Skip to main content

Coordination, Geometrization, Unification: An Overview of the Reichenbach–Einstein Debate on the Unified Field Theory Program

  • Chapter
  • First Online:
Philosophers and Einstein's Relativity

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 342))

  • 108 Accesses

Abstract

The quest for a ‘unified field theory’, which aims to integrate gravitational and electromagnetic fields into a single field structure, spanned most of Einstein’s professional life from 1919 until his death in 1955. It is seldom noted that Hans Reichenbach was possibly the only philosopher who could navigate the technical intricacies of the various unification attempts. By analyzing published writings and private correspondences, this paper aims to provide an overview of the Einstein-Reichenbach relationship from the point of view of their evolving attitudes toward the program of unifying electricity and gravitation. The paper concludes that the Einstein-Reichenbach relationship is more complex than usually portrayed. Reichenbach was not only the indefatigable ‘defender’ of relativity theory but also the caustic ‘attacker’ of Einstein’s and others’ attempts at unified field theory. Over the years, Reichenbach managed to provide the first, and possibly only, overall philosophical reflection on the unified field theory program. Thereby, Reichenbach was responsible for bringing to the debate, often for the first time, some of the central issues of the philosophy of space-time physics: (a) the relation between a theory’s abstract geometrical structures (metric, affine connection) and the behavior of physical probes (rods and clocks, free particles, and so on); (b) the question of whether such association should be regarded as a geometrization of physics or a physicalization of geometry; (c) the interplay between geometrization and unification in the context of a field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the history of the unified field theory-project, I draw freely from the standard historical literature on the subject Vizgin (1994), Goenner (2004), and Goldstein and Ritter (2003). For an overview of Einstein’s work on the unified field theory, see Sauer (2014); for the philosophical background of Einstein’s search for a unified field theory, see Dongen (2010); on Einstein’s philosophy of science, see Ryckman (2017).

  2. 2.

    Throughout the paper, the notation used by Reichenbach (1928a) which, in turn is based on Eddington (1923, 1925) is used.

  3. 3.

    The affine geometry is the study of parallel lines Weyl (1918c) introduced the expression ‘affine connection’ (affiner Zusammenhang). The term ‘connection’ refers to the possibility of comparison of vectors at close points. However, it is the notion of ‘sameness’ rather than parallelism that holds significance. Thus, some authors, such as Reichenbach (1928b), prefer to use the term ‘displacement’ (Verschiebung), which emphasizes the small coordinate difference \(d{x_{\nu }}\) along which the vector is transferred. Note that ‘displacement’ also refers to the vector \(dx_\nu \). To avoid confusion, the term ‘transfer’ Übertragung has also been used, for example, by Schouten (1922).

  4. 4.

    In Weyl’s (1918a) theory the vector field \({\varphi _\nu }\) determines the change of length of vectors; the curl of \({\varphi _\nu }\) is the length-curvature tensor \({F_{\mu \nu }}\), which satisfy satisfy an identity which looks a lot like Maxwell-Minkowski equations in empty space. Thus, it was very suggestive to interpret \({\varphi _\nu }\) as the electromagnetic four-potential and its curl \({F_{\mu \nu }}\) as the electromagnetic tensor.

  5. 5.

    Einstein raised at least four objections against Weyl’s theory: (1) the so-called ‘measuring rod objection’ (Maßstab-Einwand) (Einstein, 1918) is most famous. Weyl’s theory predicts that the clocks’ ticking rate should depend on the clocks’ prehistory. However, the spectral lines of atoms used as clocks are well-defined; (2) the geodesic equation in Weyl’s theory contains terms proportional to the vector potential \({\varphi _\nu }\). Thus, the electromagnetic four-vector potential affects the motion of uncharged particles; (3) the representation of the Lagrangian is the mere sum of electromagnetic and gravitational components, thus Weyl’s theory does not achieve a proper unification; (4) The field equations derived from this Lagrangian were of the fourth-order in the \({g_{\mu \nu }}\) which, even in the absence of an electromagnetic field, did not reduce to the generally relativistic equations of gravitation, violating the correspondence principle.

  6. 6.

    Einstein to Kaluza, Apr. 21, 1919; CPAE, Vol. 9, Doc. 26; Einstein to Kaluza, Apr. 28, 1919; CPAE, Vol. 9, Doc. 30; Einstein to Kaluza, May 5, 1919; CPAE, Vol. 9, Doc. 35; Einstein to Kaluza, May 14, 1919; CPAE, Vol. 9, Doc. 40; Einstein to Kaluza, May 29, 1919; CPAE, Vol. 9, Doc. 48.

  7. 7.

    These autobiographical notes HR, 044-06-23 were written in 1927.

  8. 8.

    Reichenbach’s habilitation has recently attracted renewed attention (Friedman, 2001). Reichenbach borrowed from Schlick (1918) the idea that physical knowledge is, ultimately (Zuordnung), the process of relating an axiomatically defined mathematical structure to concrete empirical reality (Padovani, 2009). However, Reichenbach attempted to give this insight a ‘Kantian’ twist. According to Reichenbach, in a physical theory, besides the ‘axioms of connections’ (Verknüpfungsaxiome) encoding the mathematical structure of a theory, one needs a special class of physical principles, the ‘axioms of coordination’ (Zuordnungsaxiome), to ensure the univocal coordination of that structure to reality. For the young Reichenbach, the latter axioms are a priori because they are ‘constitutive’ of the object of a physical theory. However, they are not apodeictic or valid for all time. As is well known, Reichenbach would soon abandon the project of a constitutive but relativized a priori. However, he would firmly maintain the separation between the mathematical framework of a theory (the ‘defined side’) and the way it relates to empirical reality (the ‘undefined side’) as an essential feature of his philosophy (Reichenbach, 1920b, 40; tr. 1969 42) as an essential feature of his philosophy.

  9. 9.

    \(d s^{4}=g_{\mu \nu \sigma \tau } d x_{\mu } d x_{\nu } d x_{\sigma } d x_{\tau }\) instead of \(d s^{2}={g_{\mu \nu }} d x_{\mu } d x_{\nu }\) as in Riemannian geometry.

  10. 10.

    In the 1919 edition of the Raum–Zeit–Materie, Weyl included a presentation of his unified field theory. Thus, the ‘Conclusion’ of the book was characterized by even more inspired rhetoric: “physics and geometry coincide with each other” (Weyl, 1919b, 263). The tendency of physicalizing geometry that prevailed among the leading protagonists of the nineteenth century from Gauss to Helmholtz seemed to be superseded by the project of geometrizing physics that ran from Clifford to Einstein: “geometry has not been physics but physics has become geometry” (Weyl, 1919b, 263).

  11. 11.

    Haas (1920).

  12. 12.

    Schlick to Reichenbach, Sep. 25, 1920; HR, 015-63-23 Schlick to Reichenbach, Nov. 26, 1920; HR, 015-63-22; Schlick to Reichenbach, Dec. 11, 1920; HR, 015-63-19; Reichenbach to Schlick, Nov. 29, 1920; Reichenbach to Schlick, Sep. 10, 1920.

  13. 13.

    Reichenbach was confronted with Schlick’s objection that his ‘axioms of coordination’ were nothing but ‘conventions’. Reichenbach initially opposed some resistance. If the coordinating principles are fully arbitrary, he feared, geometry would be empirically meaningless. In Poincaré’s conventionalism, Reichenbach missed a constraint in “the arbitrariness of the principles […], if the principles are combined” Reichenbach to Schlick, Nov. 26, 1920; HR, 015-63-22. Einstein’s famous lecture on ‘geometry and experience’ of the end January of 1921, which was published a few months lter (Einstein, 1921a), seemed to have tipped the scale in Schlick’s favor. Reichenbach (1922a) turned Einstein’s \(G+P\) formula into his \(G + F\) formula, where F is a ‘metric’ or universal force affecting all bodies in the same way. By setting \(F=0\), geometry becomes empirically testable. Thus, Reichenbach could embrace conventionalism without accepting that the propositions of geometry are empirical meaningless.

  14. 14.

    That is on the field equations of the theory which, in turn, can be derived from an ‘action principle’.

  15. 15.

    A different variation of this strategy of ‘doubling the geometry’ was suggested by Eddington (1921a) at about the same time. He considered non-Riemannian geometries as mere ‘graphical representations’ that might serve to organize different theories into a common mathematical framework. The “natural geometry” remains exactly Riemannian (Eddington, 1921a).

  16. 16.

    The reference is to Reichenbach (1920b) and Freundlich (1920) who, however, refers to Haas (1920).

  17. 17.

    In September 1921, Pauli’s (1921) encyclopedia article on relativity theory was published as part of the fifth volume of the Enzyklopädie der Mathematischen Wissenschaften. In the chapter dedicated to Weyl’s theory, Pauli suggested that Weyl provided two different versions of the theory. In its first version, Weyl’s theory sought to make predictions on the behavior of rods and clocks, just like Einstein’s theory. From this point of view, the theory is empirically meaningful, but inadequate because of the existence of atoms with sharp spectral lines. Later, Weyl renounced this interpretation. The ideal process of the congruent displacement vectors has nothing to do with the real behavior of rods and clocks (Pauli, 1921, 763; tr. 1958, 196). However, in this way, the theory furnishes only “formal, and not physical evidence for a connection between [the] world metric and electricity” (Pauli, 1921, 763; tr. 1958, 196). In this form, Pauli argues, the theory loses its “convincing power [Überzeugungskraft]” (Pauli, 1921, 763; tr. 1958, 196).

  18. 18.

    Reichenbach might have been inspired by Pauli (1921). However, his name is not mentioned.

  19. 19.

    This choice of words is similar to that of Pauli, who claimed that Weyl’s theory in the second form lost his Überzeugunggkraft (Pauli, 1921, 763; tr. 1958, 196).

  20. 20.

    In such a theory, the unit of length would be defined as certain number of spacing between the atoms of a cubic crystal system; each of atom, in turn, consists of electrons and protons arranged according to a specific law. A specific solution to the field equations must provide information about all the details of this arrangement. Something similar can be said for the unit of time that correspond to the vibrations of an atom.

  21. 21.

    As one might infer from Reichenbach’s later writings, his point of view might have been similar to that of Pauli. In a long letter to Eddington in September 1923, Pauli insisted that a good theory should start with “the definition of the field quantities used, and how these quantities can be measured” (Pauli to Eddington, Sep. 23, 1923; WPWB, Doc. 45). One of the great achievements of relativity theory was that the coefficients \({g_{\mu \nu }}\) could be measured with rods and clocks. Pauli explained that Weyl attempted to pursue this strategy again but then abandoned this approach (Pauli to Eddington, Sep. 23, 1923; WPWB, Doc. 45). In this way, he produced what Eddington had rightly called a ‘graphical representation’ of the two fields in unified formalism, but not a ‘natural geometry’ found experimentally as in general relativity (see Eddington, 1923, 197). Similarly, in Einstein-Eddington new theory “[t]he quantities [\({\Gamma ^\tau _{\mu \nu }}\)] cannot be measured directly” (Pauli to Eddington, Sep. 23, 1923; WPWB, Doc. 45). The measurable quantities \({g_{\mu \nu }}\) and \({F_{\mu \nu }}\) can be calculated from the \({\Gamma ^\tau _{\mu \nu }}\) only through complicated calculations. Thus, not only we do not have a “ ‘natural geometry’ but also not a ‘natural theory’ ” (Pauli to Eddington, Sep. 23, 1923; WPWB, Doc. 45).

  22. 22.

    As Weyl himself ironically remarked, Einstein undertook “the same purely speculative paths which [he was] earlier always protesting against” (Weyl to Einstein, May 18, 23; CPAE, Vol. 13, Doc. 30; cf. Weyl to Seelig, May 19, 1952, cit. in Seelig, 1960, 274f.).

  23. 23.

    The process of obtaining the venia legendi at another university.

  24. 24.

    Einstein (1925a).

  25. 25.

    In a review of the German translation (Eddington, 1925) of Eddington’s relativity textbook (Eddington, 1923) that came out a few weeks later, Pauli (1926) expressed similar concerns. Without the equivalence principle, the entire geometrization program appeared to Pauli unjustified: “An attempt at an analogous geometrical interpretation of the electromagnetic field faces the difficulty that there is no empirical fact corresponding to the equality of heavy and inert mass, which would make such an interpretation appear ‘natural’ ” (Pauli, 1926). The solution was to avoid any connection between geometry and the behavior of rods and clocks. However, in this way, one could at most produce what Eddington called a ‘graphical representation’. According to Pauli, similar objections could be raised against Einstein’s last work (Einstein, 1925b).

  26. 26.

    That is, invariance by the substitution of \(g_{ik}\) with \(\lambda g_{ik}\) where \(\lambda \) is an arbitrary smooth function of position (cf Weyl, 1918b, 468). Weyl introduced the expression ‘gauge invariance’ (Eichinvarianz) in Weyl, 1919a, 114.

  27. 27.

    Cf. Weyl, 1918b, 477. Einstein regarded this as one of the major shortcomings of Weyl’s theory; see Einstein to Besso, Aug. 20, 1918; CPAE, Vol. 8b, Doc. 604, Einstein to Hilbert, Jun. 9, 1919; CPAE, Vol. 9, Doc. 58.

  28. 28.

    Pauli’s (1926) review of the German translation of Eddington (1925) is a typical example of this type of criticism.

  29. 29.

    The Appendix was not included in the English translation Reichenbach (1958).

  30. 30.

    Starting from a general non-symmetric affine connection \({\Gamma ^\tau _{\mu \nu }}\) and imposing the condition that the length of vectors does not change under parallel transport, one can obtain Einstein and Riemann spaces through the “exchangeability of the specializations” (Reichenbach, 1928b, 5). By imposing that the Riemann tensor vanishes, one obtains Einstein space, while imposing that the connection is symmetric yields Riemannian space.

  31. 31.

    See Footnote 17.

  32. 32.

    For Einstein’s earlier ‘logic of discovery’, see Giovanelli (2020).

  33. 33.

    Weyl, whom Einstein had always scolded for his speculative style of doing physics, could relaunch the accusation in a paper (Weyl, 1929) in which he had uncovered the gauge symmetry of the Dirac theory of the electron (Dirac, 1928a,b). “The hour of your revenge has come”, Pauli wrote to Weyl in August: “Einstein has dropped the ball of distant parallelism, which is also pure mathematics and has nothing to do with physics and you can scold him” (Pauli to Weyl, Aug. 26, 1929; WPWB, Doc. 235). As Pauli complained, writing to Einstein’s close friend Paul Ehrenfest, “God seems to have left Einstein entirely!” (Pauli to Ehrenfest, Sep. 29, 1929; WPWB, Doc. 237).

  34. 34.

    It is interesting to notice that one of the reasons that induced Einstein to abandon the theory was not dissimilar to Reichenbach’s criticism: “The main reason for the uselessness of the distant parallelism construction lies, I feel, in that one can attribute absolutely no physical meaning to the ‘straight lines’ of the theory, while the physically meaningful (macroscopic) equations of motion cannot be obtained from it. In other words, the \(h_{s v}\) give rise to no useful representation of the electromagnetic field” (Einstein to Cartan, May 21, 1932; Debever, 1979, A XXXV). Thus, for Einstein, it was legitimate to abandon the physical interpretation of straight lines from the outset if the theory provided a way to derive the laws of motion of the electrons.

  35. 35.

    In a way not dissimilar to Reichenbach, Weyl considered early unified field theories as “merely geometrical dressings (geometrische Einkleidungen) rather than as proper geometrical theories of electricity” (Weyl, 1931, 343).

  36. 36.

    In English in the text.

  37. 37.

    In English in the text.

  38. 38.

    In English in the text.

  39. 39.

    Einstein (1949a).

References

  • Afriat, Alexander. 2009. How Weyl Stumbled across Electricity While Pursuing Mathematical Justice. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics 40:20–25.

    Article  Google Scholar 

  • Debever, Robert, ed. 1979. Élie Cartan - Albert Einstein: Letters on Absolute Parallelism 1929–1932. Princeton: Princeton Univerity Press.

    Google Scholar 

  • Dirac, Paul Adrien Maurice. 1928a. The Quantum Theory of the Electron. Proceedings of the Royal Society of London 117:610–624.

    Google Scholar 

  • ——. 1928b. The Quantum Theory of the Electron. II. Proceedings of the Royal Society of London 118:351–361.

    Google Scholar 

  • Dongen, Jeroen van. 2004. Einstein’s Methodology, Semivectors and the Unification of Electrons and Protons. Archive for History of Exact Sciences 58:219–254.

    Article  Google Scholar 

  • ——. 2007. Reactionaries and Einstein’s Fame: German Scientists for the Preservation of Pure Science, Relativity, and the Bad Nauheim Meeting. Physics in Perspective 9:212–230.

    Article  Google Scholar 

  • ——. 2010. Einstein’s Unification. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Dyson, Frank Watson, Arthur Stanley Eddington, and Charles Rundle Davidson. 1920. A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919. Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or Physical Character 220:291–333.

    Google Scholar 

  • Eddington, Arthur Stanley. 1921a. A Generalization of Weyl’s Theory of the Electromagnetic and Gravitation fields. Proceedings of the Royal Society London 99:104–121.

    Google Scholar 

  • ——. 1921b. The Relativity of Field and Matter. Philosophical Magazine 42:800–806.

    Google Scholar 

  • ——. 1923. The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.

    Google Scholar 

  • ——. 1925. The Domain Of Physical Science, ed. Joseph Needham and Arthur James Balfour, 187–218. New York: The Macmillan Company.

    Google Scholar 

  • Einstein, Albert. 1914. Die formale Grundlage der allgemeinen Relativitätstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 1030–1085. Repr. in CPAE, Vol. 6, Doc. 9.

    Google Scholar 

  • ——. 1916. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 4th Ser. 49:769–822. Also issued as a separatum, Leipzig: Barth. Repr. in CPAE, Vol. 6, Doc. 30.

    Google Scholar 

  • ——. (1918). Nachtrag zu H. Weyl. Gravitation und Elektrizität [Weyl, 1918a]. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 478–480. Repr. in CPAE, Vol. 7, Doc. 8.

  • ——. 1919a. Lecture Notes for Course on General Relativity at the University of Berlin. Summer Semester. Pub. in CPAE, Vol. 7, Doc. 19.

    Google Scholar 

  • ——. 1919b. Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitzungsberichte der Preußischen Akademie der Wissenschaften, 349–356. Repr. in CPAE, Vol. 7, Doc. 17.

    Google Scholar 

  • ——. 1921a. Geometrie und Erfahrung. Lecture before the Prussian Academy of Sciences, January 27, 1921. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 123–130. Repr. as: Geometrie und Erfahrung. Erweiterte Fassung des Festvortrages gehalten an der Preussischen Akademie der Wissenschaften zu Berlin am 27. Januar 1921. Berlin: Springer, 1921. Repr. in CPAE, Vol. 7, Doc. 52.

    Google Scholar 

  • ——. 1921b. Über eine naheliegende Ergänzung des Fundamentes der allgemeinen Relativitätstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 261–264. Repr. in CPAE, Vol. 7, Doc. 54.

    Google Scholar 

  • ——. 1923a. Grundgedanken und Probleme der Relativitätstheorie. In Les Prix Nobel en 1921–1922, ed. Carl Gustaf Santesson, 1–10. Stockholm: Nobel Foundation. Nobel prize lecture, delivered before the Nordische Naturforscherversammlung in Göteborg July 11, 1923.

    Google Scholar 

  • ——. 1923b. The Theory of the Affine field. Nature 2812:448–449. Repr. in CPAE, Vol. 14, Doc. 123.

    Google Scholar 

  • ——. 1923c. Zur affinen Feldtheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 137–140. Repr. in CPAE, Vol. 14, Doc. 52.

    Google Scholar 

  • ——. 1923d. Zur allgemeinen Relativitätstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 32–38, 76–77. Repr. in CPAE, Vol. 13, Doc. 425.

    Google Scholar 

  • ——. 1924. Review of Elsbach, Kant und Einstein [Elsbach, 1924]. Deutsche Literaturzeitung 45:1685–1692. Repr. in CPAE, Vol. 14, Doc. 321.

  • ——. 1925a. Einheitliche Feldtheorie von Gravitation und Elektrizität. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 414–419. Repr. in CPAE, Vol. 15, Doc. 17.

    Google Scholar 

  • ——. 1925b. Nichteuklidische Geometrie und Physik. Die neue Rundschau 36:16–20. Repr. in CPAE, Vol. 14, Doc. 220.

    Google Scholar 

  • ——. 1926. Space-Time. In Encyclopædia Britannica, ed. by James Louis Garvin, 13th ed., 608–609. London/New York: Encyclopædia Britannica, Inc. Repr. in CPAE, Vol. 15, Doc. 148.

    Google Scholar 

  • ——. 1928a. A propos de ‘La Déduction Relativiste’ de M. Émile Meyerson [Meyerson, 1925]. Revue philosophique de la France et de l’étranger 105:161-166. Repr. in CPAE, Vol. 16, Doc. 152.

    Google Scholar 

  • ——. 1928b. Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 224–227. Repr. in CPAE, Vol. 16, Doc. 259.

    Google Scholar 

  • ——. 1928c. Review of Reichenbach, Philosophie der Raum-Zeit-Lehre [Reichenbach, 1928a]. Deutsche Literaturzeitung 49:19–20.

    Google Scholar 

  • ——. 1928d. Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 217–221. Repr. in CPAE, Vol. 16, Doc. 256.

    Google Scholar 

  • ——. 1929a. Einstein Explains His New Discoveries. New York Times.

    Google Scholar 

  • ——. 1929b. The New Field Theory. London Times.

    Google Scholar 

  • ——. 1929c. Über den gegenwärtigen Stand der Feldtheorie. In Festschrift zum 70. Geburtstag von Prof. Dr. A. Stodola, ed. Emil Honegger, 126–132. Zürich/Leipzig: Füssli. Repr. in CPAE, Vol. 16, Doc. 313.

    Google Scholar 

  • ——. 1929d. Zur einheitlichen Feldtheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 2–7. Repr. in CPAE, Vol. 16, Doc. 525.

    Google Scholar 

  • ——. 1930a. Das Raum-, Feld- und Äther-Problem in der Physik. Koralle 5:486–487.

    Google Scholar 

  • ——. 1930b. Das Raum-, Feld- und Äther-Problem in der Physik. Gesamtbericht, Zweite Weltkraftkonferenz 19:1–5.

    Google Scholar 

  • ——. 1930c. Raum, Äther und Feld in der Physik. Forum Philosophicum 1:173–180. Tr. in the same volume, 180–184.

    Google Scholar 

  • ——. 1930d. The New Field Theory. The Observatory 52:82–87, 114–118. Repr. in CPAE, Vol. 16, Doc. 387.

    Google Scholar 

  • ——. 1930e. Théorie unitaire du champ physique. Annales de l’Institut Henri Poincaré 1:1–24.

    Google Scholar 

  • ——. 1932. Gegenwärtiger Stand der Relativitätstheorie. Nach einem von ihm am 14. Oktober im Physikalischen Institut der Wiener Universität gehaltenen Votrage. Die Quelle 82:440–442.

    Google Scholar 

  • ——. 1933a. On the Method of Theoretical Physics. The Herbert Spencer Lecture, delivered at Oxford, June 10, 1933. Oxford: Clarendon Press. See Einstein, 1933b for the original German.

  • ——. 1933b. Zur Methode der theoretischen Physik. EA, 1114.1.

    Google Scholar 

  • ——. 1945. A Generalization of the Relativistic Theory of Gravitation. Annals of Mathematics, Second Series 46:578–584.

    Google Scholar 

  • ——. 1949a. Remarks Concerning the Essays Brought Together in This Co-operative Volume. ed. Schilpp, 665–688.

    Google Scholar 

  • ——. 1949b. Unpub. Reply to H. Reichenbach. EA, 2058.

    Google Scholar 

  • Einstein, Albert, and Bruria Kaufman. 1955. A New Form of the General Relativistic field Equations. The Annals of Mathematics 62:128.

    Article  Google Scholar 

  • Einstein, Albert, and Walther Mayer. 1931. Einheitliche Theorie von Gravitation und Elektrizität. Sitzungsberichte der Preußischen Akademie der Wissenschaften 541–557.

    Google Scholar 

  • ——. 1932. Semi-Vektoren und Spinoren. Sitzungsberichte der Preußischen Akademie der Wissenschaften 522–550.

    Google Scholar 

  • ——. 1933a. Dirac Gleichungen für Semi-Vektoren. Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam 36:497.

    Google Scholar 

  • ——. 1933b. Spaltung der natürlichsten Feldgleichungen für Semi-Vektoren in Spinor-Gleichungen vom Diracschen Typus. Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam 36:615–619.

    Google Scholar 

  • ——. 1934. Darstellung der Semi-Vektoren als gewöhnliche Vektoren von besonderem Differentiations Charakter. Annals of Mathematics 35:104–110.

    Article  Google Scholar 

  • Einstein, Albert, and Ernst G. Straus. 1945. The Influence of the Expansion of Space on the Gravitation fields Surrounding the Individual Stars. Reviews of Modern Physics 17:120–124.

    Article  Google Scholar 

  • Einstein, Albert, et al. 1922. La théorie de la relativité. Interventions sur la théorie de la relativité par X. Leon, P. Langevin, J. Hadamard, A. Einstein, É. Cartan, P. Painlevé, P. Levy, J. Perrin, J. Becquerel, L. Brunschvicg, É. Le Roy, H. Bergson, É. Meyerson, et H. Pieron. Bulletin de la Société Française de Philosophie 22:91–113.

    Google Scholar 

  • Elsbach, Alfred Coppel. 1924. Kant und Einstein: Untersuchungen über das Verhältnis der modernen Erkenntnistheorie zur Relativitätstheorie. Berlin: de Gruyter.

    Book  Google Scholar 

  • Frank, Philipp. 1947. Einstein: His Life and Times. New York: Knopf.

    Google Scholar 

  • Freundlich, Erwin. 1920. Zu dem Aufsatze ‘Die Physik als geometrische Notwendigkeit’ von Arthur Haas. (Naturwissenschaften 1920, Heft 3). Die Naturwissenschaften 8:234–235.

    Article  Google Scholar 

  • Friedman, Michael. 2001. Dynamics of Reason: The 1999 Kant Lectures at Stanford University. Stanford: CSLI Publ.

    Google Scholar 

  • Giovanelli, Marco. 2014. ‘But One Must Not Legalize the Mentioned Sin: Phenomenological vs. Dynamical Treatments of Rods and Clocks in Einstein’s Thought. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics 48:20–44.

    Article  Google Scholar 

  • ——. 2016. ‘... But I still Can’t Get Rid of a Sense of Artificiality’: The Einstein-Reichenbach Debate on the Geometrization of the Electromagnetic Field. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics 54:35–51.

    Article  Google Scholar 

  • ——. 2018. ‘Physics Is a Kind of Metaphysics’: Émile Meyerson and Einstein’s Late Rationalistic Realism. European Journal for the Philosophy of Science 8:783–829.

    Article  Google Scholar 

  • ——. 2020. ‘Like Thermodynamics before Boltzmann’: On Einstein’s Distinction between Constructive and Principle Theories. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics 71:118–157.

    Article  Google Scholar 

  • ——. 2021. ‘Geometrization of Physics’ vs. ‘Physicalization of Geometry’: The Untranslated Appendix to Reichenbach’s Philosophie der Raum-Zeit-Lehre. In From Philosophy of Nature to Physics: Logical Empiricism and the Natural Sciences, ed. Sebastian Lutz and Ádám Tamas Tuboly, 224–261. London/New York: Roudlege.

    Google Scholar 

  • ——. 2022. Geometrization vs. Unification. The Reichenbach–Einstein Quarrel about the Fernparallelismus Field Theory. Synthese 200.

    Google Scholar 

  • Goenner, Hubert F. M. 2004. On the History of Unified Field Theories. Living Reviews in Relativity 7.

    Google Scholar 

  • Goldstein, Catherine, and Jim Ritter. 2003. The Varieties of Unity: Sounding Unified Theories 1920–1930. In Revisiting the Foundations of Relativistic Physics: Festschrift in Honor of John Stachel, ed. Jürgen Renn, Lindy Divarci, Petra Schröter, Abhay Ashtekar, Robert S. Cohen, Don Howard, Sahotra Sarkar, and Abner Shimony, 93–149. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Haas, Arthur. 1920. Die Physik als geometrische Notwendigkeit. Die Naturwissenschaften 8:121–127.

    Article  Google Scholar 

  • Hecht, Hartmut, and Dieter Hoffmann. 1982. Die Berufung Hans Reichenbachs an die Berliner Universität. Deutsche Zeitschrift für Philosophie 30:651–662.

    Article  Google Scholar 

  • Hentschel, Klaus. 1982. Zur Rolle Hans Reichenbachs in den Debatten um die Relativitätstheorie (mit der vollständigen Korrespondenz Reichenbach-Friedrich Adler im Anhang). Nachrichtenblatt der Deutschen Gesellschaft für Geschichte der Medizin, Naturwissenschaft & Technik 3:295–324.

    Google Scholar 

  • Janssen, Michel, and Christoph Lehner, eds. 2014. The Cambridge Companion to Einstein. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kox, A. J., and Jean Eisenstaedt, eds. 2005. The Universe of General Relativity. Boston: Birkhäuser.

    Google Scholar 

  • Lehmkuhl, Dennis. 2014. Why Einstein Did Not Believe That General Relativity Geometrizes Gravity. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics 46:316–326.

    Article  Google Scholar 

  • ——. 2017. Introduction: Towards a Theory of Spacetime Theories. In Towards a Theory of Spacetime Theories, 1–11. Springer New York.

    Google Scholar 

  • Levi-Civita, Tullio. 1916. Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana. Rendiconti del Circolo Matematico di Palermo (1884–1940) 42:173–204.

    Article  Google Scholar 

  • Meyerson, Émile. 1925. La déduction relativiste. Paris: Payot.

    Google Scholar 

  • Padovani, Flavia. 2009. Relativizing the Relativized a Priori: Reichenbach’s Axioms of Coordination Divided. Synthese 181:41–62.

    Article  Google Scholar 

  • Pais, Abraham. 1982. Subtle is the Lord: The Science and the Life of Albert Einstein. New York: Oxford University Press.

    Google Scholar 

  • Pauli, Wolfgang. 1921. Relativitätstheorie. In Enzyklopädie der mathematischen Wissenschaften, ed. Arnold Sommerfeld, Vol. 5: Physik, Part 2, 539–775. Leipzig: Teubner. Repr. as separatum in: Relativitätstheorie. Leipzig: Teubner, 1921.

    Google Scholar 

  • Pauli, Wolfgang. 1926. Review of Eddington, The Mathematical Theory of Relativity [Eddington, 1923]. Die Naturwissenschaften 13:273–274.

    Google Scholar 

  • ——. 1958. Theory of Relativity. London: Pergamon Press.

    Google Scholar 

  • Reichenbach, Hans. 1916. Der Begriff der Wahrscheinlichkeit für die mathematische Darstellung der Wirklichkeit. Leipzig: Barth.

    Google Scholar 

  • ——. 1920a. Die Einsteinsche Raumlehre. Die Umschau 24:402–405.

    Google Scholar 

  • ——. 1920b. Relativitätstheorie und Erkenntnis apriori. Berlin: Springer. Repr. in Reichenbach, 1977, Vol. 3, 191–332.

  • ——. 1921. Bericht über eine Axiomatik der Einsteinschen Raum-Zeit-Lehre. Physikalische Zeitschrift 22:683–687.

    Google Scholar 

  • ——. 1922a. Der gegenwärtige Stand der Relativitätsdiskussion: Eine kritische Untersuchung. Logos 22:316–378. Repr. in Reichenbach, 1977, Vol. 3, 375–406.

  • ——. 1922b. La signification philosophique de la théorie de la relativité. Revue philosophique de la France et de l’étranger 93:5–61.

    Google Scholar 

  • ——. 1924. Axiomatik der relativistischen Raum-Zeit-Lehre. Vieweg: Braunschweig. Repr. in Reichenbach, 1977, Vol. 3, 3–171.

  • ——. 1925. Über die physikalischen Konsequenzen der relativistischen Axiomatik. Zeitschrift für Physik 34:32–48. Repr. in Reichenbach, 1977, Vol. 3, 172–183.

  • ——. 1926a. Die Weylsche Erweiterung des Riemannschen Raumes und die geometrische Deutung der Elektrizität. Verhandlungen der Deutschen Physikalischen Gesellschaft 7:25.

    Google Scholar 

  • ——. 1926b. Zur einheitlichen Feldtheorie von Gravitation und Elektrizität (HR, 025-25-010).

    Google Scholar 

  • ——. 1928a. Philosophie der Raum-Zeit-Lehre. Berlin/Leipzig: Walter de Gruyter. Repr. in Reichenbach, 1977, Vol. 2.

  • ——. 1928b. Zum Tode von H. A. Lorentz. Berliner Tageblatt.

    Google Scholar 

  • ——. 1928c. Zur Einordnung des neuen Einsteinschen Ansatzes über Gravitation und Elektrizität. EA, 20-093.

    Google Scholar 

  • ——. 1929a. Die neue Theorie Einsteins über die Verschmelzung von Gravitation und Elektrizität. Zeitschrift für Angewandte Chemie 42:121–123.

    Google Scholar 

  • ——. 1929b. Einsteins neue Theorie. Vossische Zeitung. Engl. trans. as ‘Einstein’s New Theory’, in Reichenbach, 1978, Vol. 1, Doc. 26.

  • ——. 1929c. Ziele und Wege der physikalischen Erkenntnis. In Handbuch der Physik, ed. Hans Geiger and Karl Scheel, Vol. 4, 2nd ed., 1–80. Berlin: Springer.

    Google Scholar 

  • ——. 1929d. Zur Einordnung des neuen Einsteinschen Ansatzes über Gravitation und Elektrizität. Zeitschrift für Physik 53:683–689.

    Google Scholar 

  • ——. 1949. The Philosophical Significance of the Theory of Relativity. Schilpp 289–311.

    Google Scholar 

  • ——. 1958. The Philosophy of Space and Time, ed. Maria Reichenbach. Translated by Maria Reichenbach and John Freund. New York: Dover Publ.

    Google Scholar 

  • ——. 1969. Axiomatization of the Theory of Relativity, ed. and translated by Maria Reichenbach. With a foreword by Wesley C. Salmon. Berkeley: University of California Press.

    Google Scholar 

  • ——. 1977. Gesammelte Werke in 9 Bänden, ed. Andreas Kamlah and Maria Reichenbach. Braunschweig/Wiesbaden: Vieweg.

    Google Scholar 

  • ——. 1978. Selected Writings: 1909–1953, ed. and translated by Maria Reichenbach. 2 vols. Dordrecht: Reidel.

    Google Scholar 

  • ——. 2006. Defending Einstein: Hans Reichenbach’s Writings on Space, Time, and Motion, ed. Steven Gimbel and Anke Walz. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ryckman, Thomas. 1995. Weyl, Reichenbach and the Epistemology of Geometry. Studies in History and Philosophy of Science 25:831–870.

    Article  Google Scholar 

  • ——. 1996. Einstein Agonists: Weyl and Reichenbach on Geometry and the General Theory of Relativity. In Origins of Logical Empiricism, ed. Ronald N. Giere, 165–209. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • ——. 2014. ‘A Believing Rationalist’: Einstein and the ‘The Truly Valuable’ in Kant. In Janssen and Lehner, 377–397.

    Google Scholar 

  • ——. 2017. Einstein. New York: Routledge.

    Google Scholar 

  • Rynasiewicz, Robert. 2005. Weyl vs. Reichenbach on Lichtgeometrie. In Kox and Eisenstaedt, 2005, 137–156. Boston: Birkhäuser.

  • Sauer, Tilman. 2006. Field Equations in Teleparallel Space-time: Einstein’s Fernparallelismus Approach toward Unified field Theory. Historia Mathematica 33:399–439.

    Article  Google Scholar 

  • ——. 2014. Einstein’s Unified Field Theory Program. In Janssen and Lehner, 2014, 281–305.

  • Schilpp, Paul Arthur, ed. 1944. The Philosophy of Bertrand Russell. Evanston: The Library of Living Philosophers.

    Google Scholar 

  • ——, ed. 1949. Albert Einstein: Philosopher-Scientist. Evanston, M.: The Library of Living Philosophers.

    Google Scholar 

  • Schlick, Moritz. 1918. Allgemeine Erkenntnisslehre. Berlin: Springer. Repr. in Schlick, 2006, Vol. 1.

  • ——. 2006. Gesamtausgabe, ed. Friedrich Stadler and Hans Jürgen Wendel. Berlin: Springer.

    Google Scholar 

  • Schouten, Jan Arnoldus. 1922. Über die verschiedenen Arten der Übertragung in einer n-dimensionalen Mannigfaltigkeit, die einer Differentialgeometrie zugrundegelegt werden kann. Mathematische Zeitschrift 13:56–81.

    Article  Google Scholar 

  • Seelig, Carl. 1960. Albert Einstein: Leben und Werk eines Genies unserer Zeit. Vienna: Europa Verlag.

    Google Scholar 

  • Speziali, Pierre, ed. 1972. Albert Einstein-Michele Besso: Correspondance 1903–1955. Paris: Hermann.

    Google Scholar 

  • Tonnelat, Marie Antoinette. 1966. Einstein’s Unified Field Theory. New York: Gordon & Breach.

    Google Scholar 

  • Verhaegh, Sander. 2020. Coming to America: Carnap, Reichenbach, and the Great Intellectual Migration. II: Hans Reichenbach. Journal for the History of Analytical Philosophy 8:11.

    Google Scholar 

  • Vizgin, Vladimir Pavlovich. 1994. Unified Field Theories in the first Third of the 20th Century. Translated by Julian B. Barbour. Boston, Basel/Stuttgart: Birkhäuser.

    Google Scholar 

  • Weyl, Hermann. 1918a. Gravitation und Elektrizität. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 465–480. Repr. in Weyl, 1968, Vol. 2, Doc. 31.

  • ——. 1918b. Raum–Zeit–Materie: Vorlesungen über allgemeine Relativitätstheorie. Berlin: Springer.

    Google Scholar 

  • ——. 1918c. Reine Infinitesimalgeometrie. Mathematische Zeitschrift 2:384-411. Repr. in Weyl, 1968, Vol. 2, Doc. 30.

  • ——. 1919a. Eine neue Erweiterung der Relativitätstheorie. Annalen der Physik, 4th Series, 59:101–133. Repr. in Weyl, 1968, Vol. 2, Doc. 34.

  • ——. 1919b. Raum–Zeit–Materie: Vorlesungen über allgemeine Relativitätstheorie, 3rd ed. Berlin: Springer.

    Google Scholar 

  • Weyl, Hermann. 1920a. Die Diskussion über die Relativitätstheorie. Die Umschau 24:609–611.

    Google Scholar 

  • ——. 1920b. Elektrizität und Gravitation. Physikalische Zeitschrift 21:649–650. Repr. in Weyl, 1968, Vol. 2, Doc. 40.

  • ——. 1921a. Das Raumproblem. Jahresbericht der Deutschen Mathematikervereinigung 30:92–93.

    Google Scholar 

  • ——. 1921b. Electricity and Gravitation. Nature 106:800–802. Repr. in Weyl, 1968, Vol. 2, Doc. 48.

  • ——. 1921c. Feld und Materie. Annalen der Physik, 4th Series 65:541–563. Repr. in Weyl, 1968, Vol. 2, Doc. 47.

  • ——. 1921d. Raum–Zeit–Materie: Vorlesungen über allgemeine Relativitätstheorie, 4th ed. Berlin: Springer.

    Google Scholar 

  • ——. 1921e. Über die physikalischen Grundlagen der erweiterten Relativitätstheorie. Physikalische Zeitschrift 22:473–480. Repr. in Weyl, 1968, Vol. 2, Doc. 46.

  • ——. 1921f. Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 99–112. Repr. in Weyl, 1968, Vol. 2, Doc. 43.

  • ——. 1923. Mathematische Analyse des Raumproblems. Vorlesungen gehalten in Barcelona und Madrid. Berlin: Springer.

    Google Scholar 

  • ——. 1924. Review of Reichenbach, Axiomatik der relativistischen Raum-Zeit-Lehre [Reichenbach, 1924]. Deutsche Literaturzeitung 45:2122–2128.

    Google Scholar 

  • ——. 1929. Elektron und Gravitation. Zeitschrift für Physik 56:330–352. Repr. in Weyl, 1968, Vol. 3, Doc. 85.

  • ——. 1931. Geometrie und Physik. Die Naturwissenschaften 19:49–58. Repr. in Weyl, 1968, Vol. 3, Doc. 93.

    Google Scholar 

  • ——. 1968. Gesammelte Abhandlungen, ed. Komaravolu Chandrasekharan, Vol. 4. Berlin: Springer.

    Google Scholar 

  • Wünsch, Daniela. 2005. Einstein, Kaluza, and the Fifth Dimension. In Kox and Eisenstaedt, 2005, 277–302.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Giovanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giovanelli, M. (2023). Coordination, Geometrization, Unification: An Overview of the Reichenbach–Einstein Debate on the Unified Field Theory Program. In: Russo Krauss, C., Laino, L. (eds) Philosophers and Einstein's Relativity. Boston Studies in the Philosophy and History of Science, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-031-36498-3_6

Download citation

Publish with us

Policies and ethics