Skip to main content

Advertisement

Log in

TNF, IL-6, and IL-10 cytokines levels and their polymorphisms in renal function and time after transplantation

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Cytokine polymorphisms can influence their plasma levels and thus affect the immune response in renal transplantation. A total of 146 renal transplant recipients (RTR) were classified into groups according to the estimated glomerular filtration rate (R1: < 60 and R2: ≥ 60 mL/min/1.73 m2) and time after transplantation (T1: 1 to 24, T2: 25 to 60, T3: 61 to 120, and T4: > 120 months after transplantation). The polymorphisms were genotyped by single specific primer-polymerase chain reaction. IL-10 was measured by ELISA and IL-6, and TNF levels were determined using Miliplex®. A higher frequency of the − 308G allele and the − 308G/G genotype, low-producer, was observed in the R1 group compared with R2. In addition, a higher frequency of the − 308A carriers, high-producer, was found in the R2 group. However, no significant difference was observed in cytokine levels when both groups were compared. Higher levels of IL-6 were observed in T1 compared with T2 and T4 groups. Lower IL-6 levels were found in T2 compared with T3 group. Lower levels of IL-10 were also found in T1 group in relation to T2, while higher levels of this cytokine were observed in T2 group compared with T3. The results suggest that the − 308G > A polymorphism in the TNF gene is associated with filtration function after renal transplantation, and IL-6 and IL-10 levels change according to the time after transplantation. Thus, the joint evaluation of − 308G > A polymorphism in TNF gene and IL-6 and IL-10 levels would provide a broader and effective view on the clinical monitoring of RTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jarl J, Desatnik P, Hansson UP, Prütz KG, Gerdtham U. Do kidney transplantations save money? A study using a before-after design and multiple register-based data from Sweden. Clin Kidney J. 2018;11:283–8.

    PubMed  Google Scholar 

  2. Ponticelli C. The mechanisms of acute transplant rejection revisited. J Nephrol. 2012;25:150–8.

    CAS  PubMed  Google Scholar 

  3. Gu L, Tao Y, Chen C, Ye Y, Xiong X, Sun Y. Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation. Int Urol Nephrol. 2018;50:2027–35.

    CAS  PubMed  Google Scholar 

  4. Srinivas L, Vellichirammal NN, Alex AM, Nair C, Nair IV, Banerjee M. Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia. J Neuroinflammation. 2016;13:105.

    PubMed  PubMed Central  Google Scholar 

  5. Schmid H, Lederer SR. Urinary biomarkers: on the long road to personalized renal transplant medicine. Pol Arch Intern Med. 2019;129:577–9.

    PubMed  Google Scholar 

  6. Al-Lamki RS, Mayadas TN. TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int. 2015;87:281–96.

    CAS  PubMed  Google Scholar 

  7. Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL. Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov. 2003;2:736–46.

    CAS  PubMed  Google Scholar 

  8. Hoffmann U, Bergler T, Rihm M, Pace C, Krüger B, Rümmele P, et al. Upregulation of TNF receptor type 2 in human and experimental renal allograft rejection. Am J Transplant. 2009;9:675–86.

    CAS  PubMed  Google Scholar 

  9. Sánchez-fructuoso AI, Pérez-Flores I, Valero R, Moreno MA, Fernandez-Arquero M, Urcelay E, et al. The polymorphism −308G/A of tumor necrosis factor-α gene modulates the effect of immunosuppressive treatment in first kidney transplant subjects who suffer an acute rejection. J Immunol Res. 2016;2016:2197595.

    PubMed  PubMed Central  Google Scholar 

  10. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and interferon-g: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127:721–812.

    Google Scholar 

  11. Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014;40:40–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Böhm M, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;94:534–41.

    CAS  PubMed  Google Scholar 

  13. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S, et al. The effect of novel polymorphisms in the interleukin-6 (IL- 6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102:369–76.

    Google Scholar 

  14. Jia W, Fei GH, Hu JG, Hu XW. A study on the effect of IL-6 gene polymorphism on the prognosis of non-small-cell lung cancer. Onco Targets Ther. 2015;8:2699–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21:331–44.

    CAS  PubMed  Google Scholar 

  16. Sinuani I, Beberashvili I, Averbukh Z, Sandbank J. Role of IL-10 in the progression of kidney disease. World J Transplant. 2013;3:91–8.

    PubMed  PubMed Central  Google Scholar 

  17. Liu F, Li B, Wang WT, Wei YG, Yan LN, Wen TF, et al. Interleukin-10-1082G/A polymorphism and acute liver graft rejection: a meta-analysis. World J Gastroenterol. 2012;18:847–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet. 1997;24:1–8.

    CAS  PubMed  Google Scholar 

  19. Amirzargar A, Lessanpezeshki M, Fathi A, Amirzargar M, Khosravi F, Ansaripour B, et al. Th1/Th2 cytokine analysis in Iranian renal transplant recipients. Transplant Proc. 2005;37:2985–7.

    CAS  PubMed  Google Scholar 

  20. Elnokeety MM, Shaker AM, Fayed AM. Urinary interleukin-10 in renal transplant recipients: does it predict a state of tolerance or rejection. Saudi J Kidney Dis Transpl. 2017;28:1196–200.

    PubMed  Google Scholar 

  21. Karimi MH, Daneshmandi S, Pourfathollah AA, Geramizadeh B, Yaghobi R, Rais-Jalali GA, et al. A study of the impact of cytokine gene polymorphism in acute rejection of renal transplant recipients. Mol Biol Rep. 2012;39:509–15.

    CAS  PubMed  Google Scholar 

  22. Ashoor IF, Najafian N. Rejection and regulation: a tight balance. Curr Opin Organ Transplant. 2012;17:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cucchiari D. Podestà Ma, Ponticelli C. the critical role of innate immunity in kidney transplantation. Nephron. 2016;132:227–37.

    CAS  PubMed  Google Scholar 

  24. Levin A, Stevens PE, Bilous RW, Coresh J, Francisco ALM, Jong PE, et al. Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Google Scholar 

  25. Miller WG, Jones GRD. Estimated glomerular filtration rate; laboratory implementation and current global status. Adv Chronic Kidney Dis. 2018;25:7–13.

    PubMed  Google Scholar 

  26. Rodrigues FB, Bruetto RG, Torres US, Otaviano AP, Zanetta DM, Burdmann EA. Incidence and mortality of acute kidney injury after myocardial infarction: a comparison between KDIGO and RIFLE criteria. PLoS One. 2013;8:e69998.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Halloran PF, Langone AJ, Helderman JH, Kaplan B. Assessing long-term nephron loss: is it time to kick the CAN grading system? Am J Transplant. 2004;4:1729–30.

    PubMed  Google Scholar 

  28. Samaan F, Requião-Moura LR, Pinheiro HS, Ozaki KS, Câmara NOS, Pacheco-Silva A. Prevalence and progression of chronic kidney disease after renal transplantation. Transplant Proc. 2011;43:2587–91.

    CAS  PubMed  Google Scholar 

  29. Naderi GH, Mehraban D, Kazemeyni SM, Darvishi M, Latif AH. Living or deceased donor kidney transplantation: a comparison of results and survival rates among Iranian patients. Transplant Proc. 2009;41:2772–4.

    CAS  PubMed  Google Scholar 

  30. Nemati E, Einollahi B, Lesan Pezeshki M, Porfarziani V, Fattahi MR. Does kidney transplantation with deceased or living donor affect graft survival? Nephrourol Mon. 2014;6:e12182.

    PubMed  PubMed Central  Google Scholar 

  31. Terasaki PI, Koyama H, Cecka JM, Gjertson DW. The hyperfiltration hypothesis in human renal transplantation. Transplantation. 1994;57:1450–4.

    CAS  PubMed  Google Scholar 

  32. Hu Q, Tian H, Wu Q, Li J, Cheng X, Liao P. Interleukin-10-1082 G/a polymorphism and acute renal graft rejection: a meta-analysis. Ren Fail. 2016;38:57–64.

    CAS  PubMed  Google Scholar 

  33. Perovic V, Markovic M, Kravljaca M, Milosevic E, Djoric M, Pravica V, et al. Cytokine gene polymorphism profiles in kidney transplant patients - association of +1188A/C RS3212227 SNP in the IL12B gene prevents delayed graft function. Arch Med Res. 2018;49:101–8.

    CAS  PubMed  Google Scholar 

  34. Rashad RH, Mahmoud KM, Hady TMAA, El-Agroudy AEB, Hamdy AF, Ismail AM, et al. IL-10 gene polymorphism and graft outcome in live- donor kidney transplantation. J Egypt Soc Nephrol Transplant. 2016, 2016;16:89–96.

  35. Xiong J, Wang Y, Zhang Y, Nie L, Wang D, Huang Y, et al. Lack of association between interleukin-10 gene polymorphisms and graft rejection risk in kidney transplantation recipients: a meta-analysis. PLoS One. 2015;10:e0127540.

    PubMed  PubMed Central  Google Scholar 

  36. Khan F, Sar A, Gonul I, Benediktsson H, Doulla J, Yilmaz S, et al. Graft inflammation and histologic indicators of kidney chronic allograft failure: low-expressing interleukin-10 genotypes cannot be ignored. Transplantation. 2010;90:630–8.

    CAS  PubMed  Google Scholar 

  37. Thakkinstian A, Dmitrienko S, Gerbase-Delima M, McDaniel DO, Inigo P, Chowet KM, et al. Association between cytokine gene polymorphisms and outcomes in renal transplantation: a meta-analysis of individual patient data. Nephrol Dial Transplant. 2008;23:3017–23.

    CAS  PubMed  Google Scholar 

  38. La Manna G, Cappuccilli ML, Capelli I, Baraldi O, Cuna V, Battaglino G, et al. The impact of apoptosis and inflammation gene polymorphisms on transplanted kidney function. Ann Transplant. 2013;18:256–64.

    PubMed  Google Scholar 

  39. Kocierz M, Siekiera U, Kolonko A, Karkoszka H, Chudek J, Cierpka L, et al. 174G/C interleukin-6 gene polymorphism and the risk of transplanted kidney failure or graft loss during a 5-year follow-up period. Tissue Antigens. 2011;77:283–90.

    CAS  PubMed  Google Scholar 

  40. Arbab M, Tahir S, Niazi MK, Ishaq M, Hussain A, Siddique PM, et al. TNF-α genetic predisposition and higher expression of inflammatory pathway components in keratoconus. Invest Ophthalmol Vis Sci. 2017;58:3481–7.

    CAS  PubMed  Google Scholar 

  41. Gendzekhadze K, Rivas-Vetencourt P, Montano RF. Risk of adverse post-transplant events after kidney allograft transplantation as predicted by CTLA-4 +49 and TNF-alpha −308 single nucleotide polymorphisms: a preliminary study. Transpl Immunol. 2006;16:194–9.

    CAS  PubMed  Google Scholar 

  42. Dhaouadi T, Sfar I, Bardi R, Jendoubi-Ayed S, Abdallah TB, Ayed K, et al. Cytokine gene polymorphisms in kidney transplantation. Transplant Proc. 2013;45:2152–7.

    CAS  PubMed  Google Scholar 

  43. Masli S, Turpie B. Anti-inflammatory effects of tumour necrosis factor (TNF)-alpha are mediated via TNF-R2 (p75) in tolerogenic transforming growth factor-beta-treated antigen-presenting cells. Immunology. 2009;127:62–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41.

    CAS  Google Scholar 

  45. Agnoli C, Grioni S, Pala V, Allione A, Matullo G, Gaetano CD, et al. Biomarkers of inflammation and breast cancer risk: a case-control study nested in the EPIC-Varese cohort. Sci Rep. 2017;7:12708.

    PubMed  PubMed Central  Google Scholar 

  46. Kleijwegt FS, Laban S, Duinkerken G, Joosten AM, Zaldumbide A, Nikolic T, et al. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. J Immunol. 2010;185:1412–8.

    CAS  PubMed  Google Scholar 

  47. Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor necrosis factor α and regulatory T cells in Oncoimmunology. Front Immunol. 2018;9:444.

    PubMed  PubMed Central  Google Scholar 

  48. Pierini A, Strober W, Moffett C, Baker J, Nishikii H, Alvarez M, et al. TNF-α priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood. 2016;128:866–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bazzaz JT, Amoli MM, Taheri Z, Larijani B, Pravica V, Hutchinson IV. TNF-alpha and IFN-gamma gene variation and genetic susceptibility to type 1 diabetes and its microangiopathic complications. J Diabetes Metab Disord. 2014;13:46.

    PubMed  PubMed Central  Google Scholar 

  50. Beyer M, Abdullah Z, Chemnitz JM, Maisel D, Sander J, Lehmann C, et al. Tumor-necrosis factor impairs CD4(+) T cell-mediated immunological control in chronic viral infection. Nat Immunol. 2016;17:593–603.

    CAS  PubMed  Google Scholar 

  51. Ban L, Zhang J, Wang L, Kuhtreiber W, Burger D, Faustman DL. Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc Natl Acad Sci U S A. 2008;105:13644–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kotowski M, Bogacz A, Bartkowiak-wieczorek J, Sienko J, Procyk D, Dziewanowski K, et al. The influence of the tumor necrosis factor-alpa-308G>A polymorphism on the efficacy of immunosuppressive therapy in patients after kidney transplantation. J Physiol Pharmacol. 2016;67:819–26.

    CAS  Google Scholar 

  53. Mota APL, Menezes CA, Alpoim PN, Cardoso CN, Martins SR, Alves LV, et al. Regulatory and pro-inflammatory cytokines in brazilian living-related renal transplant recipients according to creatinine plasma levels. Nephrology (Carlton). 2017;23:867–75.

    Google Scholar 

  54. Alves LV, Maia MJO, Nunes FFC, Magalhães HPB, Afonso DAF, Mota APL. Creatinine and cytokines plasma levels related to HLA compatibility in kidney transplant patients. J Bras Patol Med Lab. 2015;51:303–9.

    CAS  Google Scholar 

  55. Newell KA. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010;120:1836–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nova-Lamperti E, Fanelli G, Becker PD, Chana P, Elgueta R, Dodd PC, et al. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses. Sci Rep. 2016;6:20044.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma L, Zhang H, Hu K, Lv G, Fu Y, Ayana DA, Zhao P, Jiang Y Desalegn Admassu Ayana. The imbalance between Tregs, Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol 2015;16:56.

  58. Edemir B, Kurian SM, Eisenacher M, Lang D, Müller-Tidow C, Gabriëls G, et al. Activation of counter-regulatory mechanisms in a rat renal acute rejection model. BMC Genomics. 2008;9:71.

    PubMed  PubMed Central  Google Scholar 

  59. Mazanowska O, Kamińska D, Krajewska M, Banasik M, Zabińska M, Kościelska-Kasprzak K, et al. Increased plasma tissue inhibitors of metalloproteinase concentrations as negative predictors associated with deterioration of kidney allograft function upon long-term observation. Transplant Proc. 2013;45:1458–61.

    CAS  PubMed  Google Scholar 

  60. Reinhold SW, Straub RH, Krüger B, Kaess B, Bergler T, Weingart C, et al. Elevated urinary sVCAM-1, IL6, sIL6R and TNFR1 concentrations indicate acute kidney transplant rejection in the first 2 weeks after transplantation. Cytokine. 2012;57(3):379–88.

    CAS  PubMed  Google Scholar 

  61. Jin Z, Xu C, Duan W, Yang J, Tian P. The level of IL-2 and IL-6 in stimulated peripheral lymphocyte supernatants of kidney transplant recipients can predict acute renal allograft rejection. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017;33:1024–9.

    PubMed  Google Scholar 

  62. Chen X, Oppenheim JJ. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Lett. 2011;585:3611–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Budak D, Yilmaz VT, Akbas H, Suleymanlar G, Yucel G. Association between graft function and serum TNF-α, TNFR1 and TNFR2 levels in patients with kidney transplantation. Ren Fail. 2015;37:871–6.

    CAS  PubMed  Google Scholar 

  64. Lima JR, Salgado JV, Ferreira TC, Oliveira MI, Santos AM, Salgado Filho N. Cystatin C and inflammatory markers in kidney transplant recipients. Rev Assoc Med Bras (1992). 2011;57:347–52.

    Google Scholar 

  65. Jung YJ, Lee HR, Kwon OJ. Comparison of serum cystatin C and creatinine as a marker for early detection of decreasing glomerular filtration rate in renal transplants. J Korean Surg Soc. 2012;83:69–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Matsunami M, Ubara Y, Sumida K, Oshima Y, Oguro M, Kinoshita K, et al. The efficacy and safety of anti-interleukin-6 receptor monoclonal blockade in a renal transplant patient with Castleman disease: early post-transplant outcome. BMC Nephrol. 2018;19:263.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Simmons EM, Langone A, Sezer MT, Vella JP, Recupero P, Morrow JD, et al. Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation. 2005;79:914–9.

    CAS  PubMed  Google Scholar 

  68. Kessler B, Rinchai D, Kewcharoenwong C, Nithichanon A, Biggart R, Hawrylowicz CM, et al. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei. Sci Rep. 2017;7:42791.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Boucault L, Bézie S, Ossart J, Guillonneau C. Tolerance in organ transplantation. In: Abdeldayem H, El-Kased AF, El-Shaarawy A, editors. Frontiers in Transplantology. 1rd ed. IntechOpen: Croatia; 2016. p. 47–87.

    Google Scholar 

  70. Cooper JE, Wiseman AC. Novel immunosuppressive agents in kidney transplantation. Clin Nephrol. 2010;73:333–43.

    CAS  PubMed  Google Scholar 

  71. Sakaguchi S, Wing K, Yamaguchi T. Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur J Immunol. 2009;39:2331–6.

    CAS  PubMed  Google Scholar 

  72. Mota AP, Vilaça SS, das Mercês FL Jr, Pinheiro Mde B, Teixeira-Carvalho A, Silveira AC, et al. Cytokines signatures in short and long-term stable renal transplanted patients. Cytokine. 2013;62:302–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank FAPEMIG, CAPES and CNPq/Brazil. KBG is grateful to CNPq Research Fellowship (PQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Lucas Mota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, L.V., Martins, S.R., Simões e Silva, A.C. et al. TNF, IL-6, and IL-10 cytokines levels and their polymorphisms in renal function and time after transplantation. Immunol Res 68, 246–254 (2020). https://doi.org/10.1007/s12026-020-09147-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09147-3

Keywords

Navigation