Keywords

1 Overview

Hypertext was touted in the 1980’s and 1990’s as a revolutionary concept that was capable of instantiating much of contemporary critical theory, yet one whose definition proved difficult. It has been labelled as “non-sequential writing” (Nelson, 1993, p. 17), a “system of linked presences” (Kolb, 1994, p. 335), and as catalyst for discontinuities in a primary narrative. But with the advent of Berners-Lee’s World Wide Web (WWW), hypertext became a (some might claim “the”) primary method of conveying content to users—content developed to take advantage of the brief attention span of a user seeking information and content developed to be consumed in a way more analogous to print media. Given the span of possibility, hypertext and the WWW have and continue to be explored as places to create and revisit conceptions of what it means to construct and experience information. This chapter will explore some of the main trends in hypertext/WWW research in the last several years, building on such work as Lang & Baehr (2012 & 2019), particularly as they apply to writing and writing instruction.

Foundationally, the idea of what would become known as hypertext was developed in the 1930s and published in 1945 by Vannevar Bush, a science advisor to U.S. President Franklin Roosevelt. Bush was concerned about the growing volume of scientific information and the difficulties that sorting through and indexing such information would pose for scientists. The Memex (MEMory Extender) would enable a user to keep their own library of texts in which the user could create associative links (the first hyperlink!) between ideas across documents. Although the Memex itself was never built, Bush’s ideas were taken up by others in the 1960s. In 1965, Theodor (Ted) Nelson created the terms hypertext and hypermedia and began work on a hypertext system known as Xanadu (https://www.xanadu.com.au/projects.html), work that continues even today. As personal computers became more available, a variety of iterations of hypertext and hypermedia systems were constructed, including Symbolics Document Examiner, Guide, and HyperCard. While all contained the ability to link topics and paths throughout individual hypertexts, they did not do so at the scale envisioned by Bush, Nelson, or other early hypertext developers.

The World Wide Web project, developed from 1989 at CERN by Tim Berners-Lee, dramatically changed the landscape of hypertext. One of the original project summaries, from an email by TBL from 1991, https://www.w3.org/People/Berners-Lee/1991/08/art-6487.txt describes the role of hypertext in its genesis: “[the project] merges the techniques of information retrieval and hypertext to make an easy but powerful global information system [and] is based on the philosophy that much academic information should be freely available to anyone.” In 1994, Berners-Lee left CERN for M.I.T. and founded the World Wide Web Consortium (W3C), which continues to define standards for web technologies and recommendations for use (https://www.w3.org/Consortium/mission).

Since its conceptual inception, hypertext has been closely connected to academic writing in scientific and technical disciplines. For a period of about 20 years, from the 1980s through the early 2000s, the study of hypertext and its potential connections to modernist and postmodernist literature and literary theory sparked interest in areas of literature and creative writing, as well. StorySpace, developed by Jay David Bolter, John Brown, and Michael Joyce, became the platform in which much hypertext fiction was composed during hypertext’s peak as a literary genre; it is still marketed by Eastgate Systems (http://www.eastgate.com/). Although the literary shelf life of hypertext was fairly brief, the implementation of a key feature, the hyperlink has become a ubiquitous feature of digital writing. Further extensions have become fully realized as both commercial and personal products, including Berners-Lee’s World Wide Web, individual Web sites, wikis, blogs, content management systems, learning management systems, social media applications, and many others.

2 Core Ideas of Technology

Hypertext is built upon the singular premise inherent in its basic definition, linked text, including all its possibilities both structurally and semantically. Baehr and Lang (2019) identify the key tenets of hypertext as an information technology, which summarizes its features and potential, which include hyperlinks, intertextuality, multi-pathed organization, hypermedia, content focus, and collaborative authoring capabilities, derived from both hypertext scholarship and the many applications that have followed. Hyperlinking includes the basic feature that any section of content, whether visual, spatial, or textual, can be associatively linked to others based on a discrete semantic relationship. Intertextuality describes the relationships between different linked content chunks or sections, suggesting that they also share semantics in terms of their meaning, use, or relationship. Multi-pathed describes the wide variety of organizational and navigational choices and possibilities within a hypertext. When at its full potential, hypertext offers users different navigational options, which they can employ based on need or interest, and not necessarily following a set linear content experience or path when interacting and reading. Hypermedia describes the range of multimodality possible with hypertext, in that content can be static or dynamic, asynchronous or synchronous, audio or video, passive or interactive in nature. In fact, hypermediated content is unrestricted and fluid, in all of these aspects, allowing for hybridity in content presentation and form. As such, within a hypertext, content creates the experience and is the primary element around which all other aspects are built upon, whether visual, spatial, or interactive. Because, in theory, hypertext cane be modified by anyone with write/edit privileges to a particular text or site, hypertext displaces the notion of a singular author or creator of content, in most cases, fostering the possibility for collaborative authoring of content. Hypertext’s use of semantic hyperlinking allows multiple content sources, and information products, to be interconnected in different ways, which essentially encourages this collaborative aspect. Whether multiple hypertexts are connected through hyperlinks, networking, or other techniques, these references enable the inclusion of content from other sources, into the primary one, suggesting the many different applications that hypertext affords.

Hypertext’s prescribed use has been primarily as a model for electronic, interactive, networked content, which is prevalent throughout virtually all information technologies today, including the World Wide Web and social media applications. A wide range of open-source markup and scripting languages have been developed with capabilities that allow hypertexts to realize their full potential as electronic information products. The core languages widely used include Hypertext Markup Language (HTML) and Extensible Markup Language (XML) for content markup, Cascading Style Sheets (CSS) for design styling and presentation, and JavaScript (JS) and Hypertext Pre-Processor (PHP) for adding interactive features both client and server-side. These languages are imbued with many of the core tenets, or characteristics, of hypertext, including the abilities to hyperlink, create intertextual semantics, present complex information structures and hierarchies, and integrate interactive and multimodal content experiences. In a sense, these languages also comprise part of the actual literacy of electronic writing. A wide range of development tools can also be used, which assist developers in the actual coding and implementation of these languages in creating hypertext systems.

Hypertext, as a technological innovation, describes emergent features of writing in both hybrid and electronic environments. While it was conceived in an era when print-based communication products were dominant, many of its characteristics were simply not possible Because in a print-based environment due to inherent limitations of printed methods and materials. While printed books could reference other sections using textual references, they lacked the ability to create complex interactive features, which hypertext affords. But electronic environments, many of which were designed specifically for hypertext, could imbue the aforementioned characteristics of hyperlinking, intertextuality, multi-pathed organization, hypermedia, content forms, and collaborative authoring practices. In essence, these key characteristics of hypertext have come to replace print-based writing conventions as the dominant features of electronic-based ones and even, to some extent, in the production of print supporting materials (Baehr & Lang, 2019).

3 Functional Specifications

Hypertext provides the fundamental framework upon which virtually all electronic information products and documents are built and has changed writing at both authoring and reading levels, Hypertext has changed how information products and documents are composed and created, creating possibilities for dynamic and interactive content that were not possible under print-based constraints. Hypertext authoring supports a rich, complex environment in which information products have improved structural, semantic, and presentational aspects. Hypertext encourages collaborative and multimodal authoring practices, as well as new ways to network and share information resources. It has also changed the ways in which readers approach many texts. In a pre-hypertextual era, readers approached most texts as something to be read from a starting point to a finishing point. Only reference texts (encyclopaedias, dictionaries, manuals) were not assumed to be read end to end, though even manuals were constructed with a particular (hypothetical) sequence of tasks in mind.

Additionally, the World Wide Web Consortium (W3C) provides functional specifications for the markup languages and supporting scripting and programming languages that support hypertext development. Its core mission is to serve as an international community that develops standards and specifications that support a thriving World Wide Web (http://www.w3c.org). The specifications provided span the entire range of markup and scripting languages, which support the Web and hypertext development, including HTML, CSS, JavaScript, XML, PHP, and many others. Additionally, the W3C provides supplementary Web Content Accessibility Guidelines, which can be used to help hypertexts improve access to users with specific limitations or disabilities when accessing content.

A robust user community and wide breadth of informational resources are available, which support hypertext, its core markup and scripting languages, and development platforms and supporting tools. User communities often have their own resource libraries and Web sites that allow users to freely comment, troubleshoot, and share content across a broad user base. Some examples of useful resources include graphic and media libraries, markup and scripting libraries, automated validation tools, design templates, site map generators, analytics tools, and many others. While these communities and resources do not represent formal specifications, they provide valuable informational resources that support both hypertext development and its community, as functional assistive tools for developers and users. Many hypertext’s capabilities have been realized over time and through the development of various specifications, communities, and resources. However, the tool demands and relies upon continual development of supporting technologies.

4 Main Products

The main products of hypertext include the World Wide Web, content management systems, and the use of embedded hyperlinks throughout electronic documents and products. While many early iterations of hypertext had their own proprietary software-based environments, the Web and supporting browser tools have helped advance more standardized methods for hypertexts, particularly those available on the Internet. Web browsers are perhaps the most useful tools when it comes to interacting with hypertexts that are essentially Web-based, whether present on an internal network (intranet) or on the Internet. Web browsers serve as tools, which interpret markup and scripting languages used in hypertexts, making them accessible through local files as well as through Universal Resource Locator (URL) address.

Content management systems, and their various extended applications including blogs, learning management systems, wikis, etc., serve as useful hypertext development tools to help developers with the tasks of designing, organizing, and presenting hypertexts as fully-developed, data-driven Web sites. Other hypertext development tools include a wide range of text editing and Web development software programs, which can be used as authoring environments to create hypertexts. Many development tools include supporting content libraries to assist developers with more complex authoring tasks, including interactive forms, built-in applications, media libraries, and wizard tools that help users drag-and-drop content and make selections as they develop various hypertext features. Many tools also include robust editing and validation tools, which assist developers with quality assurance tasks, to ensure both content and markup conform to project and standardized specifications.

Hypertext continues to evolve as a technology, so its development can be considered to be actively progressing. Standardized solutions for developing and presenting hypertexts capabilities have arrived, however, as new technologies and capabilities are integrated into the markup and scripting languages and development and presentational tools, these will continue to evolve and realize additional features and capabilities. An example of this is with the core HTML markup language specification, which for nearly two decades, was used without revision. In the mid-2010s, version 5 of the HTML specification was released, which integrated expanded support for structural and semantic markup, as well as graphic and media presentation capabilities, while depreciating older features, such as frames and stylistic presentation attributes. Similarly, over the course of the Web’s development, other languages have undergone similar progressive transformations. Subsequently, these and other technological advancements in computer hardware and software have influenced the changes and capabilities of hypertext and its primary product, the Web, and its various applications.

5 Research

Research on hypertext and the World Wide Web as academic writing tools has been conducted since the 1980s on hypertext, and since shortly after the inception of the web. Nearly 100,000 publications on hypertext have been published since the 1980s and generally fall into one of the following categories: hypertext systems and specifications; hypertext and critical theory; hypertext and reading; hypertext and hyper/interactive fiction; hypertext and the materiality of writing; and hypertext and writing pedagogy. If one adds in publications on hypermedia/digital media/multimodal composing, as well as publications examining writing for/with the world wide web, the number of publications may well reach into the hundreds of thousands.

The most sustained source of research into hypertext, the Association for Computing Machines Hypertext and Hypermedia conference (ACM HT), has published proceedings of these conferences since 1987 and remains the most complete source to understand the evolution of hypertext research. The 32nd HT conference, completed virtually in September 2021, provides insight into current key issues in hypertext/hypermedia research. Atzenbech and Cheong (2021) explain that only a few of the “original” hypertext topics, such as system infrastructures and hypertext in electronic literature, have been sustained throughout conference history and that actions must be taken to ensure that hypertext community does not fragment and vanish. They propose the International Teaching and Research in Hypertext (INTR/HT) project as a way to rebuild a teaching and research community focused on hypertext.

The thread of hypertext scholarship most dominant in the 1980s and 1990s was that which claimed hypertext as the instantiation of postmodern critical theory; George Landow (1991), perhaps the most prolific author in this thread, establishes the link: “critical theory promises to theorize hypertext and hypertext promises to embody and thereby test aspects of theory” (p. 3). Landow creates links between Barthes, Derrida, Foucault, and Ong, among others. Bolter (1991, 2001) explains that readers are experiencing the “late age of print” and similarly connects hypertext to postmodern theory as well as reader-response theory as it recreates and reconfigures writing spaces. While this line of scholarship continues to inform discussion of hypertext in some areas, McEneaney (1997) posed a challenge to this perspective, arguing that the break between print and hypertext was not nearly as neat or as simple as Landow, Bolter, and others had posited.

Two peer-reviewed journals, Computers and Composition (C&C) and Kairos: A Journal of Rhetoric, Technology, and Pedagogy, have focused since their inception on digital technologies and (primarily) academic writing. Authors publishing in these venues explored implications and applications of hypertext and web technology for students in a variety of post-secondary writing courses. Research focusing primarily on hypertext flourished in C&C from 1990–2005, although authors continue to discuss multimodal and web-based writing to the present day. Kairos has published all works as “webtexts” since its first issue in 1996 and in doing so, mandated that authors engage in composing hypertextually as they write about digital composing pedagogies and practice. In Technical Communication, flagship journals, including Technical Communication, Journal of Technical Writing and Communication, IEEE Transactions on Professional Communication, and Technical Communication Quarterly, have published numerous articles concerning hypertext and its applications. As well, hypertext and related topics regularly appear on programs of major conferences in the field, such as Association for Teachers of Technical Writing (ATTW) and the Conference on Programs of Technical and Scientific Communication (CPTSC).

Usability in regard to hypertext and webtexts has focused on both the functionality of the construct and the user experience (U/X) while acknowledging the shortcomings of conventional usability measures. Since the early days of hypertext, usability and U/X researchers have developed a robust research agenda which examines and tests various features of hypertext’s applications. Many of these are highly situated studies. Following, a few representative studies. Nielsen (1989) examined 30 usability studies of hypertext and concluded the development of a single hypertext UI design that worked for the majority of users was unlikely. (Note that this work pre-dated Berners-Lee’s WWW). Smith (1996) noted that the exploratory nature of hypertext made typical usability measures difficult; Smith called for measuring time to find information and charting routes taken through the text to do so. Chen and Rada (1996) extend Nielsen’s work as they echo his primary finding—that the complexity and dynamic processes that underlie users’ experience with hypertext makes evaluating its usability difficult. Naji (2021) provides usability guidelines for hypertext links, but no testing protocol.

6 Implications for Writing Theory/practice

Prior to the development of the World Wide Web, those interested in writing hypertextually designed and/or developed platforms, including Ted Nelson’s Xanadu, Brown University’s Intermedia, Eastgate Systems’ StorySpace, and Apple Computer’s HyperCard to test the tenets of hypertext theory. These systems ultimately were dwarfed by the the unveiling and explosive growth of the World Wide Web which refocused the trajectory of hypertext writing and research, as well as in many ways redefined the distribution of formerly print-restricted academic texts. Print textbooks have been supplemented by online, hypertextual resources or replaced by curated open-source material either available freely on the web, developed locally by instructors, or curated from university libraries. Many academic journals no longer publish print copies; increasingly, the entire submission, review, and publication process occurs online. Even in manuscripts published in pdf format to enable printing often include hypertext links to sources and supplemental material—this material would not have been easily accessed in a pre-hypertext age. And in the teaching of academic writing at all levels, students work with genres and concepts of writing informed by hypertext, especially if they are creating multimodal work. Hypertext thus represents one of the foundational theoretical subjects for digital writing and literacy as we approach the end of the first quarter of the twenty-first century.

7 List of Tools

HTML (Hypertext Markup Language)

a standardized system for tagging text files that enables them to be viewed in a web browser

https://www.w3schools.com/html/

CSS (Cascading Style Sheets)

describes how web pages are to be displayed on screen, on paper, and other media and can be used to format multiple web pages at once

https://www.w3schools.com/css/

JavaScript

An advanced programming language used to make web pages more dynamic and interactive

https://www.javascript.com/

XML (Extensible Markup Language)

a fully customizable system for creating tag sets and markup languages, of which HTML is one example

https://www.w3.org/XML/