Skip to main content
  • 447 Accesses

Abstract

Cold plasma is the 4th state of matter that has been recognized as an emerging non-thermal food processing technology. In recent days, cold plasma has been applied to modify the starches as one of the physical methods. Cold plasma via different mechanisms (depolymerization, crosslinking, and etching) can modify the starches. The etched surface of starch granules enhanced the hydrophilicity allowing more water penetration. This led to many changes pertaining to thermal and pasting properties. The depolymerization of amylose and amylopectin chains decreased the relative crystallinity without any change in crystallinity pattern. This chapter summarizes the different plasma-induced mechanisms for starch modifications and their impact on the different functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch-Stärke, 67(3–4), 213–224.

    Article  CAS  Google Scholar 

  • Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35, 215–236.

    Article  Google Scholar 

  • Banura, S., Thirumdas, R., Kaur, A., Deshmukh, R. R., & Annapure, U. S. (2018). Modification of starch using low pressure radio frequency air plasma. LWT, 89, 719–724.

    Article  CAS  Google Scholar 

  • Berardinelli, A., Hamrouni, A., Dirè, S., Ceccato, R., Camera-Roda, G., Ragni, L., Palmisano, L., & Parrino, F. (2021). Features and application of coupled cold plasma and photocatalysis processes for decontamination of water. Chemosphere, 262, 128336.

    Article  CAS  PubMed  Google Scholar 

  • Bie, P., Pu, H., Zhang, B., Su, J., Chen, L., & Li, X. (2016). Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science & Emerging Technologies, 34, 196–204.

    Article  CAS  Google Scholar 

  • Biliaderis, C. G., Page, C. M., Maurice, T. J., & Juliano, B. O. (1986). Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry, 34(1), 6–14.

    Article  CAS  Google Scholar 

  • Bogaerts, A., Neyts, E., Gijbels, R., & Van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609–658.

    Article  Google Scholar 

  • Carvalho, A. P. M. G., Barros, D. R., da Silva, L. S., Sanches, E. A., da Costa Pinto, C., de Souza, S. M., & Campelo, P. H. (2021). Dielectric barrier atmospheric cold plasma applied to the modification of Ariá (Goeppertia allouia) starch: Effect of plasma generation voltage. International Journal of Biological Macromolecules, 182, 1618–1627.

    Article  CAS  PubMed  Google Scholar 

  • Castanha, N., Lima, D. C., Junior, M. D. M., Campanella, O. H., & Augusto, P. E. D. (2019). Combining ozone and ultrasound technologies to modify maize starch. International Journal of Biological Macromolecules, 139, 63–74.

    Article  CAS  PubMed  Google Scholar 

  • Chaiwat, W., Wongsagonsup, R., Tangpanichyanon, N., Jariyaporn, T., Deeyai, P., Suphantharika, M., & Dangtip, S. (2016). Argon plasma treatment of tapioca starch using a semi-continuous downer reactor. Food and Bioprocess Technology, 9(7), 1125–1134.

    Article  CAS  Google Scholar 

  • Chen, F. F. (2007). Radiofrequency plasma sources for semiconductor processing. In Advanced Plasma Technology (pp. 99–115). Wiley.

    Chapter  Google Scholar 

  • Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9(4), 441–454.

    Article  CAS  Google Scholar 

  • Coutinho, N. M., Silveira, M. R., Rocha, R. S., Freitas, M. Q., Duarte, M. C. K., Quero, R. F., & da Cruz, A. G. (2021). Cold Plasma. In Sustainable food processing and engineering challenges (pp. 109–135). Academic.

    Chapter  Google Scholar 

  • de la Hera, E., Martinez, M., & Gómez, M. (2013). Influence of flour particle size on quality of gluten-free rice bread. LWT-Food Science and Technology, 54(1), 199–206.

    Article  CAS  Google Scholar 

  • Deeyai, P., Suphantharika, M., Wongsagonsup, R., & Dangtip, S. (2013). Characterization of modified tapioca starch in atmospheric argon plasma under diverse humidity by FTIR spectroscopy. Chinese Physics Letters, 30(1), 018103.

    Article  Google Scholar 

  • Dereje, B. (2021). Composition, morphology and physicochemical properties of starches derived from indigenous Ethiopian tuber crops: A review. International Journal of Biological Macromolecules, 187, 911–921.

    Article  CAS  PubMed  Google Scholar 

  • Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77, 187–191.

    Article  CAS  Google Scholar 

  • Ee, K. Y., Eng, M. K., & Lee, M. L. (2020). Physicochemical, thermal and rheological properties of commercial wheat flours and corresponding starches. Food Science and Technology, 40, 51–59.

    Article  Google Scholar 

  • Fridman, A. A., & Friedman, G. G. (2013). Plasma medicine (p. 1). Wiley.

    Google Scholar 

  • Fuentes, C., Kang, I., Lee, J., Song, D., Sjöö, M., Choi, J., & Nilsson, L. (2019). Fractionation and characterization of starch granules using field-flow fractionation (FFF) and differential scanning calorimetry (DSC). Analytical and Bioanalytical Chemistry, 411(16), 3665–3674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, X., Shen, H., Su, C., Zhang, B., Zhang, Q., Jiang, H., & Li, W. (2021). The improving effects of cold plasma on multi-scale structure, physicochemical and digestive properties of dry heated red adzuki bean starch. Food Chemistry, 349, 129159.

    Article  CAS  PubMed  Google Scholar 

  • Ge, X., Shen, H., Sun, X., Liang, W., Zhang, X., Sun, Z., & Li, W. (2022a). Insight into the improving effect on multi-scale structure, physicochemical and rheology properties of granular cold water soluble rice starch by dielectric barrier discharge cold plasma processing. Food Hydrocolloids, 130, 107732.

    Article  CAS  Google Scholar 

  • Ge, X., Guo, Y., Zhao, J., Zhao, J., Shen, H., & Yan, W. (2022b). Dielectric barrier discharge cold plasma combined with cross-linking: An innovative way to modify the multi-scale structure and physicochemical properties of corn starch. International Journal of Biological Macromolecules, 215, 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Gou, Q., Yang, L., Yu, Q. L., & Han, L. (2022). Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chemistry, 370, 130992.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Torres, C. J., Reyes-Acosta, Y. K., Chávez-González, M. L., Dávila-Medina, M. D., Verma, D. K., Martínez-Hernández, J. L., Narro-Céspedes, R. I., & Aguilar, C. N. (2022). Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi Journal of Biological Sciences, 29(4):1957–1980. https://doi.org/10.1016/j.sjbs.2021.12.023

  • Hong, Y. C. (2021). Atmospheric-Pressure Air Plasma Jet and Its Striation Discharge Mode for Treatment of Thermally Sensitive Materials. Coatings, 11(7), 866.

    Article  CAS  Google Scholar 

  • Kalaivendan, R. G. T., Mishra, A., Eazhumalai, G., & Annapure, U. S. (2022). Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. International Journal of Biological Macromolecules, 196, 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Khorram, S., Zakerhamidi, M. S., & Karimzadeh, Z. (2015). Polarity functions’ characterization and the mechanism of starch modification by DC glow discharge plasma. Carbohydrate Polymers, 127, 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Kuang, Q., Xu, J., Liang, Y., Xie, F., Tian, F., Zhou, S., & Liu, X. (2017). Lamellar structure change of waxy corn starch during gelatinization by time-resolved synchrotron SAXS. Food Hydrocolloids, 62, 43–48.

    Article  CAS  Google Scholar 

  • Kumar, R., & Khatkar, B. S. (2017). Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. Journal of Food Science and Technology, 54(8), 2403–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal, A. N., Prince, M. V., Kothakota, A., Pandiselvam, R., Thirumdas, R., Mahanti, N. K., & Sreeja, R. (2021). Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. Innovative Food Science & Emerging Technologies, 74, 102844.

    Article  CAS  Google Scholar 

  • Laricheh, R., Fazel, M., & Goli, M. (2022). Corn starch structurally modified with atmospheric cold-plasma and its use in mayonnaise formulation. Journal of Food Measurement and Characterization, 16(3), 1859–1872.

    Article  Google Scholar 

  • Lebedev, Y. A. (2010). Microwave discharges: generation and diagnostics. Journal of Physics: Conference Series, 257(1), 012016. IOP Publishing.

    Google Scholar 

  • Li, G., & Zhu, F. (2017). Molecular structure of quinoa starch. Carbohydrate Polymers, 158, 124–132.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Ma, C., Zhu, S., Yu, F., Dai, B., & Yang, D. (2019). A review of recent advances of dielectric barrier discharge plasma in catalysis. Nanomaterials, 9(10), 1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lii, C. Y., Liao, C. D., Stobinski, L., & Tomasik, P. (2002). Behaviour of granular starches in low-pressure glow plasma. Carbohydrate Polymers, 49(4), 499–507.

    Article  CAS  Google Scholar 

  • Liu, H., Wang, L., Cao, R., Fan, H., & Wang, M. (2016). In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydrate Polymers, 144, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Song, Y., & Zhang, Z. (2021). A Novel Dielectric Barrier Discharge (DBD) Reactor with Streamer and Glow Corona Discharge for Improved Ozone Generation at Atmospheric Pressure. Micromachines, 12(11), 1287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, P., Cullen, P. J., & Ostrikov, K. (2016). Atmospheric pressure non-thermal plasma sources. In Cold plasma in food and agriculture (pp. 83–116). Academic Press.

    Chapter  Google Scholar 

  • Mandal, R., Singh, A., & Singh, A. P. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology, 80, 93–103.

    Article  CAS  Google Scholar 

  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Non-thermal plasma inactivation of foodborne pathogens. Food Engineering Reviews, 3(3), 159–170.

    Article  Google Scholar 

  • Misra, N. N., Yadav, B., Roopesh, M. S., & Jo, C. (2019). Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106–120.

    Article  CAS  PubMed  Google Scholar 

  • Okyere, A. Y., Bertoft, E., & Annor, G. A. (2019). Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydrate Polymers, 223, 115075.

    Article  CAS  PubMed  Google Scholar 

  • Okyere, A. Y., Boakye, P. G., Bertoft, E., & Annor, G. A. (2022a). Structural characterization and enzymatic hydrolysis of radio frequency cold plasma treated starches. Journal of Food Science, 87(2), 686–698.

    Article  CAS  PubMed  Google Scholar 

  • Okyere, A. Y., Rajendran, S., & Annor, G. A. (2022b). Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. In Current Research in Food Science (Vol. 5, pp. 451–463). Elsevier.

    Google Scholar 

  • Pal, P., Kaur, P., Singh, N., Kaur, A., Misra, N. N., Tiwari, B. K., et al. (2016). Effect of non-thermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Research International, 81, 50–57.

    Article  CAS  Google Scholar 

  • Park, J., Henins, I., Herrmann, H. W., Selwyn, G. S., Jeong, J. Y., Hicks, R. F., & Chang, C. S. (2000). An atmospheric pressure plasma source. Applied Physics Letters, 76(3), 288–290.

    Article  CAS  Google Scholar 

  • Sadhu, S., Thirumdas, R., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT, 78, 97–104.

    Google Scholar 

  • Sarangapani, C., Thirumdas, R., Devi, Y., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2016). Effect of low-pressure plasma on physico–chemical and functional properties of parboiled rice flour. LWT-Food Science and Technology, 69, 482–489.

    Article  CAS  Google Scholar 

  • Sarangapani, C., Devi, R. Y., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R., & Annapure, U. S. (2017). Physico-chemical properties of low-pressure plasma treated black gram. LWT-Food Science and Technology, 79, 102–110.

    Article  CAS  Google Scholar 

  • Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S., & Hicks, R. F. (1998). The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 26(6), 1685–1694.

    Article  CAS  Google Scholar 

  • Sharma, S. (2020). Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends in Food Science & Technology, 102, 30–36.

    Article  CAS  Google Scholar 

  • Sifuentes-Nieves, I., Neira-Velázquez, G., Hernández-Hernández, E., Barriga-Castro, E., Gallardo-Vega, C., Velazquez, G., & Mendez-Montealvo, G. (2019). Influence of gelatinization process and HMDSO plasma treatment on the chemical changes and water vapor permeability of corn starch films. International Journal of Biological Macromolecules, 135, 196–202.

    Article  CAS  PubMed  Google Scholar 

  • Sifuentes-Nieves, I., Mendez-Montealvo, G., Flores-Silva, P. C., Nieto-Pérez, M., Neira-Velazquez, G., Rodriguez-Fernandez, O., & Velazquez, G. (2021). Dielectric barrier discharge and radio-frequency plasma effect on structural properties of starches with different amylose content. Innovative Food Science & Emerging Technologies, 68, 102630.

    Article  CAS  Google Scholar 

  • Sudheesh, C., Sunooj, K. V., Sinha, S. K., George, J., Kumar, S., Murugesan, P., & Kumar, V. A. S. (2019). Impact of energetic neutral nitrogen atoms created by glow discharge air plasma on the physico-chemical and rheological properties of kithul starch. Food Chemistry, 294, 194–202.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Saleh, A. S., Sun, Z., Ge, X., Shen, H., Zhang, Q., & Li, W. (2022). Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. LWT, 153, 112483.

    Article  CAS  Google Scholar 

  • Sutar, S. A., Thirumdas, R., Chaudhari, B. B., Deshmukh, R. R., & Annapure, U. S. (2021). Effect of cold plasma on insect infestation and keeping quality of stored wheat flour. Journal of Stored Products Research, 92, 101774.

    Article  CAS  Google Scholar 

  • Taslikh, M., Abbasi, H., Mortazavian, A. M., Ghasemi, J. B., Naeimabadi, A., & Nayebzadeh, K. (2022). Effect of Cold Plasma Treatment, Crosslinking, and Dual Modification on Corn Starch. Starch-Stärke. https://doi.org/10.1002/star.202200008

  • Teixeira, B. S., Garcia, R. H., Takinami, P. Y., & del Mastro, N. L. (2018). Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch. Radiation Physics and Chemistry, 142, 44–49.

    Article  CAS  Google Scholar 

  • Thirumdas, R. (2022). Partial hydrogenation of oils using cold plasma technology and its effect on lipid oxidation. Journal of Food Science and Technology, 60, 1674–1680.

    Article  PubMed  Google Scholar 

  • Thirumdas, R., Deshmukh, R. R., & Annapure, U. S. (2015). Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innovative Food Science & Emerging Technologies, 31, 83–90.

    Article  CAS  Google Scholar 

  • Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R., & Annapure, U. S. (2016a). Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Science & Emerging Technologies, 37, 53–60.

    Article  CAS  Google Scholar 

  • Thirumdas, R., Deshmukh, R. R., & Annapure, U. S. (2016b). Effect of low temperature plasma on the functional properties of basmati rice flour. Journal of Food Science and Technology, 53(6), 2742–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirumdas, R., Kadam, D., & Annapure, U. S. (2017a). Cold plasma: An alternative technology for the starch modification. Food Biophysics, 12(1), 129–139.

    Article  Google Scholar 

  • Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2017b). Functional and rheological properties of cold plasma treated rice starch. Carbohydrate Polymers, 157, 1723–1731.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, J. C. (2016). The chemistry of cold plasma. In Cold plasma in food and agriculture (pp. 53–81). Academic Press.

    Chapter  Google Scholar 

  • Wongsagonsup, R., Deeyai, P., Chaiwat, W., Horrungsiwat, S., Leejariensuk, K., Suphantharika, M., & Dangtip, S. (2014). Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydrate Polymers, 102, 790–798.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T. Y., Sun, N. N., & Chau, C. F. (2018). Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. Journal of Food and Drug Analysis, 26(1), 244–251.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T. Y., Chang, C. R., Chang, T. J., Chang, Y. J., Liew, Y., & Chau, C. F. (2019). Changes in physicochemical properties of corn starch upon modifications by atmospheric pressure plasma jet. Food Chemistry, 283, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y., Zhou, Y., Shi, M., Liu, H., & Liu, Y. (2019). Influence of atmospheric pressure plasma jet on the structure of microcrystalline starch with different relative crystallinity. International Journal of Food Science & Technology, 54(2), 567–575.

    Article  CAS  Google Scholar 

  • Yan, S. L., Chen, G. Y., Hou, Y. J., & Chen, Y. (2020). Improved solubility of banana starch by dielectric barrier discharge plasma treatment. International Journal of Food Science & Technology, 55(2), 641–648.

    Article  CAS  Google Scholar 

  • Zhang, B., Chen, L., Li, X., Li, L., & Zhang, H. (2015). Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids, 50, 228–236.

    Article  CAS  Google Scholar 

  • Zhang, K., Zhang, Z., Zhao, M., Milosavljević, V., Cullen, P. J., Scally, L., & Tiwari, B. K. (2022a). Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocolloids, 125, 107380.

    Article  CAS  Google Scholar 

  • Zhang, K., et al. (2022b). Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocolloids, 125, 107380.

    Article  CAS  Google Scholar 

  • Zhu, F. (2017). Plasma modification of starch. Food Chemistry, 232, 476–486.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, F. (2018). Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends in Food Science & Technology, 78, 234–242.

    Article  CAS  Google Scholar 

  • Zhou, Y., Yan, Y., Shi, M., & Liu, Y. (2019). Effect of an atmospheric pressure plasma jet on the structure and physicochemical properties of waxy and normal maize starch. Polymers, 11(1), 8. https://doi.org/10.3390/polym11010008

  • Zou, J. J., Liu, C. J., & Eliasson, B. (2004). Modification of starch by glow discharge plasma. Carbohydrate Polymers, 55(1), 23–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday S. Annapure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Annapure, U.S., Rohit, T. (2023). Cold Plasma Treatment of Starch. In: Sharanagat, V.S., Saxena, D.C., Kumar, K., Kumar, Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_14

Download citation

Publish with us

Policies and ethics