Skip to main content

Imaging of NPH

  • Chapter
  • First Online:
Normal Pressure Hydrocephalus

Abstract

Since the discovery of normal pressure hydrocephalus, scientists around the world have been trying to find a sufficiently accurate imaging biomarker that would identify shunt-responsive patients. Unlike functional tests, which currently play a fundamental role, the role of imaging methods is only supportive. In its basic form, MRI is the modality of choice. It can detect ventriculomegaly well and at the same time exclude any other pathology. MRI also allows us to perform some measurements, which will be described in more detail in the relevant subsections. It is primarily callosal angle, dilated Sylvian fissures, tight high convexity and focal sulcal dilation. These findings, along with ventriculomegaly, form the basis of the DESH score. Another finding typical for NPH is cingulate sulcus sign. Further MRI examinations already require special sequences. In this chapter, we will describe individual methods, including our personal experience with them. These are volumetric studies, diffusion tensor imaging and the phase contrast method. We will also marginally mention the experimental imaging of the glymphatic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AdaBoost:

Adaptive Boosting

AD:

Alzheimer’s disease

AUC:

Area under the curve

CSF:

Cerebrospinal fluid

CT:

Computed tomography

DESH:

Disproportionately enlarged subarachnoid space hydrocephalus

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FA:

Fractional anisotropy

GaussNB:

Gaussian Naive Bayes

iNPH:

Idiopathic normal pressure hydrocephalus

MD:

Mean diffusivity

MRI:

Magnetic resonance imaging

NPH:

Normal pressure hydrocephalus

ROC:

Receiver operating characteristic

VP:

Vetriculo-peritoneal

References

  1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. symptomatic occult hydrocephalus with “Normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med. 1965;273:117–26.

    Google Scholar 

  2. Vakili S, Moran D, Hung A, Elder BD, Jeon L, Fialho H, et al. Timing of surgical treatment for idiopathic normal pressure hydrocephalus: association between treatment delay and reduced short-term benefit. Neurosurg Focus. 2016;41(3):E2.

    Article  PubMed  Google Scholar 

  3. Evans WA, Jr. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Archives of Neurol Psychiatry. 1942;47(6):931–7.

    Google Scholar 

  4. Brix MK, Westman E, Simmons A, Ringstad GA, Eide PK, Wagner-Larsen K, et al. The Evan’s index revisited: new cut-off levels for use in radiological assessment of ventricular enlargement in the elderly. Eur J Radiol. 2017;95:28–32.

    Article  PubMed  Google Scholar 

  5. Meier U, Paris S, Grawe A, Stockheim D, Hajdukova A, Mutze S. Is there a correlation between operative results and change in ventricular volume after shunt placement? A study of 60 cases of idiopathic normal-pressure hydrocephalus. Neuroradiology. 2003;45(6):377–80.

    Article  CAS  PubMed  Google Scholar 

  6. Yamada S, Ishikawa M, Yamamoto K. Optimal diagnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. Am J Neuroradiol. 2015;36(12):2262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Radhakrishnan R, Brown BP, Kralik SF, Bain D, Persohn S, Territo PR, et al. Frontal occipital and frontal temporal horn ratios: comparison and validation of head ultrasound-derived indexes with mri and ventricular volumes in infantile Ventriculomegaly. Am J Roentgenol. 2019;213(4):925–31.

    Article  Google Scholar 

  8. Ambarki K, Israelsson H, Wahlin A, Birgander R, Eklund A, Malm J. Brain ventricular size in healthy elderly: comparison between Evans index and volume measurement. Neurosurgery. 2010;67(1):94–9; discussion 9.

    Google Scholar 

  9. Toma AK, Holl E, Kitchen ND, Watkins LD. Evan’s index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery. 2011;68(4):939–44.

    Article  PubMed  Google Scholar 

  10. Miskin N, Patel H, Franceschi AM, Ades-Aron B, Le A, Damadian BE, et al. Diagnosis of normal-pressure hydrocephalus: use of traditional measures in the era of volumetric MR imaging. Radiology. 2017;285(1):197–205.

    Article  PubMed  Google Scholar 

  11. Vlasák A, Skalický P, Mládek A, Vrána J, Beneš V, Bradáč O. Structural volumetry in NPH diagnostics and treatment-future or dead end? Neurosurg Rev. 2020.

    Google Scholar 

  12. Benson DF, LeMay M, Patten DH, Rubens AB. Diagnosis of normal-pressure hydrocephalus. N Engl J Med. 1970;283(12):609–15.

    Article  CAS  PubMed  Google Scholar 

  13. Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, et al. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18(11):2678–83.

    Article  PubMed  Google Scholar 

  14. Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2014;35(12):2311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Virhammar J, Laurell K, Cesarini KG, Larsson E-M. Increase in callosal angle and decrease in ventricular volume after shunt surgery in patients with idiopathic normal pressure hydrocephalus. 2018;130(1):130.

    Google Scholar 

  16. Adachi M, Kawanami T, Ohshima F, Kato T. Upper midbrain profile sign and cingulate sulcus sign: MRI findings on sagittal images in idiopathic normal-pressure hydrocephalus, Alzheimer’s disease, and progressive supranuclear palsy. Radiat Med. 2006;24(8):568–72.

    Article  PubMed  Google Scholar 

  17. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998;19(7):1277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hashimoto M, Ishikawa M, Mori E, Kuwana N, Improvement SoIoN. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010;7(1):18.

    Google Scholar 

  19. Agerskov S, Wallin M, Hellström P, Ziegelitz D, Wikkelsö C, Tullberg M. Absence of disproportionately enlarged subarachnoid space hydrocephalus, a sharp callosal angle, or other morphologic MRI markers should not be used to exclude patients with idiopathic normal pressure hydrocephalus from shunt surgery. AJNR Am J Neuroradiol. 2019;40(1):74–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shinoda N, Hirai O, Hori S, Mikami K, Bando T, Shimo D, et al. Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: clinical research. J Neurosurg. 2017;127(6):1436–42.

    Article  PubMed  Google Scholar 

  21. Yamada S, Ishikawa M, Yamamoto K. Comparison of CSF distribution between idiopathic normal pressure hydrocephalus and Alzheimer disease. AJNR Am J Neuroradiol. 2016;37(7):1249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holodny AI, George AE, Leon MJd, Golomb J, Kalnin AJ, Cooper PR. Focal dilation and paradoxical collapse of cortical fissures and sulci in patients with normal-pressure hydrocephalus. 1998;89(5):742.

    Google Scholar 

  23. Narita W, Nishio Y, Baba T, Iizuka O, Ishihara T, Matsuda M, et al. High-convexity tightness predicts the shunt response in idiopathic normal pressure hydrocephalus. Am J Neuroradiol. 2016;37(10):1831–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakajima M, Yamada S, Miyajima M, Ishii K, Kuriyama N, Kazui H, et al. Guidelines for management of idiopathic normal pressure hydrocephalus (Third Edition): endorsed by the japanese society of normal pressure hydrocephalus. Neurol Med Chir. 2021;61(2):63–97.

    Article  Google Scholar 

  25. Skalicky P, Mladek A, Vlasak A, De Lacy P, Benes V, Bradac O. Normal pressure hydrocephalus-an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg Rev. 2019.

    Google Scholar 

  26. Moore DW, Kovanlikaya I, Heier LA, Raj A, Huang C, Chu KW, et al. A pilot study of quantitative MRI measurements of ventricular volume and cortical atrophy for the differential diagnosis of normal pressure hydrocephalus. Neurol Res Int. 2012;2012: 718150.

    PubMed  Google Scholar 

  27. Palm WM, Walchenbach R, Bruinsma B, Admiraal-Behloul F, Middelkoop HA, Launer LJ, et al. Intracranial compartment volumes in normal pressure hydrocephalus: volumetric assessment versus outcome. AJNR Am J Neuroradiol. 2006;27(1):76–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Spiegelhalder K, Regen W, Prem M, Baglioni C, Nissen C, Feige B, et al. Reduced anterior internal capsule white matter integrity in primary insomnia. Hum Brain Mapp. 2014;35(7):3431–8.

    Article  PubMed  Google Scholar 

  29. Kim MJ, Seo SW, Lee KM, Kim ST, Lee JI, Nam DH, et al. Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(8):1496–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andrejević M, Meshi D, van den Bos W, Heekeren HR. Individual differences in social desirability are associated with white-matter microstructure of the external capsule. Cogn Affect Behav Neurosci. 2017;17(6):1255–64.

    Article  PubMed  Google Scholar 

  31. Wang X-D, Ren M, Zhu M-W, Gao W-P, Zhang J, Shen H, et al. Corpus callosum atrophy associated with the degree of cognitive decline in patients with Alzheimer’s dementia or mild cognitive impairment: a meta-analysis of the region of interest structural imaging studies. J Psychiatr Res. 2015;63:10–9.

    Article  PubMed  Google Scholar 

  32. Savolainen S, Laakso MP, Paljärvi L, Alafuzoff I, Hurskainen H, Partanen K, et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. AJNR Am J Neuroradiol. 2000;21(2):409–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res: Neuroimaging. 2011;194(1):7–13.

    Article  Google Scholar 

  34. Braak H, Braak E. Alzheimer’s disease: striatal amyloid deposits and neurofibrillary changes. J Neuropathol Exp Neurol. 1990;49(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  35. Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008;86(3):141–55.

    Article  PubMed  Google Scholar 

  36. Bauer E, Toepper M, Gebhardt H, Gallhofer B, Sammer G. The significance of caudate volume for age-related associative memory decline. Brain Res. 2015;1622:137–48.

    Article  CAS  PubMed  Google Scholar 

  37. Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJM, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swartz RH, Black SE. Anterior-medial thalamic lesions in dementia: frequent, and volume dependently associated with sudden cognitive decline. J Neurol Neurosurg Psychiatry. 2006;77(12):1307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zare A, Jahanshahi A, Rahnama’i M-S, Schipper S, van Koeveringe GA. The role of the periaqueductal gray matter in lower urinary tract function. Mol Neurobiol. 2019;56(2):920–34.

    Article  CAS  PubMed  Google Scholar 

  40. Kockum K, Virhammar J, Riklund K, Söderström L, Larsson E-M, Laurell K. Diagnostic accuracy of the iNPH Radscale in idiopathic normal pressure hydrocephalus. PLoS ONE. 2020;15(4): e0232275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laticevschi T, Lingenberg A, Armand S, Griffa A, Assal F, Allali G. Can the radiological scale “iNPH Radscale” predict tap test response in idiopathic normal pressure hydrocephalus? J Neurol Sci. 2021;420.

    Google Scholar 

  42. Hoza D, Vlasak A, Horinek D, Sames M, Alfieri A. DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review. Neurosurg Rev. 2015;38(2):239–44; discussion 44.

    Google Scholar 

  43. Tan C, Wang X, Wang Y, Wang C, Tang Z, Zhang Z, et al. The pathogenesis based on the glymphatic system, diagnosis, and treatment of idiopathic normal pressure hydrocephalus. Clin Interv Aging. 2021;16:139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grazzini I, Redi F, Sammartano K, Cuneo GL. Diffusion tensor imaging in idiopathic normal pressure hydrocephalus: clinical and CSF flowmetry correlations. Neuroradiol J. 2019;33(1):66–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kang K, Yoon U, Choi W, Lee H-W. Diffusion tensor imaging of idiopathic normal-pressure hydrocephalus and the cerebrospinal fluid tap test. J Neurol Sci. 2016;364:90–6.

    Article  PubMed  Google Scholar 

  46. Osuka S, Matsushita A, Ishikawa E, Saotome K, Yamamoto T, Marushima A, et al. Elevated diffusion anisotropy in gray matter and the degree of brain compression: clinical article. J Neurosurgery JNS. 2012;117(2):363–71.

    Article  Google Scholar 

  47. Hattori T, Yuasa T, Aoki S, Sato R, Sawaura H, Mori T, et al. Altered microstructure in corticospinal tract in idiopathic normal pressure hydrocephalus: comparison with Alzheimer disease and Parkinson disease with dementia. AJNR Am J Neuroradiol. 2011;32(9):1681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koyama T, Marumoto K, Domen K, Ohmura T, Miyake H. Diffusion tensor imaging of idiopathic normal pressure hydrocephalus: a voxel-based fractional anisotropy study. Neurol Med Chir. 2012;52(2):68–74.

    Article  Google Scholar 

  49. Grazzini I, Venezia D, Cuneo GL. The role of diffusion tensor imaging in idiopathic normal pressure hydrocephalus: a literature review. Neuroradiol J. 2020;34(2):55–69.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Keong NC, Pena A, Price SJ, Czosnyka M, Czosnyka Z, DeVito EE, et al. Diffusion tensor imaging profiles reveal specific neural tract distortion in normal pressure hydrocephalus. PLoS ONE. 2017;12(8): e0181624.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Irie R, Tsuruta K, Hori M, Suzuki M, Kamagata K, Nakanishi A, et al. Neurite orientation dispersion and density imaging for evaluation of corticospinal tract in idiopathic normal pressure hydrocephalus. Jpn J Radiol. 2017;35(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  52. Ciraolo L, Mascalchi M, Bucciolini M, Dal Pozzo G. Fast multiphase MR imaging of aqueductal CSF flow: 1. Study of healthy subjects. AJNR Amer J Neuroradiol. 1990;11(3):589–96.

    Google Scholar 

  53. Bradley WG Jr, Whittemore AR, Kortman KE, Watanabe AS, Homyak M, Teresi LM, et al. Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology. 1991;178(2):459–66.

    Article  PubMed  Google Scholar 

  54. Bradley WG Jr, Kortman KE, Burgoyne B. Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology. 1986;159(3):611–6.

    Article  PubMed  Google Scholar 

  55. Motl RW, Hubbard EA, Sreekumar N, Wetter NC, Sutton BP, Pilutti LA, et al. Pallidal and caudate volumes correlate with walking function in multiple sclerosis. J Neurol Sci. 2015;354(1):33–6.

    Article  PubMed  Google Scholar 

  56. Bradley WG Jr. Magnetic resonance imaging of normal pressure hydrocephalus. Semin Ultrasound CT MR. 2016;37(2):120–8.

    Article  PubMed  Google Scholar 

  57. Tawfik AM, Elsorogy L, Abdelghaffar R, Naby AA, Elmenshawi I. Phase-contrast MRI CSF flow measurements for the diagnosis of normal-pressure hydrocephalus: observer agreement of velocity versus volume parameters. AJR Am J Roentgenol. 2017;208(4):838–43.

    Article  PubMed  Google Scholar 

  58. Shanks J, Markenroth Bloch K, Laurell K, Cesarini KG, Fahlström M, Larsson EM, et al. Aqueductal CSF stroke volume is increased in patients with idiopathic normal pressure hydrocephalus and decreases after shunt surgery. AJNR Am J Neuroradiol. 2019;40(3):453–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vlasák A, Gerla V, Skalický P, Mládek A, Sedlák V, Vrána J, et al. Boosting phase-contrast MRI performance in idiopathic normal pressure hydrocephalus diagnostics by means of machine learning approach. Neurosurg Focus. 2022;52(4):E6.

    Article  PubMed  Google Scholar 

  60. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain: A J Neurol. 2017;140(10):2691–705.

    Article  Google Scholar 

  61. Eide PK, Lashkarivand A, Hagen-Kersten Å A, Gjertsen Ø, Nedregaard B, Sletteberg R, et al. Intrathecal contrast-enhanced magnetic resonance imaging of cerebrospinal fluid dynamics and glymphatic enhancement in idiopathic normal pressure hydrocephalus. Frontiers in Neurol. 2022;13:857328.

    Google Scholar 

Download references

Funding

This chapter was supported by the Ministry of Health of the Czech Republic institutional grant no. NU23-04–00551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Bradáč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vlasák, A., Sedlák, V., Bubeníková, A., Bradáč, O. (2023). Imaging of NPH. In: Bradac, O. (eds) Normal Pressure Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-031-36522-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36522-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36521-8

  • Online ISBN: 978-3-031-36522-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics