Skip to main content

Overview on Urban Climate and Microclimate Modeling Tools and Their Role to Achieve the Sustainable Development Goals

  • Chapter
  • First Online:
Architecture and Design for Industry 4.0

Abstract

The role of the fourth Industrial Revolution enabling technologies is pivotal if the paradigms of data-driven, performance-based, and optimized design have to become standard practice. Urban climate and microclimate models are increasingly likely to support the design for adaptation, resilience, and mitigation of the heat island in cities. In this context, the objective of this chapter is to emphasize the role of urban climate and microclimate modeling tools to achieve the Sustainable Development Goals at the local level. To this, firstly the authors screened the Agenda 2030 official Targets and Indicators and the European Handbook for Voluntary Local Reviews’ indicators, highlighting how they deal with environmental quality, urban climate and microclimate issues. Interlinkages and possible trade-offs were identified among goals and targets, too. Secondly, a robust overview on the main software for climate modeling is provided. Tools were clustered, according to the domain of application, into scale, statistical, numerical, and dispersion/air quality models. Thus, the authors focused on numerical models, identified as proper tools for architects and planners to support urban and micro-urban scale design. A final matrix compares the most used numerical models at a glance, highlighting main features, fields of applications, environmental parameters simulated, and interoperability options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali-Toudert, F., Mayer, H.: Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol. Energy 81, 742–754 (2007)

    Article  Google Scholar 

  2. Bande, L., Afshari, A., Al Masri, D., Jha, M., Norford, L., Tsoupos, A., Marpu, P., Pasha, Y., Armstrong, P.: Validation of UWG and Envi-Met Models in an Abu Dhabi District, Based on Site Measurements. Sustainability 11 (2019)

    Google Scholar 

  3. Barberio, M., Colella, M.: Architettura 4.0. Fondamenti ed esperienze di ricerca progettuale. Maggioli Editore, Santarcangelo di Romagna, Italy (2020)

    Google Scholar 

  4. Battisti, A.: Il progetto come volontà e rappresentazione: dai big data all’apprendimento collettivo. In: Perriccioli, M., Rigillo, M., Russo Ermolli, S. Tucci, F. (eds.), Design in the Digital Age. Technology Nature Culture, pp. 335–339. Maggioli Editore, Santarcangelo di Romagna, Italy (2020).

    Google Scholar 

  5. Blocken, B.: Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 91, 219–245 (2015)

    Article  Google Scholar 

  6. Blocken, B., Janssen, W.D., van Hooff., T.: CFD Simulation for Pedestrian Wind Comfort and Wind Safety in Urban Areas: General Decision Framework and Case Study for the Eindhoven University Campus. Environmental Modeling & Software 30, 15–34 (2012)

    Google Scholar 

  7. Borchardt S., Barbero-Vignola G., Buscaglia D., Maroni M., Marelli L.: A Sustainable Recovery for the EU: A text mining approach to map the EU Recovery Plan to the Sustainable Development Goals. EUR 30452 EN, Publications Office of the EuropeanUnion, Luxembourg, (2020)

    Google Scholar 

  8. Bouzouidja, R., Cannavo, P., Bodénan, P., Gulyás, A., Kiss, M., Kovács, A., Béchet, B., et al.: How to evaluate nature-based solutions performance for microclimate, water and soil management issues – available tools and methods from Nature4Cities European Project Results. Ecol. Ind. 125, 107556 (2021)

    Article  Google Scholar 

  9. Breu, T., Bergoo, M., Ebneter, L., Pham-Truffert, M., Bieri, S., Messerli, P., Ott, C., Bader, C.: Where to begin? Defining national strategies for implementing the 2030 Agenda: the case of Switzerland. Sustain. Sci. 16, 183–201 (2021)

    Article  Google Scholar 

  10. Bruse, M., Fleer, H.: Simulating surface–plant–air interactions inside urban environments with a three-dimensional numerical model. Environ. Model. Softw. 13, 373–384 (1998)

    Article  Google Scholar 

  11. Denton, F., Wilbanks, T.J., Abeysinghe, A.C., Burton, I., Gao, Q., Lemos, M.C., Masui, T., O’Brien, K.L., Warner, K.L.: Climate-resilient pathways: adaptation, mitigation, and sustainable development. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1101–1131 (2014)

    Google Scholar 

  12. Elbondira, T.A., Tokimatsu, K., Asawa, T., Ibrahim, M.G.: Impact of neighborhood spatial characteristics on the microclimate in a hot arid climate – a field based study. Sustain. Cities Soc. 75 (2021)

    Google Scholar 

  13. Evola, G., Costanzo, V., Magrì, C., Margani, G., Marletta, L., Naboni, E.: A Novel Comprehensive workflow for modeling outdoor thermal comfort and energy demand in urban canyons: results and critical issues. Energy Build. 216 (2020)

    Google Scholar 

  14. Figliola, A.: Envision the construction sector in 2050. Technol. Innov. Vert. TECHNE 17, 213–221 (2019)

    Google Scholar 

  15. Grimmond, C.S.B., Roth, M., Oke, T.R., Au, Y.C., Best, M., Betts, R., Carmichael, G., et al.: Climate and more sustainable cities: climate information for improved planning and management of cities (producers/capabilities perspective). Procedia Environ. Sci. 1, 247–274 (2010)

    Article  Google Scholar 

  16. Gulyás, A., Unger, J., Matzarakis, A.: Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build. Environ. 41(12), 1713–1722 (2006)

    Article  Google Scholar 

  17. Imbert, C., Bhattacharjee, S., Tencar, J.: Simulation of urban microclimate with SOLENE-Microclimat—an outdoor comfort case study. In: Proceedings of the Symposium on Simulation for Architecture and Urban Design. Delft (2018)

    Google Scholar 

  18. Imran, H.M., Shammas, M.S., Rahman, A., Jacobs, S.J., Ng, A.W.M., Muthukumaran, S.: Causes, modeling and mitigation of urban heat island: a review. Earth Sci. 10(6), 244–264 (2021)

    Google Scholar 

  19. Independent Group of Scientists appointed by the Secretary-General: Global Sustainable development report 2019: the future is now-science for achieving sustainable development. United Nations, New York (2019)

    Google Scholar 

  20. Jänicke, B., Milošević, D., Manavvi, S.: Review of user-friendly models to improve the urban micro-climate. Atmosphere 12 (2021)

    Google Scholar 

  21. Kastner-Klein, P., Plate, E.J.: Wind-tunnel study of concentration fields in street canyons. Atmos. Environ. 33, 3973–3979 (1999)

    Article  Google Scholar 

  22. Kim, Y.H., Baik, J.J.: Maximum urban heat island intensity in Seoul. J. Appl. Meteorol. 41(6), 651–659 (2002)

    Article  Google Scholar 

  23. Krüger, E.L., Minella, F.O., Rasia, F.: Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 46(3), 621–634 (2011)

    Article  Google Scholar 

  24. Lauzet, N., Rodler, A., Musy, M., Azam, M.H., Guernouti, s., Mauree, D., Colinart, T.: How building energy models take the local climate into account in an urban context – a review. Renew. Sustain. Energy Rev. 116 (2019)

    Google Scholar 

  25. Lindberg, F., Grimmond, C.S.B., Gabey, A., Huang, B., Kent, C.W., Sun, T., Theeuwes, N.E., et al.: Urban multi-scale environmental predictor (UMEP): an integrated tool for city-based climate services. Environ. Model. Softw. 99, 70–87 (2018)

    Article  Google Scholar 

  26. Lindberg, F., Grimmond, C.S.B., Gabey, A., Jarvi, L., Kent, C.W., Krave, N., Sun, T., Wallenberg, N., Ward, H.C.: Urban multi-scale environmental predictor (UMEP) manual. University of Reading UK, University of Gothenburg Sweden, SIMS China (2019)

    Google Scholar 

  27. Lindberg, F., Holmer, B., Thorsson, S.: Solweig 1.0—modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 52 (7), 697–713 (2008)

    Google Scholar 

  28. Liu, D., Hu, S., Liu, J.: Contrasting the performance capabilities of urban radiation field between three microclimate simulation tools. Build. Environ. 175 (2020)

    Google Scholar 

  29. Lobaccaro, G., De Ridder, K., Acero, J.A., Hooyberghs, H., Lauwaet, D., Maiheu, B., Sharma, R., Govehovitch, B.: Applications of models and tools for mesoscale and microscale thermal analysis in mid-latitude climate regions—a review. Sustainability 13(22), 12385 (2021)

    Article  Google Scholar 

  30. Matzarakis, A., Rutz, F., Mayer, H.: Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int. J. Biometeorol. 51(4), 323–334 (2007)

    Article  Google Scholar 

  31. Matzarakis, A., Rutz, F., Mayer, H.: Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int. J. Biometeorol. 54(2), 131–139 (2010)

    Article  Google Scholar 

  32. Mauree, D., Naboni, E., Coccolo, S., Perera, A.T.D., Nik, V.M., Scartezzini, J.L.: A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renew. Sustain. Energy Rev. 112, 733–746 (2019)

    Article  Google Scholar 

  33. Miguet, F., Groleau, D.: A daylight simulation tool for urban and architectural spaces . application to transmitted direct and diffuse light through glazing. Build. Environ. 37(8–9), 833–43 (2002)

    Google Scholar 

  34. Mirzaei, P.A.: Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 19, 200–206 (2015)

    Article  Google Scholar 

  35. Montazeri, H., Blocken, B., Derome, D., Carmeliet, J., Hensen, J.L.M.: CFD analysis of forced convective heat transfer coefficients at windward building facades: influence of building geometry. J. Wind Eng. Ind. Aerodyn. 146, 102–116 (2015)

    Article  Google Scholar 

  36. Morille, B., Lauzet, N., Musy, M.: Solene-microclimate: a tool to evaluate envelopes efficiency on energy consumption at district scale. Energy Procedia 78, 1165–1170 (2015)

    Article  Google Scholar 

  37. Musy, M., Malys, L., Inard, C.: assessment of direct and indirect impacts of vegetation on building comfort: a comparative study of lawns, green walls and green roofs. Procedia Environ. Sci. 38, 603–610 (2017)

    Article  Google Scholar 

  38. Musy, M., Malys, L., Morille, B., Inard, C.: The use of solene-microclimat model to assess adaptation strategies at the district scale. Urban Climate 14, 213–223 (2015)

    Article  Google Scholar 

  39. Ng, E., Chen, L., Wang, Y., Yuan, C.: A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Build. Environ. 47, 256–271 (2012)

    Article  Google Scholar 

  40. OECD: A Territorial Approach to the Sustainable Development Goals: Synthesis report. OECD Publishing, Paris, OECD Urban Policy Reviews (2020)

    Book  Google Scholar 

  41. Oke, T.R.: Towards better scientific communication in urban climate. Theoret. Appl. Climatol. 84(1–3), 179–190 (2006)

    Article  Google Scholar 

  42. Parsaee, M., Joybari, M.M., Mirzaei, P.A., Haghighat, F.: Urban heat island, urban climate maps and urban development policies and action plans. Environ. Technol. Innov. 14 (2019)

    Google Scholar 

  43. Petri, A. C., Wilson, B., Koeser, A.: Planning the urban forest: adding microclimate simulation to the planner’s toolkit. Land Use Policy 88 (2019)

    Google Scholar 

  44. Pollo, R., Elisa B., Giulia S., Bono, R.: Designing the healthy city: an interdisciplinary approach. Sustain. Mediterr. Constr. 11 (2019)

    Google Scholar 

  45. Roudsari, M.S., Pak, M., Smith, A., Gill, G.: Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In: Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, 3128–35. Chambery (2013)

    Google Scholar 

  46. Santamouris, M., Mihalakakou, G., Papanikolaou, N., Asimakopoulos, D.N.: A neural network approach for modeling the heat island phenomenon in urban areas during the summer period. Geophys. Res. Lett. 26(3), 337–340 (1999)

    Article  Google Scholar 

  47. Setaih, K., Hamza, N., Mohammed, M.A., Dudek, S., Townshend, T.: CFD modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid climates. J. Inf. Technol. Constr. (ITCon) 19 (2014).

    Google Scholar 

  48. Sharmin, T., Steemers, K., Matzarakis, A.: Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 34, 293–308 (2017)

    Article  Google Scholar 

  49. Siragusa, A., Vizcaino, P., Proietti, P., Lavalle, C.: European Handbook for SDG Voluntary Local Reviews. In: EUR 30067 EN, Publications Office of the European Union, Luxembourg (2020)

    Google Scholar 

  50. Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., et al.: Planetary boundaries: Guiding human development on a changing planet. Science 347, 736 (2015)

    Article  Google Scholar 

  51. Toparlar, Y., Blocken, B., Maiheu, B., van Heijst, G.J.F.: A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 80, 1613–1640 (2017)

    Article  Google Scholar 

  52. Trane, M., Giovanardi, M., Pollo, R., Martoccia, C.: Microclimate design for micro-urban design. A case study in Granada, Spain. Sustain. Mediterr. Constr. 14, 149–55 (2021)

    Google Scholar 

  53. Trane, M., Ricciardi, G., Scalas, M., Ellena, M.: From CFD to GIS: a methodology to implement urban microclimate georeferenced databases. TECHNE Journal of Technology for Architecture and Environment 25, 124–133(2023)

    Google Scholar 

  54. Trane, M., Marelli, L., Siragusa, A., Pollo, R., Lombardi, P.: Progress by Research to Achieve the Sustainable Development Goals in the EU: A Systematic Literature Review. Sustainability 15(9), 7055 (2023)

    Google Scholar 

  55. Tucci, F.: Requirements, approaches, visions in the prospects for development of technological design. In: Lauria, M., Mussinelli, E., and Tucci, F. (eds.), Producing Project. Maggioli Editore, Sant’Arcangelo di Romagna, Italy (2020)

    Google Scholar 

  56. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). United Nations, New York (2019)

    Google Scholar 

  57. United Nations: Transforming our world: The 2030 agenda for sustainable development. Resolution Adopted by the General Assembly A/RES/70/1

    Google Scholar 

  58. Vukmirovic, M., Gavrilovic, S., Stojanovic, D.: The improvement of the comfort of public spaces as a local initiative in coping with climate change. Sustainability 11(23), 6546 (2019)

    Article  Google Scholar 

  59. Woetzel, J., Pinner, D., Samandari, H., et al.: Climate risk and response. Physical hazards and socioeconomic impacts. McKinsey Global Institute (2020)

    Google Scholar 

  60. Wong, N.H., He, Y., Nguyen, N.S., Raghavan, S.V., Martin, M., Hii, D.J., Yu, Z., Deng, J.: An integrated multiscale urban microclimate model for the urban thermal environment. Urban Climate 35, 100730 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is part of the work developed by the Research Unit of Politecnico di Torino as partner of the National Research Project PRIN TECH-START (key enabling TECHnologies and Smart environmenT in the Age of gReen economy, convergent innovations in the open space/building system for climaTe mitigation). This chapter is the result of a joint research by the Authors, who are equally responsible for it.

Author contributions: Conceptualization, M.T. (Matteo Trane), R.P. (Riccardo Pollo); investigation coordination: M.T., M.G. (Matteo Giovanardi), R.P.; methodology: M.T., A.P. (Anja Pejovic); literature selection and review process, M.T., A.P. (Anja Pejovic); writing—original draft, M.T., A.P.; writing—review and editing, M.T., M.G., R.P. All authors have read and agreed to the published version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Trane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trane, M., Giovanardi, M., Pejovic, A., Pollo, R. (2024). Overview on Urban Climate and Microclimate Modeling Tools and Their Role to Achieve the Sustainable Development Goals. In: Barberio, M., Colella, M., Figliola, A., Battisti, A. (eds) Architecture and Design for Industry 4.0. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-36922-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36922-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36921-6

  • Online ISBN: 978-3-031-36922-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics