Skip to main content

Paradigm Shift in Domestic Wastewater Treatment: Toward Energy Minimization, Greenhouse Gas Emission Reduction, and Resources Recovery

  • Chapter
  • First Online:
Wastewater Management and Technologies

Part of the book series: Water and Wastewater Management ((WWWE))

  • 216 Accesses

Abstract

Water–Energy–Food (WEF) Nexus has gained a tremendous momentum to ensure optimal global use of water, energy, and food resources under changing climate conditions. Agenda 2030 for Sustainable Development with 17 Goals (SDGs) together with Paris Agreement have caused a paradigm shift in the wastewater treatment concept. This new concept favors innovative technologies allowing to capture organic matter from wastewater, while handling nutrients with a minimum of energy and greenhouse gas emissions and achieving a maximum recovery of all value-added compounds. This chapter aims to describe the paradigm shift in wastewater management linked to WEF Nexus Perspective. First, the major milestones in wastewater treatment and WEF Nexus are described. Novel wastewater treatment technologies operating with a minimum energy requirement, low sludge production, and insignificant greenhouse gas emissions are discussed together with potentially recoverable compounds from these processes. The benefits of using molecular techniques under the new context of biological treatment is explained. Finally, integration of nanobiotechnology offering game changing breakthroughs in both treatment and recovery schemes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lofrano, G., & Brown, J. (2010). Wastewater management through the ages: A history of mankind. Science of The Total Environment., 408(22), 5254–5264.

    Article  CAS  Google Scholar 

  2. Jones, D. E. (1967). Urban hydrology—A redirection. Civil Engineering, 37, 58–62.

    Google Scholar 

  3. Webster, C. (1962). The sewers of Mohenjo-Daro. Journal Water Pollution Control Federation, 34, 116–123.

    Google Scholar 

  4. Wolfe, P. (1999). History of wastewater. World of water 2000–the past, present and future. Water World/Water and Wastewater International Supplement to Penn Well Magazines, Tulsa, OH, USA.

    Google Scholar 

  5. Tolle-Kastenbein, R. (2005). Archeologia dell'Acqua. Longanesi.

    Google Scholar 

  6. Hopkins, J. (2007). The cloaca maxima and the monumental manipulation of water in archaic Rome. Waters Rome, 4, 1–15.

    Google Scholar 

  7. Sori, E. (2001). La città e i rifiuti—Ecologia urbana dal Medioevo al primo Novecento. Saggi, Bologna: Il Mulino.

    Google Scholar 

  8. Seeger, H. (1999). The history of German wastewater treatment. European Water Manage, 2, 51–56.

    Google Scholar 

  9. Cooper, P. F. (2007). Historical aspects of wastewater treatment. In P. Lens, G. Zeeman, & G. Lettinga (Eds.), Decentralised sanitation and reuse: concepts, systems and implementation. IWA Publishing.

    Google Scholar 

  10. Chatzakis, M. K., Lyrintzi,s A. G., Mara, D. D., & Angelakis, A. N. (2006). Sedimentation tanks through the ages. In Proceedings of the IWA 1st International Symposium on Water and Wastewater Technologies in Ancient Civilizations. 28–30 Oct 2006, Iraklio, Greece, pp. 756–762 (2006).

    Google Scholar 

  11. Imhoff, K., & Mahr, G. (1932). Required degree of treatment of sewage prior its disposal by dilution. Sewage Works Journal, 4, 892–898.

    CAS  Google Scholar 

  12. Ardern, E., & Lockett, W. T. (1914). Experiments in the oxidation of sewage without the aid of filters. Journal of Society Chemical Industry, 1914(33), 524.

    Google Scholar 

  13. Galloway, J. N., Leach, A. M., Bleeker, A., & Erisman, J. W. (2013). A chronology of human understanding of the nitrogen cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130120–20130120.

    Article  Google Scholar 

  14. Barnard, J. L. (2006). Biological nutrient removal: Where we have been, where we are going? Proceedings of the Water Environment Federation, 2006(13), 1–25.

    Article  Google Scholar 

  15. Metcalf, & Eddy, I. (2003). Wastewater engineering: Treatment and reuse (4th ed) In F. L. Burton, & H. David Stensel (Eds.), George Tchobanoglous. Boston: McGraw-Hill.

    Google Scholar 

  16. Nicholls, H. A. (1975). Full scale experimentation on the new Johannesburg extended aeration plants. Water SA, 1(3), 121.

    CAS  Google Scholar 

  17. Barnard, J. L. (1975). Biological nutrients removal without the addition of chemicals. Water Research, 9, 485–490.

    Article  CAS  Google Scholar 

  18. Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2014). Wastewater engineering: Treatment and resource recovery. McGraw-Hill.

    Google Scholar 

  19. Henze, M., van Loosdrecht, M. C. M., Ekama, G. A., & Brdjanovic, D. (2008). Biological wastewater treatment principles, modelling and design. IWA Publishing.

    Google Scholar 

  20. Odegaard, H., Rusten, B., & Westrum, T. (1994). A new moving bed biofilm reactor—Applications and results. Water Science and Technology, 29(10–11), 157–165.

    Article  Google Scholar 

  21. Water, Energy, Food. https://www.water-energy-food.org/mission

  22. German Development Institute, Deutsches Institut für Entwicklungspolitik (DIE). (2011). The Current Column.

    Google Scholar 

  23. World Water Assessment Programme (United Nations). (2017). Wastewater: The Untapped Resource. The United Nations World Water Development Report 2017. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247153. Retrieved 01.05.2022.

  24. Llácer-Iglesias, R. M., López-Jiménez, P. A., & Pérez-Sánchez, M. (2021). Energy self-sufficiency aiming for sustainable wastewater systems: Are all options being explored? Sustainability, 13(10), 5537.

    Article  Google Scholar 

  25. European Commission. (2019). Going climate-neutral by 2050: A strategic long-term vision for a prosperous, modern, competitive and climate-neutral EU economy, 18.

    Google Scholar 

  26. European Commission. (n.d). Paris Agreement. https://ec.europa.eu/clima/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en. Retrieved 25 May 2022.

  27. Buswell, A. M., & Long, H. L. (1923). Microbiology and theory of activated sludge. Journal American Water Works Association, 10(2), 309e321

    Google Scholar 

  28. Jimenez, J., Miller, M., Bott, C., Murthy, S., De Clippeleir, H., & Wett, B. (2015). High-rate activated sludge system for carbon management—Evaluation of crucial process mechanisms and design parameters. Water Research, 87, 476–482.

    Article  CAS  Google Scholar 

  29. Bohnke, B., Diering, B., & Zuckut, S. (1997). Cost-effective wastewater treatment process for removal of organics and nutrients. Water Engineering and Management, 7, 30e35.

    Google Scholar 

  30. Liu, Y., Gu, J., & Zhang, M. (2019). A-B processes: Towards energy self-sufficient municipal wastewater treatment (1 ed.). IWA Publishing: International Water Association Publications.

    Google Scholar 

  31. Ullrich, A. H., & Smith, M. W. (1951). The biosorption process of sewage and waste-treatment. Sewage and Industrial Wastes, 23, 1248–1253.

    CAS  Google Scholar 

  32. Jimenez, J. A., La Motta, E. J., & Parker, D. S. (2007). Effect of operational parameters on the removal of particulate chemical oxygen demand in the activated sludge process. Water Environment Research, 79(9), 984–990.

    Article  CAS  Google Scholar 

  33. Versprille, A. I., Zuurveen, B., & tein, Th. (1895). The A-B process: A novel two stage wastewater treatment system. Water Science and Technology, 17(2–3), 235–246.

    Google Scholar 

  34. Wett, B., Buchauer, K., & Fimml, C. (2007). Energy self-sufficiency as a feasible concept for wastewater treatment systems. IWA Leading Edge Technology Conference.

    Google Scholar 

  35. Yeshi, C., Hong, K. B., van Loosdrecht, M. C., Daigger, G. T., Yi, P. H., Wah, Y. L., Chye, C. S., & Ghani, Y. A. (2016). Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: Scale-down by using laboratory fed-batch reactor. Water Science and Technology, 74(1), 48–56.

    Article  CAS  Google Scholar 

  36. Fukuzaki, Y., Nakamura, Y., Kawakubo, Y., & Tetsufumi, W. (2015). Energy self-sufficient wastewater treatment technologies by anaerobic ammonium oxidation.

    Google Scholar 

  37. Bae, W., Baek, S., Chung, J., & Lee, Y. (2002). Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation, 12, 359–366.

    Article  Google Scholar 

  38. Bernet, N., Sanchez, O., Cesbron, D., Steyer, J. P., & Delgenes, J. P. (2005). Modeling and control of nitrite accumulation in nitrifying biofilm reactor. Biological Engineering Journal, 24, 173–183.

    Article  CAS  Google Scholar 

  39. van Kempen, R., ten Have, C. C. R., Meijer, S. C. F., Mulder, J. W., Duin, J. O. J., Uitjterlinde, C. A., & van Loosdrecht, M. C. M. (2005). Sharon process evaluated for improved wastewater treatment plant nitrogen effluent quality. Water Science and Technology, 52(4), 55–62.

    Article  Google Scholar 

  40. Daims, H., Lücker, S., & Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 24(9), 699–712.

    Article  CAS  Google Scholar 

  41. Alpaslan Kocamemi, B., Uflaz, H., & Kurt, H. (2017). Challenges of partial Nitritation prior to Anammox application for mainstream sewage: A pilot study for bursa sewage treatment plant in Turkey. In WEF Water Environment Federation Nutrient Symposium 2017, Fort Lauderdale, Florida, USA, 12–14 June 2017.

    Google Scholar 

  42. Uflaz, H. (2018). Start-Up of pilot scale partial nitrification and Anammox Reactorsinstalled in a sewage treatment plant (Thesis Adviser: Assoc. Prof. B.Alpaslan Kocamemi). Master Thesis, Marmara University Institute of Pure and Applied Sciences, Istanbul, Turkey

    Google Scholar 

  43. Mulder, A., van der Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovdred in a denitrifying fludized bed reactor. Fems Microbiology Ecology, 16(3), 177–183.

    Article  CAS  Google Scholar 

  44. Strous, M., Kuenen, J. G., & Jetten, M. S. M. (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248–3250.

    Article  CAS  Google Scholar 

  45. Kuypers, M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jorgensen, B. B., Kuenen, J. G., Sinninghe Damste, J. S., Strous, M., & Jetten, M. S. (2003). Anaerobic ammonium oxidation by anammox bacteria in the black sea. Nature, 422(6932), 608–611.

    Article  CAS  Google Scholar 

  46. Quan, Z. X., Rhee, S. K., Zuo, J. E., Yang, Y., Bae, J. W., Park, J. R., Lee, S. T., & Park, Y. H. (2008). Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environmental Microbiology, 10(11), 3130–3139.

    Article  CAS  Google Scholar 

  47. Yang, Y., Azari, M., Herbold, C. W., Li, M., Chen, H., Ding, X., Denecke, M., & Gu, J. D. (2021). Activities and metabolic versatility of distinct anammox bacteria in a full-scale wastewater treatment system. Water Research, 206, 117763.

    Article  CAS  Google Scholar 

  48. Strous, M., Heijnen, J., Kuenen, J., & Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50, 589–659.

    Article  CAS  Google Scholar 

  49. Çiçek, E. (2008). Assesment of partial nitrification/nitritification process under oxygen-limited conditions (Thesis Adviser: B. Alpaslan Kocamemi). Marmara University, Institute of Pure and Applied Sciences, Environmental Engineering.

    Google Scholar 

  50. Dityapak, D. (2012). Applicability of Anammox process for the nitrogen removal from domestic wastewater (Thesis Adviser: B. Alpaslan Kocamemi). Marmara University, Institute of Pure and Applied Sciences, Environmental Engineering.

    Google Scholar 

  51. Alpaslan Kocamemi B., & Dityapak D. (2016). The use of combined partial Nitritation and Anammox process for mainstream sewage treatment. In WEFTEC 2016. Water Environment Federation’s Annual Technical Exhibition and Conference, New Orleans, USA, 24–28 Sept 2016.

    Google Scholar 

  52. Celik, S. (2018). Anaerobic ammonium oxidation (Anammox) in a moving bed biofilm reactor (MBBR) for mainstream treatment: A pilot study in Istanbul Atakoy sewage treatment plant (STP) (Thesis Adviser: B. Alpaslan Kocamemi). Marmara University, Institute of Pure and Applied Sciences, Environmental Engineering.

    Google Scholar 

  53. Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & van Loosdrecht, M. C. M. (2014). Full-scale partial nitritation/anammox experiences—An application survey. Water Research, 55, 292–303.

    Article  CAS  Google Scholar 

  54. Alpaslan Kocamemi, B., Dityapak, D., Semerci, N., Keklik, E., Akarsubası, A., Kumru, M., & Kurt, H. (2018). Anammox start-up strategies: The use of local mixed activated sludge seed versus Anammox seed. Water Science and Technology, 78(9), 1901–1915.

    Article  Google Scholar 

  55. Alpaslan Kocamemi, B., & Dityapak D. (2013). Real time monitoring of process dynamics in Anammox reactors. In WEF/IWA Nutrient Removal and Recovery 2013. Vancouver, British Columbia, Canada, 28–31 July 2013.

    Google Scholar 

  56. Alpaslan Kocamemi, B., Celik, S., 2019. Hydrazine and Hydroxylamine data as a tool to monitor deammonification systems: Towards possible real-time monitoring. In WEFTEC 2019, Water Environment Federation’s Annual Technical Exhibition and Conference. Chicago, USA, 21–25 Sept 2019.

    Google Scholar 

  57. Alpaslan Kocamemi, B., & Dityapak, D. (2014). Real time process dynamics monitoring in Anammox reactors. Water Science and Technology, 70(2), 183–191.

    Article  CAS  Google Scholar 

  58. Erdim, E., Yucesoy Ozkan, Z., Kurt, H., Dilsizoglu, N., Cetin, S., Şanlı, F. N., & Alpaslan Kocamemi, B. (2017). Enhancement of Anaerobic Ammonium Oxidation (Anammox) Process: The use of one-pot synthesized nanoscale zero-valent iron (nZVI). In WEFTEC 2017, Water Environment Federation’s Annual Technical Exhibition and Conference. Chicago, USA, 30 Sept–4 Oct 2017.

    Google Scholar 

  59. Erdim, E., Yücesoy Özkan, Z., Kurt, H., & Alpaslan, K. B. (2019). Overcoming challenges in mainstream Anammox applications: Utilization of nanoscale zero valent iron (nZVI). Science of the Total Environment, 651, 3023–3033.

    Article  CAS  Google Scholar 

  60. Alpaslan Kocamemi, B., Dityapak, D., & Oktem, H. (2016). Influence of operating parameters and wastewater constituents on the performance of anammox process. WEF—IWA Nutrient Removal and Recovery 2016, Denver, USA, 10–13 July 2016.

    Google Scholar 

  61. Alpaslan Kocamemi, B., & Dityapak, D., (2022). Short-term effects of operating parameters and wastewater constituents on the performance of free-cell Candidatus Brocadia and Candidatus Scalindua Anammox Enrichment. International Journal of Environmental Research, under review.

    Google Scholar 

  62. Tikilili. P. V. (2017). Performance and modelling of nan-granular Anammox culture for wastewater treatment. PhD Thesis, University of Pretoria, Faculty of Engineering, The Built Environment and Information Technology, Department of Chemical Engineering, Pretoria, South Africa.

    Google Scholar 

  63. Abma, W. R., Schultz, C. E., Mulder, J. W., Van der Star, W. R. L., Strous, M., Tokutomi, T., & Van Loosdrecht, M. C. M. (2007). Full-Scale granular sludge Anammox process. Water Science and Technology, 55, 27–33.

    Article  CAS  Google Scholar 

  64. Christensson, M., Ekstrom, S., Andersson Chan, A., Le Vaillant, E., & Lemaire, R. (2013). Experience from start-ups of the first ANITA-Mox plants. Water Science and Technology, 67, 2677–2684.

    Article  CAS  Google Scholar 

  65. Trela, J. (2015). Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/anammox process. Bioresource Technology, 198, 478–487.

    Article  Google Scholar 

  66. Wan, J., Gu, J., Zhao, Q., & Liu, Y. (2016). COD capture: A feasible option towards energy self- sufficient domestic wastewater treatment. Scientific reports, 6, 25054.

    Article  CAS  Google Scholar 

  67. Hoekstra, M., Geilvoet, S. P., Hendrickx, T. L. G., Kip, C. S., van Kleerebezem, E. T., R., & Loosdrecht, M. C. (2019). Towards mainstream anammox: Lessons learned from pilot-scale research at WWTP Dokhaven. Environmental Technology, 40, 13, 1721–1733.

    Google Scholar 

  68. Barwal, A., & Chaudhary, R. (2014). To study the performance of biocarriers in moving bed biofilm reactor (mbbr) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: A review. Reviews in Environmental Science and Bio/Technology, 13(3), 285–299.

    Article  CAS  Google Scholar 

  69. Rusten, B., McCoy, M., Proctor, R., & Siljudalen, J. G. (1998). The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater. Water Environment Research, 70(5), 1083–1089.

    Article  CAS  Google Scholar 

  70. Cho, S., Kambey, C., & Nguyen, V. K. (2020). Performance of anammox processes for wastewater treatment: A critical review on effects of operational conditions and environmental stresses. Water, 12, 1.

    Google Scholar 

  71. Uzkurt, N. (2019). Dynamic simulation and modelling of the start-up phase of the deammonification systems (Thesis Adviser: B.Alpaslan Kocamemi). Marmara University, Institute of Pure and Applied Sciences, Environmental Engineering.

    Google Scholar 

  72. Barros, C. M. C., Jia, M., van Loosdrecht, M. C. M., Volcke, E. I. P., & Winkler, M. K. H. (2017). Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment. Bioresource Technology, 233, 363–372.

    Article  Google Scholar 

  73. Li, Z., Peng, Y., & Gao, H. (2020). Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. Bioresource Technology, 305, 123083.

    Article  CAS  Google Scholar 

  74. Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528, 504.

    Article  CAS  Google Scholar 

  75. Santoro, A. E. (2016). The do-it-all nitrifier. Science, 351(6271), 342–343.

    Article  CAS  Google Scholar 

  76. Kits, K. D., Sedlacek, C. J., Lebedeva, E. V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., Romano, S., Albertsen, M., Stein, L. Y., Daims, H., & Wagner, M. (2017). Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 549, 269.

    Article  CAS  Google Scholar 

  77. Poghosyan, L., Koch, H., Lavy, A., Frank, J., Kessel, M. A. H. J., Jetten, M. S., Banfield, J. F., & Lücker, S. (2019). Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environmental Microbiology, 21(10), 3627–3637.

    Article  CAS  Google Scholar 

  78. Zhao, Z., Huang, G., He, S., Zhou, N., Wang, M., Dang, C., Wang, J., & Zheng, M. (2019). Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Science of The Total Environment, 691, 146–155.

    Article  CAS  Google Scholar 

  79. Zhou, X., Li, B., Wei, J., Ye, Y., Xu, J., Chen, L., & Lu, C. (2021). Temperature influenced the comammox community composition in drinking water and wastewater treatment plants. Microbial Ecology, 82(4), 870–884.

    Article  CAS  Google Scholar 

  80. Palomo, A., Pedersen, A. G., Fowler, S. J., Dechesne, A., Ponten, T. S. & Smets, B. F. (2018). Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J, 12, 1779–1793

    Google Scholar 

  81. Senol, B. (2021). Complete Ammonium oxidation (Comammox) in nitrification and partial Nitritation—Anammox (Deammonification) systems (Thesis Adviser: B. Alpaslan Kocamemi). Master Thesis, Marmara University Institute of Pure and Applied Sciences, İstanbul, Turkey.

    Google Scholar 

  82. Zawadzki, M., Speijer, L., Vandeputte, D., Su, Y., Luo, M., Gao, Y., Elskens, M., Verhoest, P., Bauwens, J., Coussement, T., Elsen, F., Raes, B., Eisenreich, S., & Huysmans, M. (2022). Re-use of treated wastewater for irrigation and groundwater recharge: feasibility and effects on groundwater quantity at the experimental site in Kinrooi, Belgium. EGU General Assembly 2022, Vienna, Austria & Online, 23–27 May 2022.

    Google Scholar 

  83. Kesari, K. K., Soni, R., Jamal, Q. M. S., Tripathi, P., Lal, J. A., Jha, N. K., Siddiqui, M. H., Kumar, P., Tripathi, V., & Ruokolainen, J. (2021). Wastewater treatment and reuse: A review of its applications and health implications. Water, Air, & Soil Pollution, 232(5).

    Google Scholar 

  84. FAO. (2008). Efficiency of soil and fertilizer phosphorus use. Reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertilizer and Plant Nutrition Bulletin No.18, Rome, FAO.

    Google Scholar 

  85. Bixio, D., Thoeye, C., De Koning, J., Joksimovic, D., Savic, D., Wintgens, T., & Melin, T. (2006). Wastewater reuse in Europe. Desalination, 187(1–3), 89–101.

    Article  CAS  Google Scholar 

  86. Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328–2340.

    Article  CAS  Google Scholar 

  87. Peccia, J., & Westerhoff, P. (2015). We should expect more out of our sewage sludge. Environmental Science and Technology, 49(14), 8271–8276.

    Article  CAS  Google Scholar 

  88. Englande, A. J., & Reimers, R. S. (2001). Biosolids management - sustainable development status and future direction. Water Science and Technology, 44(10), 41–46.

    Article  Google Scholar 

  89. EPA. (1994). A plain English guide to the EPA part 503 Biosolids Rule. September 1994, EPA 832-R-93-003.

    Google Scholar 

  90. Jones-Lepp, T. L., & Stevens, R. (2007). Pharmaceuticals and personal care products in biosolids/sewage sludge: The interface between analytical chemistry and regulation. Analytical and Bioanalytical Chemistry, 387(4), 1173–1183.

    Article  CAS  Google Scholar 

  91. Foess, G. W., & Fredericks, D. (1995). Comparison of class A and class B private biosolids stabilization technologies. Florida Water Resources Journal, 28–30.

    Google Scholar 

  92. Energy Information Administration. (2022). https://www.eia.gov/

  93. Rasi, S., Läntelä, J., & Rintala, J. (2011). Trace compounds affecting biogas energy utilisation—A review. Energy Conversion and Management, 52(12), 3369–3375.

    Article  CAS  Google Scholar 

  94. Rios, M., & Kaltschmitt, M. (2016). Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, 54, 384–395.

    Article  Google Scholar 

  95. Bak, C., Lim, C.-J., Lee, J.-G., Kim, Y.-D., & Kim, W. S. (2019). Removal of sulfur compounds and siloxanes by physical and chemical sorption. Separation and Purification Technology, 209, 542–549.

    Article  CAS  Google Scholar 

  96. Kymäläinen, M., Lähde, K., Arnold, M., Kurola, J. M., Romantschuk, M., & Kautola, H. (2012). Biogasification of biowaste and sewage sludge—Measurement of biogas quality. Journal of Environmental Management, 95, S122–S127.

    Article  Google Scholar 

  97. Chrispim, M. C., Scholz, M., & Nolasco, M. A. (2021). Biogas recovery for sustainable cities: a critical review of enhancement techniques and key local conditions for implementation. Sustainable Cities and Society, 103033.

    Google Scholar 

  98. Oladejo, J., Shi, K., Luo, X., Yang, G., & Wu, T. (2019). A review of sludge-to-energy recovery methods. Energies, 12, 60.

    Article  CAS  Google Scholar 

  99. Stillwell, A., Hoppock, D., & Webber, M. (2010). Energy recovery from wastewater treatment plants in the United States: A case study of the energy-water nexus. Sustainability, 2(4), 945–962.

    Article  Google Scholar 

  100. Aktuz, E., Yu, J., Alpaslan Kocamemi, B., Ozen, T., Izgi, D., & Bastopcu, M. E. (2016). Maximum heat recovery and utilization system in a municipal activated sludge fluidized bed incineration (FBI) plant: A case study for Bursa, Turkey. WEFTEC 2016. In Water Environment Federation’s Annual Technical Exhibition and Conference, New Orleans, USA, 24–28 Sept 2016.

    Google Scholar 

  101. Manyuchi, M. M., Chiutsi, P., Mbohwa, C., Muzenda, E., & Mutusva, T. (2018). Bio ethanol from sewage sludge: A bio fuel alternative. South African Journal of Chemical Engineering, 25, 123–127.

    Article  Google Scholar 

  102. Vázquez-Ojeda, M., Segovia-Hernández, J. G., Hernández, S., Hernández-Aguirre, A., & Kiss, A. A. (2013). Design and optimization of an ethanol dehydration process using stochastic methods. Separation and Purification Technology, 105, 90–97.

    Article  Google Scholar 

  103. Zentou, H., Abidin, Z., Yunus, R., Awang Biak, D., & Korelskiy, D. (2019). Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes, 7(7), 458.

    Article  CAS  Google Scholar 

  104. Le, N. L., Wang, Y., & Chung, T. S. (2011). Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. Journal of Membrane Science, 379, 174–183.

    Article  CAS  Google Scholar 

  105. Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: Needs, technologies and costs. Water Science and Technology, 59(6), 1069–1076.

    Article  CAS  Google Scholar 

  106. Yuan, Z., Pratt, S., & Batstone, D. J. (2012). Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 23(6), 878–883.

    Article  CAS  Google Scholar 

  107. Rawn, A. M., Perry Banta, A., & Pomeroy, R. (1937). Multiple-stage sewage sludge digestion. American Society of Civil Engineers, 2116, 93132.

    Google Scholar 

  108. Doyle, J., Oldring, K., Churchley, J., Price, C., & Parsons, S. (2003). Chemical control of struvite precipitation. Journal of Environmental Engineering-asce, 129, 5(419).

    Google Scholar 

  109. Von Muench, E., & Barr, K. (2001). Controlled struvite crystallisatin for removing phosphorus from anaerobic digester sidestreams. Water Research, 35, 151–159.

    Article  Google Scholar 

  110. Borgerding, J. (1972). Phosphate deposits in digestion systems. Journal of the Water Pollution Control Federation, 44, 813–819.

    CAS  Google Scholar 

  111. Mamais, D., Pitt, P. A., Cheng, Y. W., Loiacono, J., & Jenkins, D. (1994). Determination of ferric-chloride dose to control struvite precipitation in anaerobic sludge digesters. Water Environment Research, 66, 912–918.

    Article  CAS  Google Scholar 

  112. Snoeyink, V. L., & Jenkins, D. (1980). Water chemistry. Wiley.

    Google Scholar 

  113. Van der Hoek, J. P., de Fooij, H., & Struker, A. (2016). Wastewater as a resource: Strategies to recover resources from Amsterdam’s wastewater. Resources, Conservation and Recycling, 113, 53–64.

    Article  Google Scholar 

  114. Beckinghausen, A., Odlare, M., Thorin, E., & Schwede, S. (2020). From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater. Applied Energy, 263, 114616.

    Article  CAS  Google Scholar 

  115. Kuntke, P. (2013). Nutrient and energy recovery from urine. Ph.D Thesis. Wageningen University.

    Google Scholar 

  116. Feng, C., Tommaso, L., Roberto, C., Yuemei, L., Camilla, T., & Francesca, M. (2021). Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review. Science of The Total Environment, 753, 142051.

    Article  CAS  Google Scholar 

  117. Reddy, M. V., Mavatari, Y., Onodera, R., Nakamura, Y., Najima, Y., & Chang, Y.-C. (2017). Polyhydroxyalkanoates (PHA) production from synthetic waste using pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. Bioresource technology, 234, 99–105.

    Article  Google Scholar 

  118. Kumar, A. N., Kim, G.-B., Muhorakeye, A., Varjani, S., & Kim, S.-H. (2021). Biopolymer production using volatile fatty acids as resource: Effect of feast-famine strategy and lignin reinforcement. Bioresource Technology, 326, 124736.

    Article  Google Scholar 

  119. Muhorakeye, A., Cayetano, R. D., Kumar, A. N., Park, J., Pandey, A. K., & Kim, S.-H. (2022). Valorization of pretreated waste activated sludge to organic acids and biopolymer. Chemosphere, 303(2), 135078.

    Article  CAS  Google Scholar 

  120. Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects. Frontiers in Microbiology, 7.

    Google Scholar 

  121. Su, X., Tian, Y., Li, H., & Wang, C. (2013). New insights into membrane fouling based on characterization of cake sludge and bulk sludge: An especial attention to sludge aggregation. Bioresource Technology, 128, 586–592.

    Article  CAS  Google Scholar 

  122. Ding, Z., Bourven, I., Guibaud, G., van Hullebusch, E. D., Panico, A., Pirozzi, F., & Esposito, G. (2015). Role of extracellular polymeric substances (EPS) production in bioaggregation: Application to wastewater treatment. Applied Microbiology and Biotechnology, 99(23), 9883–9905.

    Article  CAS  Google Scholar 

  123. Kehrein, P., van Loosdrecht, M., Osseweijer, P., & Posada Duque, J. A. (2020). Exploring resource recovery potentials for the aerobic granular sludge process by mass and energy balances energy, biopolymer and phosphorous recovery from municipal wastewater. Environmental Science, Water Research & Technology.

    Google Scholar 

  124. Chen, J. P., & Lim, L. L. (2006). Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere, 49, 363–370.

    Article  Google Scholar 

  125. Wu, Z. G., Munoz, M., & Montero, O. (2010). The synthesis of nickel nanoparticles by hydrazine reduction. Advanced Power Technology, 21, 165–168.

    Article  CAS  Google Scholar 

  126. Yang, C., Xing, J., Guan, Y., Liu, J., & Liu, H. (2004). Synthesis and characterization of superparamagnetic iron nanocomposites by hydrazine reduction. Journal of Alloys and Compounds, 385, 283–287.

    Article  CAS  Google Scholar 

  127. Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794–1805.

    Article  CAS  Google Scholar 

  128. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(supplement_1), 4516–4522.

    Google Scholar 

  129. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., & Asnicar, F. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857.

    Article  CAS  Google Scholar 

  130. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583.

    Article  CAS  Google Scholar 

  131. Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Zech Xu, Z., Kightley, E. P., Thompson, L. R., Hyde, E. R., & Gonzalez, A. (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems, 2(2), e00191–00116.

    Google Scholar 

  132. Wu, L., Ning, D., Zhang, B., Li, Y., Zhang, P., Shan, X., Zhang, Q., Brown, M. R., Li, Z., & Van Nostrand, J. D. (2019). Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature microbiology, 4(7), 1183–1195.

    Article  CAS  Google Scholar 

  133. Haig, S.-J., Kotlarz, N., LiPuma, J. J., & Raskin, L. (2018). A high-throughput approach for identification of nontuberculous mycobacteria in drinking water reveals relationship between water age and Mycobacterium avium. MBio, 9(1), e02354-e12317.

    Article  CAS  Google Scholar 

  134. Liu, L., Wang, Y., Che, Y., Chen, Y., Xia, Y., Luo, R., Cheng, S. H., Zheng, C., & Zhang, T. (2020). High-quality bacterial genomes of a partial-nitritation/anammox system by an iterative hybrid assembly method. Microbiome, 8(1), 1–17.

    Article  Google Scholar 

  135. Frank, J., Lücker, S., Vossen, R. H., Jetten, M. S., Hall, R. J., Op den Camp, H. J., & Anvar, S. Y. (2018). Resolving the complete genome of Kuenenia stuttgartiensis from a membrane bioreactor enrichment using single-molecule real-time sequencing. Scientific Reports, 8(1), 1–10.

    Article  Google Scholar 

  136. Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 15(3), 799–821.

    Article  CAS  Google Scholar 

  137. Chen, G., Bai, R., Zhang, Y., Zhao, B., & Xiao, Y. (2022). Application of metagenomics to biological wastewater treatment. Science of The Total Environment, 807, 150737.

    Article  CAS  Google Scholar 

  138. Chen, H., Liu, T., Li, J., Mao, L., Ye, J., Han, X., Jetten, M. S., & Guo, J. (2020). Larger anammox granules not only harbor higher species diversity but also support more functional diversity. Environmental Science & Technology, 54(22), 14664–14673.

    Article  CAS  Google Scholar 

  139. Speth, D. R., Guerrero-Cruz, S., Dutilh, B. E., & Jetten, M. S. (2016). Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nature Communications, 7(1), 1–10.

    Article  Google Scholar 

  140. Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020). Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Reports Medicine, 1(6), 100098.

    Article  CAS  Google Scholar 

  141. Xingdong, S., Wie, W., Lan, W., & Bing-Jie, N. (2021). Zero-valent iron mediated biological wastewater and sludge treatment. Chemical Engineering Journal, 426, 130821. ISSN 1385-8947, https://doi.org/10.1016/j.cej.2021.130821.

  142. van Niftrik, L., & Jetten, M. S. (2012). Anaerobic ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties. Microbiology and Molecular Biology Reviews, 76, 585–596.

    Article  Google Scholar 

  143. Ferousi, C., Lindhoud, S., Baymann, F., Kartal, B., Jetten, M. S., & Reimann, J. (2017). Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology, 37, 129–136.

    Article  CAS  Google Scholar 

  144. van Niftrik, L., Geerts, W. J., van Donselaar, E. G., Humbel, B. M., Yakushevska, A., Verkleij, A. J., Jetten, M. S. M., & Strous, M. (2008). Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria. Journal of Structural Biology, 161, 401–410.

    Article  Google Scholar 

  145. Zhang, J., Zhang, Y., Li, Y., Zhang, L., Qiao, S., Yang, F. L., & Quan, X. (2012). Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode. Bioresource Technology, 114, 102–108.

    Article  CAS  Google Scholar 

  146. Lei, Y., Wei, L., Liu, T., Xiao, Y., Dang, Y., Sun, D., & Holmes, D. E. (2018). Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant. Chemical Engineering Journal, 348, 992–999. https://doi.org/10.1016/j.cej.2018.05.060

    Article  CAS  Google Scholar 

  147. Zaidi, A. A., Ruizhe, F., Shi, Y., & Khan, S. Z. (2018). Nanoparticles augmentation on biogas yield frommicroalgal biomass anaerobic digestion. International Journal of Hydrogen Energy, 43, 14202–14213. https://doi.org/10.1016/j.ijhydene.2018.05.132

    Article  CAS  Google Scholar 

  148. Zhang, J., Zhao, W., Zhang, H., Wang, Z., Fan, C., & Zang, L. (2018). Recent achievements in enhancing anaerobic digestion with carbon-based functional materials. Bioresource Technology, 266, 555–567. https://doi.org/10.1016/j.biortech.2018.07.076

    Article  CAS  Google Scholar 

  149. Zhu, X., Blanco, E., Bhatti, M., & Borrion, A. (2021). Impact of metallic nanoparticles on anaerobic digestion: A systematic review. Science of The Total Environment, 757, 143747.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Alpaslan Kocamemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alpaslan Kocamemi, B., Çelik, S., Senol, A.B., Kurt, H., Erken, E. (2023). Paradigm Shift in Domestic Wastewater Treatment: Toward Energy Minimization, Greenhouse Gas Emission Reduction, and Resources Recovery. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_15

Download citation

Publish with us

Policies and ethics