Skip to main content

Application of Supported Fenton and Fenton-Like Catalysts in the Degradation of Pharmaceuticals in Wastewater—A Review of New Technologies in the Last Decade

  • Chapter
  • First Online:
Wastewater Management and Technologies

Part of the book series: Water and Wastewater Management ((WWWE))

Abstract

The last decade has seen vast technological advances in the pharmaceutical industry with many new drugs being developed and brought to the market. Although this advancement within the pharmaceutical industry brings many positives, the most difficult issue facing pharmaceutical companies is the amount of harmful waste generated during their manufacture and subsequent accumulation of these pollutants in water systems. In many cases, the municipal wastewater authorities are unable to remove all pharmaceuticals which result in their discharge into the environment. Pharmaceutic companies that produce drugs and other products may try to deal with waste by incineration. However, in less developed countries, this waste stream may well be discharged to the environment. To combat this problem, significant research has been invested into the development of new technologies with the purpose of degrading these pollutants to less harmful levels. Advanced oxidation processes involving Fenton and Fenton-like catalysts supported on secondary matrices have been especially researched due to their improved efficiencies compared to traditional Fenton’s. This review will analyse some of the new technologies developed in the last decade, the problems they were designed to solve, their applicability to the treatment of pharmaceutical wastewater as well considering their effectiveness and relative cost. This review will also consider potential future applications as well as any outstanding issues in pharmaceutical wastewater treatment, to which more research needs to be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zupanc, M., Kosjek, T., Petkovšek, M., Dular, M., Kompare, B., Širok, B., Blažeka, Ž, & Heath, E. (2013). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics Sonochemistry, 20(4), 1104–1112.

    Article  CAS  Google Scholar 

  2. Gago-Ferrero, P., Gros, M., Ahrens, L., & Wiberg, K. (2017). Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides, and perfluoroalkyl substances in recipient waters. Science of the Total Environment, 601, 1289–1297.

    Article  Google Scholar 

  3. Gadipelly, C., Pérez-González, A., Yadav, G. D., Ortiz, I., Ibáñez, R., Rathod, V. K., & Marathe, K. V. (2014). Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, 53(29), 11571–11592.

    Article  CAS  Google Scholar 

  4. Li, W. C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193–201.

    Article  CAS  Google Scholar 

  5. Duke, S. O. (2010). Herbicide and pharmaceutical relationships. Weed Science, 58(3), 334–339.

    Article  CAS  Google Scholar 

  6. Nassiri Koopaei, N., & Abdollahi, M. (2017). Health risks associated with the pharmaceuticals in wastewater. DARU Journal of Pharmaceutical sciences, 25(1), 1–7.

    Article  Google Scholar 

  7. Lacorte, S., Luis, S., Gómez-Canela, C., Sala-Comorera, T., Courtier, A., Roig, B., Oliveira-Brett, A. M., Joannis-Cassan, C., Aragonés, J. I., Poggio, L., & Noguer, T. (2018). Pharmaceuticals released from senior residences: Occurrence and risk evaluation. Environmental Science and Pollution Research, 25(7), 6095–6106.

    Article  CAS  Google Scholar 

  8. Frédéric, O., & Yves, P. (2014). Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere, 115, 31–39.

    Article  Google Scholar 

  9. Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., & Barceló, D. (2012). Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the total environment, 430, 109–118.

    Article  CAS  Google Scholar 

  10. Polianciuc, S. I., Gurzău, A. E., Kiss, B., Ştefan, M. G., & Loghin, F. (2020). Antibiotics in the environment: Causes and consequences. Medicine and Pharmacy reports, 93(3), 231.

    Google Scholar 

  11. Titouhi, H., & Belgaied, J. E. (2016). Removal of ofloxacin antibiotic using heterogeneous Fenton process over modified alginate beads. Journal of Environmental Sciences, 45, 84–93.

    Article  CAS  Google Scholar 

  12. Scaria, J., Gopinath, A., & Nidheesh, P. V. (2021). A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process. Journal of Cleaner Production, 278, 124014.

    Article  CAS  Google Scholar 

  13. Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260.

    Article  CAS  Google Scholar 

  14. Domínguez, J. R., González, T., Palo, P., & Cuerda-Correa, E. M. (2012). Fenton+ Fenton-like integrated process for carbamazepine degradation: Optimizing the system. Industrial & Engineering Chemistry Research, 51(6), 2531–2538.

    Article  Google Scholar 

  15. Keen, O. S., Baik, S., Linden, K. G., Aga, D. S., & Love, N. G. (2012). Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation. Environmental Science & Technology, 46(11), 6222–6227.

    Article  CAS  Google Scholar 

  16. Sun, S. P., Zeng, X., & Lemley, A. T. (2013). Nano-magnetite catalyzed heterogeneous Fenton-like degradation of emerging contaminants carbamazepine and ibuprofen in aqueous suspensions and montmorillonite clay slurries at neutral pH. Journal of Molecular Catalysis A: Chemical, 371, 94–103.

    Article  CAS  Google Scholar 

  17. Sun, S., Hu, Y., Xu, M., Cheng, F., Zhang, H., & Li, Z. (2022). Photo-Fenton degradation of carbamazepine and ibuprofen by iron-based metal-organic framework under alkaline condition. Journal of Hazardous Materials, 424, 127698.

    Article  CAS  Google Scholar 

  18. Plakas, K. V., Mantza, A., Sklari, S. D., Zaspalis, V. T., & Karabelas, A. J. (2019). Heterogeneous Fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane. Chemical Engineering Journal, 373, 700–708.

    Article  CAS  Google Scholar 

  19. Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Löffler, D., McArdell, C. S., Ternes, T. A., Thomsen, A., & Siegrist, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research, 40(8), 1686–1696.

    Article  CAS  Google Scholar 

  20. Kraigher, B., & Mandic-Mulec, I. (2020). Influence of diclofenac on activated sludge bacterial communities in fed-batch reactors. Food Technology and Biotechnology, 58(4), 402–410.

    Article  CAS  Google Scholar 

  21. Valcárcel, Y., Martínez, F., González-Alonso, S., Segura, Y., Catalá, M., Molina, R., Montero-Rubio, J. C., Mastroianni, N., De Alda, M. L., Postigo, C., & Barceló, D. (2012). Drugs of abuse in surface and tap waters of the Tagus River basin: Heterogeneous photo-Fenton process is effective in their degradation. Environment International, 41, 35–43.

    Article  Google Scholar 

  22. Du, Z., Li, K., Zhou, S., Liu, X., Yu, Y., Zhang, Y., He, Y., & Zhang, Y. (2020). Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides. Chemical Engineering Journal, 380, 122427.

    Article  CAS  Google Scholar 

  23. Catalá, M., Domínguez-Morueco, N., Migens, A., Molina, R., Martínez, F., Valcárcel, Y., Mastroianni, N., de Alda, M. L., Barceló, D., & Segura, Y. (2015). Elimination of drugs of abuse and their toxicity from natural waters by photo-Fenton treatment. Science of the Total Environment, 520, 198–205.

    Article  Google Scholar 

  24. Cai, Q. Q., Lee, B. C. Y., Ong, S. L., & Hu, J. Y. (2021). Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment–Recent advances, challenges and perspective. Water Research, 190, 116692.

    Article  CAS  Google Scholar 

  25. Lappas, A., Heracleous, E. (2016). Production of biofuels via Fischer–Tropsch synthesis: biomass-to-liquids. In Handbook of biofuels production (pp. 549–593). Woodhead Publishing.

    Google Scholar 

  26. Ulloa-Ovares, D., Rodríguez-Rodríguez, C. E., Masís-Mora, M., & Durán, J. E. (2021). Simultaneous degradation of pharmaceuticals in fixed and fluidized bed reactors using iron-modified diatomite as heterogeneous Fenton catalyst. Process Safety and Environmental Protection, 152, 97–107.

    Article  CAS  Google Scholar 

  27. Jain, B., Singh, A. K., Banchhor, S., Jonnalagadda, S. B., Susan, M., & Hasan, A. B. (2020). Treatment of pharmaceutical wastewater by heterogeneous Fenton process: An innovative approach. Nanotechnology for Environmental Engineering, 5(2), 1–13.

    Article  Google Scholar 

  28. Jung, Y. S., Lim, W. T., Park, J. Y., & Kim, Y. H. (2009). Effect of pH on Fenton and Fenton-like oxidation. Environmental Technology, 30(2), 183–190.

    Article  CAS  Google Scholar 

  29. Bui, V. K. H., Park, D., Pham, T. N., An, Y., Choi, J. S., Lee, H. U., Kwon, O. H., Moon, J. Y., Kim, K. T., & Lee, Y. C. (2019). Synthesis of MgAC-Fe3O4/TiO2 hybrid nanocomposites via sol-gel chemistry for water treatment by photo-Fenton and photocatalytic reactions. Scientific Reports, 9(1), 1–11.

    Google Scholar 

  30. Hassan, M. E., Chen, Y., Liu, G., Zhu, D., & Cai, J. (2016). Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light. Journal of Water Process Engineering, 12, 52–57.

    Article  Google Scholar 

  31. López-Ramón, M. V., Álvarez, M. A., Moreno-Castilla, C., Fontecha-Cámara, M. A., Yebra-Rodríguez, Á., & Bailón-García, E. (2018). Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. Journal of Colloid and Interface Science, 511, 193–202.

    Article  Google Scholar 

  32. Dinh, T. T., Nguyen, T. Q., Nguyen, V. D. N., Tran, H. Q., & Le, T. K. (2017). Starch-assisted sol–gel synthesis of magnetic CuFe2O4 powder as photo-Fenton catalysts in the presence of oxalic acid. International Journal of Environmental Science and Technology, 14(12), 2613–2622.

    Article  CAS  Google Scholar 

  33. Ngo, T. P. H., & Le, T. K. (2018). Polyethylene glycol-assisted sol-gel synthesis of magnetic CoFe2O4 powder as photo-Fenton catalysts in the presence of oxalic acid. Journal of Sol-Gel Science and Technology, 88(1), 211–219.

    Article  Google Scholar 

  34. Deng, J., Wen, X., & Wang, Q. (2012). Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity. Materials Research Bulletin, 47(11), 3369–3376.

    Article  CAS  Google Scholar 

  35. Tu, Y., Peng, Z., Huang, J., Wu, X., Kong, L., Liang, Z., Yang, L., & Lin, Z. (2020). Preparation and characterization of magnetic biochar nanocomposites via a modified solvothermal method and their use as efficient heterogeneous Fenton-like catalysts. Industrial & Engineering Chemistry Research, 59(5), 1809–1821.

    Article  CAS  Google Scholar 

  36. Zheng, X., Cheng, H., Yang, J., Chen, D., Jian, R., & Lin, L. (2018). One-pot solvothermal preparation of Fe3O4–Urushiol–Graphene hybrid nanocomposites for highly improved Fenton reactions. ACS Applied Nano Materials, 1(6), 2754–2762.

    Article  CAS  Google Scholar 

  37. Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., Martins, R. (2019). Synthesis, design, and morphology of metal oxide nanostructures. Metal Oxide Nanostructures (pp. 21–57).

    Google Scholar 

  38. Molina, C. B., Sanz-Santos, E., Boukhemkhem, A., Bedia, J., Belver, C., & Rodriguez, J. J. (2020). Removal of emerging pollutants in aqueous phase by heterogeneous Fenton and photo-Fenton with Fe2O3-TiO2-clay heterostructures. Environmental Science and Pollution Research, 27(31), 38434–38445.

    Article  CAS  Google Scholar 

  39. Samy, M., Ibrahim, M. G., Alalm, M. G., & Fujii, M. (2020). Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes. Separation and Purification Technology, 235, 116138.

    Article  CAS  Google Scholar 

  40. Neacşu, I. A., Nicoară, A. I., Vasile, O. R., Vasile, B. Ş. (2016). Inorganic micro-and nanostructured implants for tissue engineering. In Nanobiomaterials in Hard Tissue Engineering (pp. 271–295). William Andrew Publishing.

    Google Scholar 

  41. Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D.L., Rao, N.D., Riahi, K., Rogelj, J., De Stercke, S., Cullen, J. (2018). A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nature energy3(6), 515–527.

    Google Scholar 

  42. Hou, D., O'Connor, D. (2020). Green and sustainable remediation: concepts, principles, and pertaining research. In Sustainable Remediation of Contaminated Soil and Groundwater (pp. 1–17). Butterworth-Heinemann.

    Google Scholar 

  43. Xing, L., Wei, J., Liu, X., Zhang, Y., Xu, M., Li, J., Pan, G., & Li, J. (2022). Application of energy sustainable utilization strategy for highly efficient electro-Fenton treatment of antibiotics. Journal of Environmental Chemical Engineering, 10(1), 107059.

    Article  CAS  Google Scholar 

  44. Farinelli, G., Di Luca, A., Kaila, V. R., MacLachlan, M. J., & Tiraferri, A. (2021). Fe-chitosan complexes for oxidative degradation of emerging contaminants in water: Structure, activity, and reaction mechanism. Journal of Hazardous Materials, 408, 124662.

    Article  CAS  Google Scholar 

  45. Saha, S., Saha, T. K., Karmaker, S., Islam, Z., Demeshko, S., Frauendorf, H., & Meyer, F. (2022). Solar light-assisted oxidative degradation of ciprofloxacin in aqueous solution by Iron(III)-chelated cross-linked chitosan immobilized on a glass plate. Catalysts, 12(5), 475.

    Article  CAS  Google Scholar 

  46. Daniel, G., Zhang, Y., Lanzalaco, S., Brombin, F., Kosmala, T., Granozzi, G., Wang, A., Brillas, E., Sirés, I., & Durante, C. (2020). Chitosan-derived nitrogen-doped carbon electrocatalyst for a sustainable upgrade of oxygen reduction to hydrogen peroxide in UV-assisted electro-Fenton water treatment. ACS Sustainable Chemistry & Engineering, 8(38), 14425–14440.

    Article  CAS  Google Scholar 

  47. Kamrani, M., & Akbari, A. (2018). Chitosan-modified acrylic nanofiltration membrane for efficient removal of pharmaceutical compounds. Journal of environmental chemical engineering, 6(1), 583–587.

    Article  CAS  Google Scholar 

  48. Angra, V., Sehgal, R., Kaur, M., Gupta, R. (2021). Commercialization of bionanocomposites. In Bionanocomposites in Tissue Engineering and Regenerative Medicine (pp. 587–610). Woodhead Publishing.

    Google Scholar 

  49. Titouhi, H., & Belgaied, J. E. (2016). Heterogeneous Fenton oxidation of ofloxacin drug by iron alginate support. Environmental Technology, 37(16), 2003–2015.

    Article  CAS  Google Scholar 

  50. Cuervo Lumbaque, E., Wielens Becker, R., Salmoria Araújo, D., Dallegrave, A., Ost Fracari, T., Lavayen, V., & Sirtori, C. (2019). Degradation of pharmaceuticals in different water matrices by a solar homo/heterogeneous photo-Fenton process over modified alginate spheres. Environmental Science and Pollution Research, 26(7), 6532–6544.

    Article  CAS  Google Scholar 

  51. Kong, Y., Zhuang, Y., & Shi, B. (2020). Tetracycline removal by double-metal-crosslinked alginate/graphene hydrogels through an enhanced Fenton reaction. Journal of Hazardous Materials, 382, 121060.

    Article  CAS  Google Scholar 

  52. Flower, R. J. (2013). Diatom methods|Diatomites: Their formation, distribution, and uses.

    Google Scholar 

  53. Liu, Y., Wu, M., Ren, L., Wang, C., Li, Z., Ling, L., & Guo, Y. (2020). Heterogeneous Photo-Fenton catalytic oxidation of ciprofloxacin using lafeo3/diatomite composite photocatalysts under visible light. ChemistrySelect, 5(46), 14792–14799.

    Article  CAS  Google Scholar 

  54. Sun, Y., Zhou, J., Liu, D., Liu, X., Li, X., & Leng, C. (2021). Highly efficient removal of tetracycline hydrochloride under neutral conditions by visible photo-Fenton process using novel MnFe2O4/diatomite composite. Journal of Water Process Engineering, 43, 102307.

    Article  Google Scholar 

  55. Elwakeel, K. Z., El-Bindary, A. A., Kouta, E. Y., & Guibal, E. (2018). Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu (II), Cd (II) and Pb (II) metal ions. Chemical Engineering Journal, 332, 727–736.

    Article  CAS  Google Scholar 

  56. Adel Niaei, H., & Rostamizadeh, M. (2021). Iron modified zeolite carrier for efficiently pharmaceutical pollutant degradation in heterogeneous electro-Fenton: Influence factors and kinetic. Environmental Progress & Sustainable Energy, 40(3), 13570.

    Article  Google Scholar 

  57. Arimi, M. M. (2017). Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress in Natural Science: Materials International, 27(2), 275–282.

    Article  CAS  Google Scholar 

  58. Dhahawi Ahmad, A. R., Imam, S. S., Oh, W. D., & Adnan, R. (2020). Fe3O4-zeolite hybrid material as hetero-Fenton catalyst for enhanced degradation of aqueous ofloxacin solution. Catalysts, 10(11), 1241.

    Article  Google Scholar 

  59. Anis, M., & Haydar, S. (2019). Oxidative degradation of acetaminophen by continuous flow classical Fenton process. Desalination and Water Treatment, 139, 166–173.

    Article  CAS  Google Scholar 

  60. Velichkova, F., Delmas, H., Julcour, C., & Koumanova, B. (2017). Heterogeneous fenton and photo-fenton oxidation for paracetamol removal using iron containing ZSM-5 zeolite as catalyst. AIChE Journal, 63(2), 669–679.

    Article  CAS  Google Scholar 

  61. Adityosulindro, S., Julcour, C., & Barthe, L. (2018). Heterogeneous Fenton oxidation using Fe-ZSM5 catalyst for removal of ibuprofen in wastewater. Journal of Environmental Chemical Engineering, 6(5), 5920–5928.

    Article  CAS  Google Scholar 

  62. Lan, Y., Barthe, L., Azais, A., & Causserand, C. (2020). Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: Membrane fouling control and long-term stability. Separation and Purification Technology, 231, 115920.

    Article  CAS  Google Scholar 

  63. Braschi, I., Martucci, A., Blasioli, S., Mzini, L. L., Ciavatta, C., & Cossi, M. (2016). Effect of humic monomers on the adsorption of sulfamethoxazole sulfonamide antibiotic into a high silica zeolite Y: An interdisciplinary study. Chemosphere, 155, 444–452.

    Article  CAS  Google Scholar 

  64. Ayoub, H., Roques-Carmes, T., Potier, O., Koubaissy, B., Pontvianne, S., Lenouvel, A., Guignard, C., Mousset, E., Poirot, H., Toufaily, J., & Hamieh, T. (2018). Iron-impregnated zeolite catalyst for efficient removal of micropollutants at very low concentration from Meurthe river. Environmental Science and Pollution Research, 25(35), 34950–34967.

    Article  CAS  Google Scholar 

  65. Wang, S., Wang, H., Liu, Y., & Fu, Y. (2020). Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid. Separation and Purification Technology, 233, 115973.

    Article  CAS  Google Scholar 

  66. Perot, G., & Guisnet, M. (1990). Advantages and disadvantages of zeolites as catalysts in organic chemistry. Journal of Molecular Catalysis, 61(2), 173–196.

    Article  CAS  Google Scholar 

  67. Zhang, Z., Chen, X., Tan, Y., Jiang, C., Wang, H., & Zhang, S. (2022). Preparation of millimeter-scale MIL-53 (Fe)@ polyethersulfone balls to optimize photo-Fenton process. Chemical Engineering Journal, 441, 135881.

    Article  CAS  Google Scholar 

  68. Naeimi, S., & Faghihian, H. (2017). Application of novel metal organic framework, MIL-53 (Fe) and its magnetic hybrid: For removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environmental Toxicology and Pharmacology, 53, 121–132.

    Article  CAS  Google Scholar 

  69. Ye, Z., Oriol, R., Yang, C., Sirés, I., & Li, X. Y. (2022). A novel NH2-MIL-88B (Fe)-modified ceramic membrane for the integration of electro-Fenton and filtration processes: A case study on naproxen degradation. Chemical Engineering Journal, 433, 133547.

    Article  CAS  Google Scholar 

  70. Tang, J., & Wang, J. (2019). MOF-derived three-dimensional flower-like FeCu@ C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chemical Engineering Journal, 375, 122007.

    Article  CAS  Google Scholar 

  71. Wu, Y., Li, X., Zhao, H., Yao, F., Cao, J., Chen, Z., Ma, F., Wang, D., & Yang, Q. (2022). 2D/2D FeNi-layered double hydroxide/bimetal-MOFs nano sheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism. Chemosphere, 287, 132061.

    Article  CAS  Google Scholar 

  72. Liang, R., Luo, S., Jing, F., Shen, L., Qin, N., & Wu, L. (2015). A simple strategy for fabrication of Pd@ MIL-100 (Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Applied Catalysis B: Environmental, 176, 240–248.

    Article  Google Scholar 

  73. Qiu, W. J., Gao, M. W., Chen, Q., Zheng, A., Shi, Y. J., Liu, X., Li, J. H., Dai, G. L., Hu, Y., & Lin, Z. X. (2022). Acceleration of Fe(III)/Fe(II) cycle enhanced by Pd/MOF-808 (Zr) composite in hydrogen promotion Fenton system for sulfamethazine elimination. Applied Organometallic Chemistry, 36(3), 6556.

    Article  Google Scholar 

  74. Samy, M., Ibrahim, M. G., Fujii, M., Diab, K. E., ElKady, M., & Alalm, M. G. (2021). CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor. Chemical Engineering Journal, 406, 127152.

    Article  CAS  Google Scholar 

  75. Li, Y., Fang, Y., Cao, Z., Li, N., Chen, D., Xu, Q., & Lu, J. (2019). Construction of g-C3N4/PDI@ MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants. Applied Catalysis B: Environmental, 250, 150–162.

    Article  CAS  Google Scholar 

  76. Huang, S., Wang, Y., Qiu, S., Wan, J., Ma, Y., Yan, Z., & Xie, Q. (2022). In-situ fabrication from MOFs derived MnxCo3-x@ C modified graphite felt cathode for efficient electro-Fenton degradation of ciprofloxacin. Applied Surface Science, 586, 152804.

    Article  CAS  Google Scholar 

  77. Emam, H. E., El-Shahat, M., & Abdelhameed, R. M. (2021). Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@ MIL-MOF film. Journal of Hazardous Materials, 414, 125509.

    Article  CAS  Google Scholar 

  78. Xie, W., Huang, Z., Zhou, F., Li, Y., Bi, X., Bian, Q., & Sun, S. (2021). Heterogeneous Fenton-like degradation of amoxicillin using MOF-derived Fe0 embedded in mesoporous carbon as an effective catalyst. Journal of Cleaner Production, 313, 127754.

    Article  CAS  Google Scholar 

  79. Talwar, S., Verma, A. K., & Sangal, V. K. (2021). Synergistic degradation employing photocatalysis and photo-Fenton process of real industrial pharmaceutical effluent utilizing the Iron-Titanium dioxide composite. Process Safety and Environmental Protection, 146, 564–576.

    Article  CAS  Google Scholar 

  80. Puri, S., Thakur, I., Verma, A., & Barman, S. (2021). Degradation of pharmaceutical drug paracetamol via UV irradiation using Fe-TiO2 composite photocatalyst: Statistical analysis and parametric optimization. Environmental Science and Pollution Research, 28(34), 47327–47341.

    Article  CAS  Google Scholar 

  81. Kaur, N., Verma, A., Thakur, I., & Basu, S. (2021). In-situ dual effect of Ag-Fe-TiO2 composite for the photocatalytic degradation of Ciprofloxacin in aqueous solution. Chemosphere, 276, 130180.

    Article  CAS  Google Scholar 

  82. di Luca, C., Ivorra, F., Massa, P., & Fenoglio, R. (2012). Alumina supported Fenton-like systems for the catalytic wet peroxide oxidation of phenol solutions. Industrial & Engineering Chemistry Research, 51(26), 8979–8984.

    Article  Google Scholar 

  83. Parida, K. M., & Pradhan, A. C. (2010). Fe/meso-Al2O3: An efficient photo-Fenton catalyst for the adsorptive degradation of phenol. Industrial & Engineering Chemistry Research, 49(18), 8310–8318.

    Article  CAS  Google Scholar 

  84. Sheng, Y., Sun, Y., Xu, J., Zhang, J., & Han, Y. F. (2018). Fenton-like degradation of rhodamine B over highly durable Cu-embedded alumina: Kinetics and mechanism. AIChE Journal, 64(2), 538–549.

    Article  CAS  Google Scholar 

  85. Hernández-Oloño, J. T., Infantes-Molina, A., Vargas-Hernández, D., Domínguez-Talamantes, D. G., Rodríguez-Castellón, E., Herrera-Urbina, J. R., & Tánori-Córdova, J. C. (2021). A novel heterogeneous photo-Fenton Fe/Al2O3 catalyst for dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 421, 113529.

    Article  Google Scholar 

  86. Sopaj, F., Oturan, N., Pinson, J., Podvorica, F. I., & Oturan, M. A. (2020). Effect of cathode material on electro-Fenton process efficiency for electrocatalytic mineralization of the antibiotic sulfamethazine. Chemical Engineering Journal, 384, 123249.

    Article  CAS  Google Scholar 

  87. García-Rodríguez, O., Bañuelos, J. A., Rico-Zavala, A., Godínez, L. A., & Rodríguez-Valadez, F. J. (2016). Electrocatalytic activity of three carbon materials for the in-situ production of hydrogen peroxide and its application to the electro-Fenton heterogeneous process. International Journal of Chemical Reactor Engineering, 14(4), 843–850.

    Article  Google Scholar 

  88. Le, T. X. H., Charmette, C., Bechelany, M., & Cretin, M. (2016). Facile preparation of porous carbon cathode to eliminate paracetamol in aqueous medium using electro-Fenton system. Electrochimica Acta, 188, 378–384.

    Article  CAS  Google Scholar 

  89. Liu, K., Yu, J. C. C., Dong, H., Wu, J. C., & Hoffmann, M. R. (2018). Degradation and mineralization of carbamazepine using an electro-Fenton reaction catalyzed by magnetite nanoparticles fixed on an electrocatalytic carbon fiber textile cathode. Environmental Science & Technology, 52(21), 12667–12674.

    Article  CAS  Google Scholar 

  90. Barrios-Bermúdez, N., González-Avendaño, M., Lado-Touriño, I., Cerpa-Naranjo, A., & Rojas-Cervantes, M. L. (2020). Fe-Cu doped multiwalled carbon nanotubes for Fenton-like degradation of paracetamol under mild conditions. Nanomaterials, 10(4), 749.

    Article  Google Scholar 

  91. Hu, X. B., Deng, Y. H., Gao, Z. Q., Liu, B. Z., & Sun, C. (2012). Transformation and reduction of androgenic activity of 17α-methyltestosterone in Fe3O4/MWCNTs–H2O2 system. Applied Catalysis B: Environmental, 127, 167–174.

    Article  CAS  Google Scholar 

  92. Yang, W., Zhou, M., Oturan, N., Li, Y., & Oturan, M. A. (2019). Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochimica Acta, 305, 285–294.

    Article  CAS  Google Scholar 

  93. Divyapriya, G., Srinivasan, R., Nambi, I. M., & Senthilnathan, J. (2018). Highly active and stable ferrocene functionalized graphene encapsulated carbon felt array-A novel rotating disc electrode for electro-Fenton oxidation of pharmaceutical compounds. Electrochimica Acta, 283, 858–870.

    Article  CAS  Google Scholar 

  94. Kadji, H., Yahiaoui, I., Garti, Z., Amrane, A., & Aissani-Benissad, F. (2021). Kinetic degradation of amoxicillin by using the electro-Fenton process in the presence of a graphite rods from used batteries. Chinese Journal of Chemical Engineering, 32, 183–190.

    Article  CAS  Google Scholar 

  95. Wang, L., Zhao, Q., Hou, J., Yan, J., Zhang, F., Zhao, J., Ding, H., Li, Y., & Ding, L. (2016). One-step solvothermal synthesis of magnetic Fe3O4–graphite composite for Fenton-like degradation of levofloxacin. Journal of Environmental Science and Health, Part A, 51(1), 52–62.

    Article  Google Scholar 

  96. Liu, S., Zhao, X. R., Sun, H. Y., Li, R. P., Fang, Y. F., & Huang, Y. P. (2013). The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal, 231, 441–448.

    Article  CAS  Google Scholar 

  97. Karimnezhad, H., Navarchian, A. H., Gheinani, T. T., & Zinadini, S. (2020). Amoxicillin removal by Fe-based nanoparticles immobilized on polyacrylonitrile membrane: Individual nanofiltration or Fenton reaction, vs. engineered combined process. Chemical Engineering Research and Design, 153, 187–200.

    Article  CAS  Google Scholar 

  98. Hosny, N. M., Huddersman, K., Atia, N. N., & El-Gizawy, S. M. (2019). Novel heterogeneous Fenton’s-like catalysis for degradation of colchicine coupled with extraction of its biologically active metabolite. Journal of Molecular Liquids, 295, 111870.

    Article  CAS  Google Scholar 

  99. Chi, G. T., Churchley, J., Huddersman, K. D. (2013). Pilot-scale removal of trace steroid hormones and pharmaceuticals and personal care products from municipal wastewater using a heterogeneous fenton’s catalytic process. International Journal of Chemical Engineering, 2013, 10, Article ID 760915. https://doi.org/10.1155/2013/760915.

  100. Xia, G., Lu, Y., Gao, X., Gao, C., Xu, H. (2015). Electro‐Fenton degradation of methylene blue using polyacrylonitrile‐based carbon fiber brush cathode. CLEAN–Soil, Air, Water43(2), 229–236.

    Google Scholar 

  101. Yang, W., Zhou, M., Oturan, N., Bechelany, M., Cretin, M., & Oturan, M. A. (2020). Highly efficient and stable Fe(II)Fe(III) LDH carbon felt cathode for removal of pharmaceutical ofloxacin at neutral pH. Journal of Hazardous Materials, 393, 122513.

    Article  CAS  Google Scholar 

  102. Shi, B., Zhao, C., Ji, Y., Shi, J., & Yang, H. (2020). Promotion effect of PANI on Fe-PANI/Zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition. Applied Surface Science, 508, 145298.

    Article  CAS  Google Scholar 

  103. Chen, D. D., Yi, X. H., Ling, L., Wang, C. C., & Wang, P. (2020). Photocatalytic Cr(VI) sequestration and photo-Fenton bisphenol A decomposition over white light responsive PANI/MIL-88A (Fe). Applied Organometallic Chemistry, 34(9), 5795.

    Article  Google Scholar 

  104. Babaei-Sati, R., & Parsa, J. B. (2017). Electrodeposition of PANI/MWCNT nanocomposite on stainless steel with enhanced electrocatalytic activity for oxygen reduction reaction and electro-Fenton process. New Journal of Chemistry, 41(13), 5995–6003.

    Article  CAS  Google Scholar 

  105. Wang, C., Guo, Z., Hong, R., Gao, J., Guo, Y., & Gu, C. (2018). A novel method for synthesis of polyaniline and its application for catalytic degradation of atrazine in a Fenton-like system. Chemosphere, 197, 576–584.

    Article  CAS  Google Scholar 

  106. Argyle, M. D., & Bartholomew, C. H. (2015). Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5(1), 145–269.

    Article  CAS  Google Scholar 

  107. Jin, X., Li, M., Fu, L., Wu, C., Tian, X., Wang, P., Zhou, Y., & Zuo, J. (2022). A thorough observation of an ozonation catalyst under long-term practical operation: Deactivation mechanism and regeneration. Science of The Total Environment, 830, 154803.

    Article  CAS  Google Scholar 

  108. Liu, Z., Ma, H., Liu, J., Xing, L., Cheng, L., Yang, J., Mao, B., & Zhang, Q. (2018). A low-cost clay-based heterogeneous Fenton-like catalyst: Activation, efficiency enhancement, and mechanism study. Asia-Pacific Journal of Chemical Engineering, 13(1), 2156.

    Article  Google Scholar 

  109. Akinremi, C. A., Rashid, S., Upreti, P. D., Chi, G. T., & Huddersman, K. (2020). Regeneration of a deactivated surface functionalised polyacrylonitrile supported Fenton catalyst for use in wastewater treatment. RSC Advances, 10(22), 12941–12952.

    Article  CAS  Google Scholar 

  110. Changotra, R., Rajput, H., & Dhir, A. (2017). Natural soil mediated photo Fenton-like processes in treatment of pharmaceuticals: Batch and continuous approach. Chemosphere, 188, 345–353.

    Article  CAS  Google Scholar 

  111. Gholizadeh, A. M., Zarei, M., Ebratkhahan, M., & Hasanzadeh, A. (2021). Phenazopyridine degradation by electro-Fenton process with magnetite nanoparticles-activated carbon cathode, artificial neural networks modeling. Journal of Environmental Chemical Engineering, 9(1), 10499.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Huddersman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, S., Bale, D., Huddersman, K. (2023). Application of Supported Fenton and Fenton-Like Catalysts in the Degradation of Pharmaceuticals in Wastewater—A Review of New Technologies in the Last Decade. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_8

Download citation

Publish with us

Policies and ethics