Skip to main content
Log in

Removal of emerging pollutants in aqueous phase by heterogeneous Fenton and photo-Fenton with Fe2O3-TiO2-clay heterostructures

  • Clay and Modified Clays in Remediating Environmental Pollutants
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fe2O3-TiO2-clay heterostructures have been prepared using an organo-bentonite as support, which organophilic character favored the fixation of TiO2. Furthermore, Fe2O3 was successfully anchored by wet impregnation. The resulting materials are characterized by a disordered layered structure and a mesoporous texture. The heterostructures were employed as catalysts for the removal of two pharmaceuticals, acetaminophen (ACE) and antipyrine (ANT), by heterogeneous Fenton and photo-Fenton processes. ACE removal under different operation conditions was studied in detail to establish structure-performance relationships, being the TiO2 formation and the developed texture the main factors controlling the activity. ANT showed a higher refractory behavior in oxidation by Fenton. Among the technologies studied, heterogeneous photo-Fenton achieved the best catalytic performance and higher kinetic rate and mineralization degree. Iron leaching was very low, lower than 5% of the initial iron load in all cases. This work demonstrates the potential application of these heterostructures for the removal of emerging pollutants of different nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akkari M, Aranda P, Belver C, Bedia J, Ben Haj Amara A, Ruiz-Hitzky E (2018) Reprint of ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Appl Clay Sci 160:3–8

    CAS  Google Scholar 

  • Amrita P, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Google Scholar 

  • Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ (2010) Oxidation of cosmetic wastewaters with H2O2 using a Fe/γ-Al2O3 catalyst. Water Sci Technol 61:1631–1636

    CAS  Google Scholar 

  • Bedia J, Monsalvo VM, Rodriguez JJ, Mohedano AF (2017) Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO. Chem Eng J 318:224–230

    CAS  Google Scholar 

  • Belver C, Bañares-Muñoz MA, Vicente MA (2004) Fe-saponite pillared and impregnated catalysts I. preparation and characterization. Appl Catal B Environ 50:101–112

    CAS  Google Scholar 

  • Belver C, Bedia J, Rodriguez JJ (2015) Titania-clay heterostructures with solar photocatalytic applications. Appl Catal B Environ 176–177:278–287

    Google Scholar 

  • Belver C, Hinojosa M, Bedia J, Tobajas M, Alvarez MA, Rodríguez-González V, Rodriguez JJ (2017a) Ag-coated heterostructures of ZnO-TiO2/delaminated montmorillonite as solar photocatalysts. Materials 10:960–976

    Google Scholar 

  • Belver C, Bedia J, Rodriguez JJ (2017b) Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J Hazard Mater 322:233–242

    CAS  Google Scholar 

  • Bilinska L, Gmurek M, Ledakowicz S (2016) Comparison between industrial andsimulated textile wastewater treatment by AOPs - biodegradability, toxicityand cost assessment. Chem Eng J 306:550–559

    CAS  Google Scholar 

  • Bobu M, Yediler A, Siminiceanu I, Schulte-Hostede S (2008) Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl Catal B Environ 83:15–23

    CAS  Google Scholar 

  • Bonczek JL, Harris WG, Nkedi-Kizza P (2002) Monolayer to bilayer transitional arrangements of hexadecyltrimethylammonium cations on Na-montmorillonite. Clay Clay Miner 50:11–17

    CAS  Google Scholar 

  • Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501

    CAS  Google Scholar 

  • Boukhemkhem A, Rida K, Pizarro AH, Molina CB, Rodriguez JJ (2019) Iron catalyst supported on modified kaolin for catalytic wet peroxide oxidation. Clay Miner 54:67–73

    CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  • Catrinescu C, Arsene D, Teodosiu C (2011) Catalytic wet hydrogen peroxide oxidation of para-chlorophenol over Al/Fe pillared clays (AlFePILCs) prepared from different host clays. Appl Catal B Environ 101:451–460

    CAS  Google Scholar 

  • Chen D, Zhua Q, Zhoua F, Deng X, Li F (2012) Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. J Hazard Mater 235–236:186–193

    Google Scholar 

  • Chen D, Zhu H, Wang X (2014) A facile method to synthesize the photocatalytic TiO2/montmorillonite nanocomposites with enhanced photoactivity. Appl Surf Sci 319:158–166

    CAS  Google Scholar 

  • De León MA, Sergio M, Bussi J (2013) Iron-pillared clays as catalysts for dye removal by the heterogeneous photo-Fenton technique. React Kinet Mech Catal 110:101–117

    Google Scholar 

  • Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448

    CAS  Google Scholar 

  • Ding X, An T, Li G, Zhang S, Chen J, Yuan J, Zhao H, Chen H, Sheng G, Fu J (2008) Preparation and characterization of hydrophobic TiO2 pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. J Colloid Interface Sci 320:501–507

    CAS  Google Scholar 

  • Dixon WT, Norman RC (1962) Free radicals formed during oxidation and reduction of peroxides. Nature 196:891–892

    CAS  Google Scholar 

  • Dvininov E, Popovici E, Pode R, Cocheci L, Barvinschi P, Nica V (2009) Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation. J Hazard Mater 167:1050–1056

    CAS  Google Scholar 

  • EFPIA (2014) The pharmaceutical industry in figures. European Federation of pharmaceutical industries and associations, Brussels

    Google Scholar 

  • Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15:327–328

    CAS  Google Scholar 

  • Fan G, Peng H, Zhang J, Zheng X, Zhu G, Wange S, Honga L (2018) Degradation of acetaminophen in aqueous solution under visible light irradiation by bimodified titanate nanomaterials: morphology effect, kinetics and mechanism. Catal Sci Technol 8:5906–5919

    CAS  Google Scholar 

  • Fatimah I, Sumarlan I, Alawiyah T (2015) Fe(III)/TiO2-montmorillonite photocatalyst in photo-Fenton-like degradation of methylene blue. Int J Chem Eng:485463

  • García-Muñoz P, Pliego G, Zazo JA, Bahamonde A, Casas JA (2017) Sulfonamides photoassisted oxidation treatments catalyzed by Ilmenite. Chemosphere 180:523–530

    Google Scholar 

  • Ghatak HR (2014) Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Crit Rev Environ Sci Technol 44:1167–1219

    CAS  Google Scholar 

  • Giannakis S, Gamarra-Vives FA, Grandjean D, Magnet A, De Alencastro LF, Pulgarin C (2015) Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Res 84:295–306

    CAS  Google Scholar 

  • Gómez-Avilés A, Peñas-Garzón M, Bedia J, Rodriguez JJ, Belver C (2019) C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen. Chem Eng J 358:1574–1582.

  • Hassan H, Hameed BH (2011) Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chem Eng J 171:912–918

    CAS  Google Scholar 

  • Hermosilla D, Cortijo M, Huang CP (2009) Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci Total Environ 407:3473–3481

    CAS  Google Scholar 

  • Herney-Ramirez J, Vicente MA, Madeira LM (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl Catal B Environ 98:10–26

    CAS  Google Scholar 

  • Hurtado L, Romero R, Mendoza A, Brewer S, Donkor K, Gómez-Espinosa RM, Natividad R (2019) Paracetamol mineralization by photo Fenton process catalyzed by a Cu/Fe-PILC under circumneutral pH conditions. J Photochem Photobiol A Chem 373:162–170

    CAS  Google Scholar 

  • Jaafarzadeh N, Kakavandi B, Takdastan A, Kalantary RR, Azizi M, Jorfi S (2015) Powder activated carbon/Fe3O4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline: degradation mechanism and kinetic. RSC Adv 5:84718–84728

    CAS  Google Scholar 

  • Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207

    CAS  Google Scholar 

  • Kooli F, Qin LS, Kiat YY, Weirong Q, Hian PC (2006) Effect of hexadecyltrimethylammonium (C16TMA) counterions on the intercalation properties of different montmorillonites. Clay Sci 2:325–330

    Google Scholar 

  • Kumar A, Rana A, Sharma G, Naushad M, Dhiman P, Kumari A, Stadler FJ (2019) Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. J Mol Liq 290:111177

    CAS  Google Scholar 

  • Kunde GB, Yadav GD (2015) Synthesis, characterization and application of ironaluminate nodules in advanced Fenton’s oxidation process. J Environ Chem Eng 3:2010–2021

    CAS  Google Scholar 

  • Lei XF, Xue XX, Yang H (2014) Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl Surf Sci 321:396–403

    CAS  Google Scholar 

  • Lippens BC, de Boer JH (1965) Studies on pore systems in catalysts: V. The t method. J Catal 4:319–323

    CAS  Google Scholar 

  • Liu J, Zhang G (2014) Recent advances in synthesis and applications of clay-based photocatalysts: a review. Phys Chem Chem Phys 16:8178–8192

    CAS  Google Scholar 

  • Liu ZH, Wang T, Yu X, Geng ZX, Sang YH, Liu H (2017) In situ alternative switching between Ti4+ and Ti3+ driven by H2O2 in TiO2 nanostructures: mechanism of pseudo-Fenton reaction. Mater Chem Front 1:1989–1994

    CAS  Google Scholar 

  • Loaiza-Ambuludi S, Panizza M, Oturan N, Oturan MA (2014) Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis. Catal Today 224:29–33

    CAS  Google Scholar 

  • Mailler R, Gasperi J, Coquet Y, Bulete A, Vulliet E, Deshayes S, Zedek S, Mirande-Bret C, Eudes V, Bressy A, Caupos E, Moilleron R, Chebbo G, Rocher V (2016) Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bedas tertiary treatment at large pilot scale. Sci Total Environ 542:983–996

    CAS  Google Scholar 

  • Malato S, Fernandez-Ibañez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    CAS  Google Scholar 

  • Manova E, Aranda P, Martín-Luengo MA, Letaïef S, Ruiz-Hitzky E (2010) New titania-clay nanostructured porous materials. Microporous Mesoporous Mater 131:252–260

    CAS  Google Scholar 

  • Mei Q, Zhang F, Wang N, Yang Y, Wu R, Wang W (2019) TiO2/Fe2O3 heterostructures with enhanced photocatalytic reduction of Cr(VI) under visible light irradiation. RSC Adv 9:22764–22771

    CAS  Google Scholar 

  • Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes- a review. Chemosphere 174:665–688

    CAS  Google Scholar 

  • Molina CB, Casas JA, Zazo JA, Rodriguez JJ (2006) A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chem Eng J 118:29–35

    CAS  Google Scholar 

  • Molina CB, Pizarro AH, Monsalvo VM, Polo AM, Mohedano AF, Rodriguez JJ (2010) Integrated CWPO and biological treatment for the removal of 4-chlorophenol from water. Sep Sci Technol 45:1595–1602

    CAS  Google Scholar 

  • Monteoliva-Garcia A, Martin-Pascual J, Muñío MM, Poyatos JM (2019) Removal of carbamazepine, ciprofloxacin and ibuprofen in real urban wastewater by using light-driven advanced oxidation processes. Int J Environ Sci Technol 16:6005–6018

    CAS  Google Scholar 

  • Munoz M, Mora FJ, de Pedro ZM, Alvarez-Torrellas S, Casas JA, Rodriguez JJ (2017) Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst. J Hazard Mater 331:45–54

    CAS  Google Scholar 

  • Murray KE, Thomas SM, Boduor AA (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut 158:3462–3471

    CAS  Google Scholar 

  • Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577

    CAS  Google Scholar 

  • Occelli ML (1988) Surface properties and cracking activity of delaminated clay catalysts. Catal Today 2:339–355

    CAS  Google Scholar 

  • Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641

    CAS  Google Scholar 

  • Peñas-Garzón M, Gómez-Avilés A, Bedia J, Rodriguez JJ, Belver C (2019) Effect of activating agent on the properties of TiO2/activated carbon heterostructures for solar photocatalytic degradation of acetaminophen. Materials 12:378–394

    Google Scholar 

  • Peñas-Garzón M, Gómez-Avilés A, Belver C, Rodriguez JJ, Bedia J (2020) Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light. Chem Eng J, in press, 124867

  • Pérez-Santano A, Trujillano R, Belver C, Gil A, Vicente MA (2005) Effect of the intercalation conditions of a montmorillonite with octadecylamine. J Colloid Interface Sci 284:239–244

    Google Scholar 

  • Perisic DJ, Gilja V, Stankov MN, Katancic Z, Kusic H, Stangar UL, Dionysiou DD, Bozic AL (2016) Removal of diclofenac from water by zeolite assisted advanced oxidation processes. J Photochem Photobiol A Chem 321:238–247

    CAS  Google Scholar 

  • Pinnavaia TJ, Tzou MS, Landau SD, Raythatha RH (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminium. J Mol Catal 27:195–212

    CAS  Google Scholar 

  • Pizarro AH, Molina CB, Munoz M, de Pedro ZM, Menendez N, Rodriguez JJ (2017) Combining HDC and CWPO for the removal of p-chloro-m-cresol from water under ambient-like conditions. Appl Catal B-Environ 216:20–29

  • Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204

    CAS  Google Scholar 

  • Rizzo L, Malato S, Antakyali D, Beretsou VG, Đolić MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro AR, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008

    CAS  Google Scholar 

  • Rueda Márquez JJ, Levchuk I, Sillanpää M (2018) Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: a review. Catalysts 8:673–691

    Google Scholar 

  • Salimi M, Esrafili A, Gholami M, Jonidi Jafari A, Rezaei Kalantary R, Farzadkia M, Kermani M, Sobhi HR (2017) Contaminants of emerging concern: a review of new approach in AOP technologies. Environ Monit Assess 189:414

    Google Scholar 

  • Samuni A, Meisel D, Czapski G (1972) The kinetics of the oxidation of chromium(II), titanium(III) and vanadium(IV) by hydrogen peroxide and hydroxyl radicals. J Chem Soc Dalton Trans I:1273–1277

    Google Scholar 

  • Saywell LG, Cunningham BB (1937) Determination of iron: colorimetric o-phenanthroline method. Ind Eng Chem Anal Ed 9:67–69

    CAS  Google Scholar 

  • Serrano E, Munoz M, de Pedro ZM, Casas JA (2019) Efficient removal of the pharmaceutical pollutants included in the EU Watch List (Decision 2015/495) by modified magnetite/H2O2. Chem Eng J 376:120265

    CAS  Google Scholar 

  • Soon AN, Hameed BH (2011) Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269:1–16

    CAS  Google Scholar 

  • Tatibouët J-M, Guélou E, Fournier J (2005) Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect. Top Catal 33:225–232

    Google Scholar 

  • Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5:721–726

    CAS  Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  • Tobajas M, Belver C, Rodriguez JJ (2017) Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chem Eng J 309:596–606

    CAS  Google Scholar 

  • Wei GT, Li YS, Zhang LY, Li ZM, Deng Y, Shao LH, Mo JH (2017) Effect of mechanical activation on catalytic properties of Fe2O3-pillared bentonite for Fenton-like reaction. Clay Miner 52:439–451

    CAS  Google Scholar 

  • Xi Y, Ding Z, He H, Frost RL (2004) Structure of organoclays- an X-ray diffraction and thermogravimetric analysis study. J Colloid Interface Sci 277:116–120

    CAS  Google Scholar 

  • Xing WN, Ni L, Huo PW, Lu ZY, Liu XL, Luo YY, Yan YS (2012) Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method. Appl Surf Sci 259:698–704

    CAS  Google Scholar 

  • Yang S, Liang G, Gu A, Mao H (2013) Synthesis of TiO2 pillared montmorillonite with ordered interlayer mesoporous structure and high photocatalytic activity by an intra-gallery templating method. Mater Res Bull 48:3948–3954

    CAS  Google Scholar 

  • Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal B Environ 65:261–268

    CAS  Google Scholar 

  • Zazo JA, Pliego G, Blasco S, Casas JA, Rodriguez JJ (2011) Intensification of the Fenton process by increasing the temperature. Ind Eng Chem Res 50:866–870

    CAS  Google Scholar 

  • Zhang L, Zhang J, Jiu H, Ni C, Zhang X, Xu M (2015) Graphene-based hollow TiO2 composites with enhanced photocatalytic activity for removal of pollutants. J Phys Chem Solids 86:82–89

    CAS  Google Scholar 

  • Zhang AY, Lin T, He YY, Mou YX (2016) Heterogeneous activation of H2O2 by defect-engineered TiO2-x single crystals for refractory pollutants degradation: a Fenton-like mechanism. J Hazard Mater 311:81–90

    CAS  Google Scholar 

Download references

Funding

The authors want to thank the financial support from the Spanish MINECO through the project CTQ2016-78576-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen B. Molina.

Additional information

Responsible Editor: Vítor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 454 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, C.B., Sanz-Santos, E., Boukhemkhem, A. et al. Removal of emerging pollutants in aqueous phase by heterogeneous Fenton and photo-Fenton with Fe2O3-TiO2-clay heterostructures. Environ Sci Pollut Res 27, 38434–38445 (2020). https://doi.org/10.1007/s11356-020-09236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09236-8

Keywords

Navigation