

$$\begin{aligned} \begin{bmatrix} v[k+1] \\ \left\| \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \end{bmatrix} \right\| _{1} \\ \left\| s[k+1] \right\| _{\infty } \end{bmatrix}\le & {} \begin{bmatrix} 1 + \bar{\lambda } T + e_1 T^2&\gamma _1 T&\gamma _2 T \\ e_2 T^2&1 + \lambda _{1}T + e_2 T ( \overline{\delta } + T)&\gamma _3 T + e_2 T ( \overline{\delta } + T) \\ e_3 T^2&e_3 T ( \overline{\delta } + T)&1 + \lambda _{2}T + e_3 T ( \overline{\delta } + T) \end{bmatrix} \begin{bmatrix} v[k] \\ \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} \\ \left\| s[k] \right\| _{\infty } \end{bmatrix} \\&+ \begin{bmatrix} w_1 T&w_1 T^2 \\ 0&w_2 T \\ w_3 T&w_3 T \end{bmatrix} \begin{bmatrix} \left\| w_{n} \right\| _{\infty } \\ \left\| w_{d} \right\| _{\infty } \end{bmatrix} . \end{aligned}$$

So, with \(E \in \mathbb {R} ^{3 \times 3}\) suitably chosen and T sufficiently small, we have

$$\begin{aligned} \begin{bmatrix} v[k+1] \\ \left\| \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \end{bmatrix} \right\| _{1} \\ \left\| s[k+1] \right\| _{\infty } \end{bmatrix}\le & {} \left( \underbrace{ \begin{bmatrix} 1 + \bar{\lambda } T&\gamma _1 T&\gamma _2 T \\ 0&1 + \lambda _{1} T&\gamma _3 T \\ 0&0&1 + \lambda _{2} T \end{bmatrix} }_{=: \Lambda } + T ( \overline{\delta } + T) E \right) \begin{bmatrix} v[k] \\ \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} \\ \left\| s[k] \right\| _{\infty } \end{bmatrix} \nonumber \\&+ \underbrace{ \begin{bmatrix} w_1 T&w_1 T^2 \\ 0&w_2 T \\ w_3 T&w_3 T \end{bmatrix} }_{ =: W(T)} \begin{bmatrix} \left\| w_{n} \right\| _{\infty } \\ \left\| w_{d} \right\| _{\infty } \end{bmatrix} . \end{aligned}$$
(60)

Next, we define three states as upper bounds of the above states at periods k and \(k+1\). This allows us to get equality, so we can solve and transform a difference equation rather than inequality. Define \(\psi :=(\psi _1, \psi _2, \psi _3) \in \mathbb {R} _+^3\) via

$$\begin{aligned}&\psi _1[k] :=v[k], \quad \psi _2[k] :=\left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1}, \quad \psi _3[k] :=\left\| s[k] \right\| _{\infty },\\&\psi [k+1] :=(\Lambda + T ( \overline{\delta } + T) E ) \psi [k] + W(T) \begin{bmatrix} \left\| w_{n} \right\| _{\infty } \\ \left\| w_{d} \right\| _{\infty } \end{bmatrix} . \end{aligned}$$

It is clear that \(v[k+1] \le \psi _1[k+1]\), \(\left\| \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \end{bmatrix} \right\| _{1} \le \psi _2[k+1]\), and \(\left\| s[k+1] \right\| _{\infty } \le \psi _3[k+1]\) because

$$\begin{aligned} \begin{bmatrix} v[k+1] \\ \left\| \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \end{bmatrix} \right\| _{1} \\ \left\| s[k+1] \right\| _{\infty } \end{bmatrix}\le & {} (\Lambda + T ( \overline{\delta } + T) E) \begin{bmatrix} v[k] \\ \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} \\ \left\| s[k] \right\| _{\infty } \end{bmatrix} + W(T) \begin{bmatrix} \left\| w_{n} \right\| _{\infty } \\ \left\| w_{d} \right\| _{\infty } \end{bmatrix} \\= & {} (\Lambda + T ( \overline{\delta } + T) E) \psi [k] + W(T) \begin{bmatrix} \left\| w_{n} \right\| _{\infty } \\ \left\| w_{d} \right\| _{\infty } \end{bmatrix} \\= & {} \psi [k+1]. \end{aligned}$$

Next, we perform two similarity transformations with the objective of diagonalizing the matrix \(\Lambda \) in (60). The first is a constant transformation of the form

$$\begin{aligned} V := \begin{bmatrix} 1&0&0 \\ 0&1&v_{23} \\ 0&0&1 \end{bmatrix} \end{aligned}$$

so that under similarity transformation we have

$$\begin{aligned}&V (\Lambda + T ( \overline{\delta } + T) E) V^{-1} \nonumber \\&= \begin{bmatrix} 1 + \bar{\lambda } T&\gamma _1 T&(\gamma _2 - v_{23} \gamma _1)T \\ 0&1 + \lambda _{1} T&(\gamma _3 + v_{23}(\lambda _{2} - \lambda _{1}))T \\ 0&0&1 + \lambda _{2} T \end{bmatrix} + T ( \overline{\delta } + T) V E V^{-1}. \end{aligned}$$

Choose \(v_{23} = \gamma _{3} / (\lambda _{1} - \lambda _{2})\) so that we are left with

$$\begin{aligned} V (\Lambda + T ( \overline{\delta } + T) E) V^{-1} = \begin{bmatrix} 1 + \bar{\lambda } T&\gamma _1 T&(\gamma _2 - v_{23} \gamma _1)T \\ 0&1 + \lambda _{1} T&0 \\ 0&0&1 + \lambda _{2} T \end{bmatrix} + T ( \overline{\delta } + T) V E V^{-1}. \end{aligned}$$

To complete the diagonalization of \(\Lambda \), consider a transformation of the form

$$\begin{aligned} Y := \begin{bmatrix} 1&\bar{Y} \\ 0&I \end{bmatrix} \in \mathbb {R} ^{3 \times 3}, \ \ \bar{Y} \in \mathbb {R} ^{1 \times 2}, \end{aligned}$$

so that, with \(\gamma _{4} :=\gamma _{2} - v_{23} \gamma _{1}\),

$$\begin{aligned}&Y V (\Lambda + T ( \overline{\delta } + T) E) V^{-1} Y^{-1}\\&\quad = \begin{bmatrix} 1 + \bar{\lambda } T&\begin{bmatrix} \gamma _1&\gamma _4 \end{bmatrix} T + \bar{Y} \begin{bmatrix} 1 + \lambda _{1} T&0 \\ 0&1 + \lambda _{2} T \end{bmatrix} - (1 + \bar{\lambda } T) \bar{Y} \\ \begin{bmatrix} 0 \\ 0 \end{bmatrix}&\begin{bmatrix} 1 + \lambda _{1} T&0 \\ 0&1 + \lambda _{2} T \end{bmatrix} \end{bmatrix} \\\\&\qquad + T ( \overline{\delta } + T) Y V E V^{-1} Y^{-1}. \end{aligned}$$

Choose \(\bar{Y} = \begin{bmatrix} \frac{\gamma _1}{ \bar{\lambda } - \lambda _1}&\frac{\gamma _4}{ \bar{\lambda } - \lambda _2} \end{bmatrix} \) to get

$$\begin{aligned} Y V (\Lambda + T ( \overline{\delta } + T) E) V^{-1} Y^{-1} = \begin{bmatrix} 1 + \bar{\lambda } T&0&0 \\ 0&1 + \lambda _{1} T&0 \\ 0&0&1 + \lambda _{2} T \end{bmatrix} + T ( \overline{\delta } + T) Y V E V^{-1} Y^{-1}. \end{aligned}$$

Defining \(N :=Y V\), we have

$$\begin{aligned} N \psi [k+1] = \left( \begin{bmatrix} 1 + \bar{\lambda } T&0&0 \\ 0&1 + \lambda _{1} T&0 \\ 0&0&1 + \lambda _{2} T \end{bmatrix} + T ( \overline{\delta } + T) N E N^{-1} \right) N \psi [k] + N W(T) \begin{bmatrix} \left\| w_{n} \right\| _{\infty } \\ \left\| w_{d} \right\| _{\infty } \end{bmatrix} . \end{aligned}$$

It follows from (59) that all elements of N are nonnegative, which can be used to prove that

$$\begin{aligned} \left\| N \psi [k+1] \right\| \ge \left\| N \begin{bmatrix} v[k+1] \\ \left\| \begin{bmatrix} \bar{x}[k+1] \\ \bar{z}[k+1] \end{bmatrix} \right\| _{1} \\ \left\| s[k+1] \right\| _{\infty } \end{bmatrix} \right\| = \left\| p [k+1] \right\| . \end{aligned}$$

Taking the \(\infty \)-norm of \( p [k+1]\), there exist constants \(\gamma > 0\) and \(c > 0\) such that for small T

$$\begin{aligned} \left\| p [k+1] \right\| _{\infty }\le & {} \left\| N \psi [k+1] \right\| _{\infty } \le \Big ( 1 + \bar{\lambda } T + \gamma T ( \overline{\delta } + T) \Big ) \left\| N \psi [k] \right\| _{\infty } \\&+ c T \left\| w_{n} \right\| _{\infty } + c T \left\| w_{d} \right\| _{\infty } \\= & {} \Big ( 1 + \bar{\lambda } T + \gamma T ( \overline{\delta } + T) \Big ) \left\| p [k] \right\| _{\infty } + c T \left\| w_{n} \right\| _{\infty } + c T \left\| w_{d} \right\| _{\infty } . \end{aligned}$$

Now, choose \( \overline{\delta } > 0\) so that

$$\begin{aligned} \hat{\lambda } := \bar{\lambda } + 2 \gamma \overline{\delta } < 0; \end{aligned}$$

it follows that for small T, we have

$$\begin{aligned} \begin{aligned} \left\| p [k+1] \right\| _{\infty }&\le \Big ( 1 + \hat{\lambda } T \Big ) \left\| p [k] \right\| _{\infty } + c T \left\| w_{n} \right\| _{\infty } + c T \left\| w_{d} \right\| _{\infty } \\&\le \mathrm {e} ^{ \hat{\lambda } T} \left\| p [k] \right\| _{\infty } + c T \left\| w_{n} \right\| _{\infty } + c T \left\| w_{d} \right\| _{\infty } , \end{aligned} \end{aligned}$$

which means that (iii) holds. \(\square \)

Proof of (i)

By the definition of \( p \),

$$\begin{aligned} p (t) - p [k] = N \begin{bmatrix} | v(t) | - |v[k]| \\ \left\| \begin{bmatrix} \bar{x}(t) \\ \bar{z}(t) \end{bmatrix} \right\| _{1} - \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} \\ \left\| s(t) \right\| _{\infty } - \left\| s[k] \right\| _{\infty } \end{bmatrix} , \quad t \ge 0. \end{aligned}$$

Taking the 1-norm and using the reverse triangle inequality, for \(t \in [kT,(k+1)T)\) we get

$$\begin{aligned} \left\| p (t) - p [k] \right\| _{1}= & {} \mathcal {O}(1) | v(t) - v[k]| + \mathcal {O}(1) \left\| x(t) - x[k] \right\| \nonumber \\&+ \mathcal {O}(1) \left\| z(t) - z[k] \right\| + \mathcal {O}(1) \left\| r(t) - r[k] \right\| . \end{aligned}$$
(61)

The solution to (15) with initial condition v[k] is

$$\begin{aligned} v(t) = v[k] + \int _{kT}^{t} \lambda (v(\tau ) - v[k]) \mathrm {d} \tau + (t - kT) \lambda v[k] + \int _{kT}^{t} (\left\| u(\tau ) \right\| + \left\| y(\tau ) \right\| ) \mathrm {d} \tau . \end{aligned}$$

Rearranging and taking the absolute value, we have

$$\begin{aligned} |v(t) - v[k]| \le |\lambda | \int _{kT}^{t} |v(\tau ) - v[k]| \mathrm {d} \tau + T |\lambda | v[k] + \int _{kT}^{t} (\left\| u(\tau ) \right\| + \left\| y(\tau ) \right\| ) \mathrm {d} \tau , \end{aligned}$$

and by applying the Bellman–Gronwall inequality and using Proposition 3, it follows that

$$\begin{aligned} |v(t) - v[k]|= & {} \mathcal {O}(T) v[k] + \mathcal {O}(T) \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \mathcal {O}(T) \left\| s[k] \right\| _{\infty } \nonumber \\&+ \mathcal {O}(T) \left\| w_{n} \right\| _{\infty } + \mathcal {O}(T^2) \left\| w_{d} \right\| _{\infty } , \quad t \in [kT, (k+1)T). \end{aligned}$$
(62)

For \(t \in [kT, (k+1)T)\), we also have \(\left\| z(t) - z[k] \right\| = 0\) and \(\left\| r(t) - r[k] \right\| = 0\). Using these bounds on (61), along with Proposition 3 and (62), we get

$$\begin{aligned} \left\| p (t) - p [k] \right\| = \mathcal {O}(T) \left\| p [k] \right\| + \mathcal {O}(T) ( \left\| w_{n} \right\| _{\infty } + \left\| w_{d} \right\| _{\infty } ), \quad t \in [kT, (k+1)T). \end{aligned}$$

So, for \(t \in [kT, (k+1)T)\), there exists a constant \(c > 0\) so that for sufficiently small T.

$$\begin{aligned} \left\| p (t) - p [k] \right\| \le c T \left\| p [k] \right\| + c T \left\| w_{n} \right\| _{\infty } + c T \left\| w_{d} \right\| _{\infty } , \quad t \in [kT, (k+1)T). \end{aligned}$$

\(\square \)

Proof of (ii)

The bound (61) derived in the proof of part (i) remains valid. Additionally, using (17) we have

$$\begin{aligned} z[k+1] - z[k] = T F( \hat{ \alpha } [k]) z[k] + T G( \hat{ \alpha } [k]) r[k] , \end{aligned}$$

so taking the norm and employing order notation,

$$\begin{aligned} \left\| z[k+1] - z[k] \right\| = \mathcal {O}(T) \left\| \begin{bmatrix} \bar{x}[k] \\ \bar{z}[k] \end{bmatrix} \right\| _{1} + \mathcal {O}(T) \left\| s[k] \right\| _{\infty } = \mathcal {O}(T) \left\| p [k] \right\| . \end{aligned}$$

We can also upper-bound \(\left\| r[k+1] - r[k] \right\| \). We have, again from (17),

$$\begin{aligned} r[k+1] - r[k]= & {} T R B( \hat{ \alpha } [k]) H( \hat{ \alpha } [k]) z[k] \\&+ T \Big ( Q( \hat{ \alpha } [k]) + R B( \hat{ \alpha } [k]) K( \hat{ \alpha } [k]) M \Big ) r[k] \\&- T L( \hat{ \alpha } [k]) \Big ( C( \alpha [k]) x[k] + w_{n}[k] \Big ), \end{aligned}$$

so taking the norm and employing order notation,

$$\begin{aligned} \left\| r[k+1] - r[k] \right\| = \mathcal {O}(T) \left\| p [k] \right\| + \mathcal {O}(T) \left\| w_{n} \right\| _{\infty } . \end{aligned}$$

Applying these bounds to (61), along with Proposition 3 and (52), we have

$$\begin{aligned} \left\| p [k+1] - p [k] \right\| = \mathcal {O}(T) \left\| p [k] \right\| + \mathcal {O}(T) \left\| w_{n} \right\| _{\infty } + \mathcal {O}(T) \left\| w_{d} \right\| _{\infty } . \end{aligned}$$

So there exists a constant \(c > 0\) so that, for all T sufficiently small,

$$\begin{aligned} \left\| p [k+1] \right\| \le (1 + c T) \left\| p [k] \right\| + c T \left\| w_{n} \right\| _{\infty } + c T \left\| w_{d} \right\| _{\infty } . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simard, J.D., Nielsen, C. & Miller, D.E. Periodic adaptive stabilization of rapidly time-varying linear systems. Math. Control Signals Syst. 31, 1–42 (2019). https://doi.org/10.1007/s00498-019-0236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-019-0236-6

Keywords

Navigation