Skip to main content

Genetic, Epigenetics, and Cell Adhesion in Acute Kidney Injury

  • Chapter
  • First Online:
Organ Crosstalk in Acute Kidney Injury

Abstract

The structural, functional, and dynamic coupling of the different systems of the human body means that an alteration in a specific organ might have diverse etiologies and heterogeneous local and systemic effects such as acute kidney injury (AKI). The interrelationship between genome, epigenome, and phenotypic characteristics is also modulated and has organic consequences. AKI is a syndrome with renal function impairment, in which variations in genetic information, as well as the dynamics of its expression in specific contexts, induce cellular programs interrelated among themselves and with the tissue microenvironment that through complex interactions can trigger and perpetuate AKI. In this section, the experimental and clinical evidence implicating genetic, epigenetic mechanisms and phenotypic characteristics that contribute to the emergence of AKI will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–25. https://www.nature.com/articles/s41581-018-0052-0.

    Article  CAS  PubMed  Google Scholar 

  2. Cell adhesion by integrins | Physiological reviews [Internet]. [cited August 15, 2022]. https://journals.physiology.org/doi/full/10.1152/physrev.00036.2018.

  3. Elangbam CS, Qualls CW, Dahlgren RR. Cell adhesion molecules—update. Vet Pathol. 1997;34(1):61–73. https://doi.org/10.1177/030098589703400113.

    Article  CAS  PubMed  Google Scholar 

  4. Maître JL, Heisenberg CP. Three functions of cadherins in cell adhesion. Curr Biol. 2013;23(14):R626–33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722483/.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brady HR. Leukocyte adhesion molecules: potential targets for therapeutic intervention in kidney diseases. Curr Opin Nephrol Hypertens. 1993;2(2):171–82.

    Article  CAS  PubMed  Google Scholar 

  6. Müller GA, Müller CA, Markovic-Lipkovski J. Adhesion molecules in renal diseases. Ren Fail. 1996;18(5):711–24.

    Article  PubMed  Google Scholar 

  7. Kato N, Yuzawa Y, Kosugi T, Hobo A, Sato W, Miwa Y, et al. The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol. 2009;20(7):1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu KY, Yung S, Chau MK, Tang CS, Yap DY, Tang AH, et al. Clinico-pathological associations of serum VCAM-1 and ICAM-1 levels in patients with lupus nephritis. Lupus. 2021;30(7):1039–50.

    Article  CAS  PubMed  Google Scholar 

  9. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med. 1998;339(20):1448–56.

    Article  CAS  PubMed  Google Scholar 

  10. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013;124(3):139–52.

    Article  CAS  PubMed  Google Scholar 

  11. Kato T, Hagiyama M, Takashima Y, Yoneshige A, Ito A. Cell adhesion molecule-1 shedding induces apoptosis of renal epithelial cells and exacerbates human nephropathies. Am J Physiol Renal Physiol. 2018;314(3):F388–98.

    Article  PubMed  Google Scholar 

  12. Herter JM, Rossaint J, Spieker T, Zarbock A. Adhesion molecules involved in neutrophil recruitment during sepsis-induced acute kidney injury. J Innate Immun. 2014;6(5):597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang Q, Li X, Li R, Peng J, Wang Z, Jiang Z, et al. Low shear stress inhibited endothelial cell autophagy through TET2 downregulation. Ann Biomed Eng. 2016;44(7):2218–27.

    Article  PubMed  Google Scholar 

  14. Pratt JR, Parker MD, Affleck LJ, Corps C, Hostert L, Michalak E, et al. Ischemic epigenetics and the transplanted kidney. Transplant Proc. 2006;38(10):3344–6.

    Article  CAS  PubMed  Google Scholar 

  15. Parker MD, Chambers PA, Lodge JPA, Pratt JR. Ischemia-reperfusion injury and its influence on the epigenetic modification of the donor kidney genome. Transplantation. 2008;86(12):1818–23.

    Article  PubMed  Google Scholar 

  16. Endo K, Kito N, Fukushima Y, Weng H, Iwai N. A novel biomarker for acute kidney injury using TaqMan-based unmethylated DNA-specific polymerase chain reaction. Biomed Res. 2014;35(3):207–13.

    Article  CAS  PubMed  Google Scholar 

  17. Mehta TK, Hoque MO, Ugarte R, Rahman MH, Kraus E, Montgomery R, et al. Quantitative detection of promoter hypermethylation as a biomarker of acute kidney injury during transplantation. Transplant Proc. 2022;38(10):3420–6. https://www.sciencedirect.com/science/article/pii/S0041134506013947.

    Article  Google Scholar 

  18. Kang SW, Shih P-AB, Mathew RO, Mahata M, Biswas N, Rao F, et al. Renal kallikrein excretion and epigenetics in human acute kidney injury: expression, mechanisms and consequences. BMC Nephrol. 2022;12(1):27. https://doi.org/10.1186/1471-2369-12-27.

    Article  CAS  Google Scholar 

  19. O’Connor DT. Response of the renal kallikrein-kinin system, intravascular volume, and renal hemodynamics to sodium restriction and diuretic treatment in essential hypertension. Hypertension. 1982;4(5 Pt 2):III72–8.

    PubMed  Google Scholar 

  20. Aguado-Fraile E, Ramos E, Sáenz-Morales D, Conde E, Blanco-Sánchez I, Stamatakis K, et al. miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target. PLoS One. 2012;7(9):e44305. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei Q, Liu Y, Liu P, Hao J, Liang M, Mi Q-S, et al. MicroRNA-489 induction by hypoxia–inducible factor–1 protects against ischemic kidney injury. J Am Soc Nephrol. 2016;27(9):2784–96. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004659/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai Y, Jia P, Fang Y, Liu H, Jiao X, He JC, et al. miR-146a is essential for lipopolysaccharide (LPS)-induced cross-tolerance against kidney ischemia/reperfusion injury in mice. Sci Rep. 2016;6(1):27091. https://www.nature.com/articles/srep27091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amrouche L, Desbuissons G, Rabant M, Sauvaget V, Nguyen C, Benon A, et al. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J Am Soc Nephrol. 2022;28(2):479–93. https://jasn.asnjournals.org/content/28/2/479.

    Article  Google Scholar 

  24. Hao J, Lou Q, Wei Q, Mei S, Li L, Wu G, et al. MicroRNA-375 is induced in cisplatin nephrotoxicity to repress hepatocyte nuclear factor 1-β. J Biol Chem. 2022;292(11):4571–82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377773/.

    Article  Google Scholar 

  25. Lee CG, Kim JG, Kim HJ, Kwon HK, Cho IJ, Choi DW, et al. Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int. 2022;86(5):943–53. https://www.sciencedirect.com/science/article/pii/S0085253815304051.

    Article  Google Scholar 

  26. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Molecular Medicine. Full Text [Internet]. [15 August 2022]. https://molmed.biomedcentral.com/articles/10.2119/molmed.2010.00002.

  27. Fabbri M. MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philos Trans R Soc Lond Ser B Biol Sci. 2022;373(1737):20160486. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717440/.

    Article  Google Scholar 

  28. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.

    Article  CAS  PubMed  Google Scholar 

  29. Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet. 2020;21(4):243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Degtyareva AO, Antontseva EV, Merkulova TI. Regulatory SNPs: altered transcription factor binding sites implicated in complex traits and diseases. Int J Mol Sci. 2021;22(12):6454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manning KS, Cooper TA. The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol. 2017;18(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao B, Lu Q, Cheng Y, Belcher JM, Siew ED, Leaf DE, et al. A genome-wide association study to identify single-nucleotide polymorphisms for acute kidney injury. Am J Respir Crit Care Med. 2017;195:482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shalkami AGS, Hassan MIA, Abd El-Ghany AA. Perindopril regulates the inflammatory mediators, NF-κB/TNF-α/IL-6, and apoptosis in cisplatin-induced renal dysfunction. Naunyn Schmiedeberg’s Arch Pharmacol. 2018;391(11):1247–55.

    Article  CAS  Google Scholar 

  34. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18.

    Article  PubMed  Google Scholar 

  35. Wu S, Wang MG, Wang Y, He JQ. Polymorphisms of cytokine genes and tuberculosis in two independent studies. Sci Rep. 2019;9(1):1–11.

    Google Scholar 

  36. Hashad DI, Elsayed ET, Helmy TA, Elawady SM. Study of the role of tumor necrosis factor-α(-308G/A) and interleukin-10 (-1082 G/A) polymorphisms as potential risk factors to acute kidney injury in patients with severe sepsis using high-resolution melting curve analysis. Ren Fail. 2017;39(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  37. Saad RA, Afsah I, Akl A. Drug handling by elderly kidney: a prospective review to senile kidney physiology. Open Urol Nephrol J. 2022;10(1):15. https://doi.org/10.15406/unoaj.2022.10.00317.

    Article  Google Scholar 

  38. Wajda J, Dumnicka P, Kolber W, Sporek M, Maziarz B, Ceranowicz P, et al. The marker of tubular injury, kidney injury molecule-1 (KIM-1), in acute kidney injury complicating acute pancreatitis: a preliminary study. J Clin Med. 2020;9(5):1–12.

    Article  Google Scholar 

  39. Jordan SC, Ammerman N, Choi J, Kumar S, Huang E, Toyoda M, et al. Interleukin-6: an important mediator of allograft injury. Transplantation. 2020;104(12):2497–506. https://doi.org/10.1097/TP.0000000000003249.

    Article  CAS  PubMed  Google Scholar 

  40. Albert C, Haase M, Albert A, Kropf S, Bellomo R, Westphal S, et al. Urinary biomarkers may complement the Cleveland score for prediction of adverse kidney events after cardiac surgery: a pilot study. Ann Lab Med. 2020;40(2):131–41.

    Article  CAS  PubMed  Google Scholar 

  41. Omoyinmi E, Forabosco P, Hamaoui R, Bryant A, Hinks A, Ursu S, et al. Association of the IL-10 gene family locus on chromosome 1 with juvenile idiopathic arthritis (JIA). PLoS One. 2012;7(10):e47673. https://doi.org/10.1371/journal.pone.0047673. PMID: 23094074, PMCID: PMC3475696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alves LV, Martins SR, Simões e Silva AC, Cardoso CN, Gomes KB, Mota APL. TNF, IL-6, and IL-10 cytokines levels and their polymorphisms in renal function and time after transplantation. Immunol Res. 2020;68(5):246–54.

    Article  CAS  PubMed  Google Scholar 

  43. Ivanova M, Manolova I, Stoilov R, Stanilova S. The synergistic role of TNFA − 308G/A and IL10–1082A/G polymorphisms in ankylosing spondylitis. Rheumatol Int. 2021;41(12):2215–24.

    Article  CAS  PubMed  Google Scholar 

  44. Rocha S, Valente MJ, Coimbra S, Catarino C, Rocha-Pereira P, Oliveira JG, et al. Interleukin 6 (rs1800795) and pentraxin 3 (rs2305619) polymorphisms-association with inflammation and all-cause mortality in end-stage-renal disease patients on dialysis. Sci Rep. 2021;11(1):14768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ortega-Loubon C, Martínez-Paz P, García-Morán E, Tamayo-Velasco Á, López-Hernández FJ, Jorge-Monjas P, et al. Genetic susceptibility to acute kidney injury. J Clin Med. 2021;10(14):1–33.

    Article  Google Scholar 

  46. Kurts C, Ginhoux F, Panzer U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol. 2020;16(7):391–407.

    Article  PubMed  Google Scholar 

  47. Houseman M, Huang MYY, Huber M, Staiger M, Zhang L, Hoffmann A, et al. Flow cytometry-based high-throughput RNAi screening for miRNAs regulating MHC class II HLA-DR surface expression. Eur J Immunol. 2022;52:1452. https://doi.org/10.1002/eji.202149735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Franzin R, Netti GS, Spadaccino F, Porta C, Gesualdo L. Oncology and the occurrence of AKI: where do we stand? Front Immunol. 2020;8(11):574271. https://doi.org/10.3389/fimmu.2020.574271.

    Article  CAS  Google Scholar 

  49. Kanchan K, Clay S, Irizar H, Bunyavanich S, Mathias RA. Current insights into the genetics of food allergy. J Allergy Clin Immunol. 2021;147(1):15–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolin A, Lahtela EL, Anttila V, Petrek M, Grunewald J, van Moorsel CHM, et al. SNP variants in major histocompatibility complex are associated with sarcoidosis susceptibility-a joint analysis in four European populations. Front Immunol. 2017;8:422. https://doi.org/10.3389/fimmu.2017.00422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Darden J, Payne LB, Zhao H, Chappell JC. Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation. Angiogenesis. 2019;22(1):167–83.

    Article  CAS  PubMed  Google Scholar 

  52. Vilander LM, Vaara ST, Kaunisto MA, Pettilä V, Laru-Sompa R, Pulkkinen A, et al. Common inflammation-related candidate gene variants and acute kidney injury in 2647 critically ill Finnish patients. J Clin Med. 2019;8:342. https://doi.org/10.3390/jcm803034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song Y, Yang Y, Liu L, Liu X. Association between five polymorphisms in vascular endothelial growth factor gene and urinary bladder cancer risk: a systematic review and meta-analysis involving 6671 subjects. Gene. 2019;698:186–97.

    Article  CAS  PubMed  Google Scholar 

  54. Katakami N, Kaneto H, Matsuoka TA, Takahara M, Osonoi T, Saitou M, et al. Accumulation of oxidative stress-related gene polymorphisms and the risk of coronary heart disease events in patients with type 2 diabetes – an 8-year prospective study. Atherosclerosis. 2014;235(2):408–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elkin Navarro-Quiroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarate-Peñata, E.D.C. et al. (2023). Genetic, Epigenetics, and Cell Adhesion in Acute Kidney Injury. In: Musso, C.G., Covic, A. (eds) Organ Crosstalk in Acute Kidney Injury. Springer, Cham. https://doi.org/10.1007/978-3-031-36789-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36789-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36788-5

  • Online ISBN: 978-3-031-36789-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics