Skip to main content

Tissue Regeneration Processing and Mimicking

  • Chapter
  • First Online:
Biomaterials and Tissue Engineering

Abstract

Tissue regeneration has been one of the comprehensive topics that underlie tissue engineering and has been researched over years. The main aim in tissue engineering is to create a tissue microenvironment produced from natural or synthetic biomaterials, to promote tissue regeneration in the injured site, thus mimicking the natural extracellular matrix (ECM) structure as much as possible, to ensure the migration of specific cells to the site, cell proliferation, and cell differentiation. In this context, it is critical to understand the difference between tissue repair and tissue regeneration, the main stages of tissue repair (hemostasis, inflammation, proliferation and remodeling), and the regeneration and repair mechanisms of the four basic tissues (connective, epithelial, muscle, and nerve tissue). Studies on tissue regeneration mainly focus on scaffolds, decellularized tissues, and their combination with cells capable of self-renewal and differentiation, such as stem cells. Herein, it is also presented in detail how to mimic the tissue microenvironment, the essential characteristics of a scaffold and why decellularized tissues are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. Comptes Rendus Phys 12:620–636. https://doi.org/10.1016/j.crhy.2011.06.001

    Article  CAS  Google Scholar 

  2. Raja TI, Mozafari M, Milan PB et al (2018) Nanoengineered biomaterials for tracheal replacement. Elsevier Inc.

    Google Scholar 

  3. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6. https://doi.org/10.1126/scitranslmed.3009337

  4. Kim WJH (2000) Cellular signaling in tissue regeneration. Yonsei Med J 41:692–703

    Article  CAS  PubMed  Google Scholar 

  5. Vig K, Chaudhari A, Tripathi S et al (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18. https://doi.org/10.3390/ijms18040789

  6. Albulet D, Florea DA, Boarca B et al (2017) Nanotechnology for personalized medicine: cancer research, diagnosis, and therapy. Elsevier Inc.

    Google Scholar 

  7. Lei D, Yang Y, Liu Z et al (2019) 3D printing of biomimetic vasculature for tissue regeneration. Mater Horizons 6:1197–1206. https://doi.org/10.1039/c9mh00174c

    Article  CAS  Google Scholar 

  8. Li Q, Ma L, Gao C (2015) Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 3:8921–8938. https://doi.org/10.1039/c5tb01863c

    Article  CAS  PubMed  Google Scholar 

  9. Hao D, Lopez JM, Chen J et al (2022) Engineering extracellular microenvironment for tissue regeneration. Bioengineering 9:1–17. https://doi.org/10.3390/bioengineering9050202

    Article  CAS  Google Scholar 

  10. Huang G, Li F, Zhao X et al (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117:12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bottaro DP, Liebmann-vinson A, Heidaran MA (2002) Molecular signaling in bioengineered tissue. Ann N Y Acad Sci 961:143–153

    Article  CAS  PubMed  Google Scholar 

  12. Tamori Y, Suzuki E, Deng WM (2016) Epithelial tumors originate in tumor hotspots, a tissue-intrinsic microenvironment. PLoS Biol 14.https://doi.org/10.1371/journal.pbio.1002537

  13. Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15:771–785. https://doi.org/10.1038/nrm3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozcelik H, Hindie M, Hasan A et al (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the citation accessed citable link cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014:1–18

    Google Scholar 

  15. Rijal G, Li W (2018) Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng 12:1–22. https://doi.org/10.1186/s13036-018-0114-7

    Article  CAS  Google Scholar 

  16. Loreti M, Sacco A (2022) The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 7:1–15. https://doi.org/10.1038/s41536-022-00204-z

  17. Cezar CA, Mooney DJ (2015) Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 84:188–197. https://doi.org/10.1016/j.addr.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  18. Sawicka KM, Seeliger M, Musaev T et al (2015) Fibronectin interaction and enhancement of growth factors: importance for wound healing. Adv Wound Care 4:469–478. https://doi.org/10.1089/wound.2014.0616

    Article  Google Scholar 

  19. Shi Z, Gao X, Ullah MW et al (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54. https://doi.org/10.1016/j.biomaterials.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  20. Song B, Zhao M, Forrester JV, McCaig CD (2002) Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA 99:13577–13582. https://doi.org/10.1073/pnas.202235299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang W, Liu Y, Zhang H (2021) Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 11:1–13. https://doi.org/10.1186/s13578-021-00579-4

    Article  Google Scholar 

  22. Guillot C, Lecuit T (2013) Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340:1185–1189. https://doi.org/10.1126/science.1235249

  23. Kong L, Gao X, Qian Y et al (2022) Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Theranostics 12:4993–5014. https://doi.org/10.7150/thno.74571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542. https://doi.org/10.1177/147323000903700531

    Article  CAS  PubMed  Google Scholar 

  25. Singh S, Young A, McNaught CE (2017) The physiology of wound healing. Surg (United Kingdom) 35:473–477. https://doi.org/10.1016/j.mpsur.2017.06.004

    Article  Google Scholar 

  26. Abazari M, Ghaffari A, Rashidzadeh H et al (2022) A systematic review on classification, identification, and healing process of burn wound healing. Int J Low Extrem Wounds 21:18–30. https://doi.org/10.1177/1534734620924857

    Article  PubMed  Google Scholar 

  27. Karsdal MA, Nielsen MJ, Sand JM et al (2013) Extracellular matrix remodeling: the common denominator in connective tissue diseases possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 11:70–92. https://doi.org/10.1089/adt.2012.474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200:423–428. https://doi.org/10.1002/path.1437

    Article  CAS  PubMed  Google Scholar 

  29. Barker HE, Erler JT (2011) The potential for LOXL2 as a target for future cancer treatment. Futur Oncol 7:707–710. https://doi.org/10.2217/fon.11.46

    Article  CAS  Google Scholar 

  30. Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546. https://doi.org/10.1016/j.addr.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  31. Birk DE, Fitch JM, Babiarz JP, Linsenmayer TF (1988) Collagen type I and type V are present in the same fibril in the avian corneal stroma. J Cell Biol 106:999–1008. https://doi.org/10.1083/jcb.106.3.999

    Article  CAS  PubMed  Google Scholar 

  32. Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation Karl. Biochem J 11:1–11

    Article  Google Scholar 

  33. Kruegel J, Miosge N (2010) Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 67:2879–2895. https://doi.org/10.1007/s00018-010-0367-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fessler LI, Brosh S, Chapin S, Fessler JH (1986) Tyrosine sulfation in precursors in collagen V. J Biol Chem 261:5034–5040. https://doi.org/10.1016/s0021-9258(19)89211-6

    Article  CAS  PubMed  Google Scholar 

  35. Engvall E, Hessle H, Klier G (1986) Molecular assembly, secretion, and matrix deposition of type VI collagen. J Cell Biol 102:703–710. https://doi.org/10.1083/jcb.102.3.703

    Article  CAS  PubMed  Google Scholar 

  36. Bock HC, Michaeli P, Bode C et al (2001) The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthr Cartil 9:654–663. https://doi.org/10.1053/joca.2001.0420

    Article  CAS  Google Scholar 

  37. Merline R, Schaefer RM, Schaefer L (2009) The matricellular functions of small leucine-rich proteoglycans (SLRPs). J Cell Commun Signal 3:323–335. https://doi.org/10.1007/s12079-009-0066-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wight TN, Merrilees MJ (2004) Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 94:1158–1167. https://doi.org/10.1161/01.RES.0000126921.29919.51

    Article  CAS  PubMed  Google Scholar 

  39. Yanagishita M (1993) Function of proteoglycans in the extracellular matrix. Pathol Int 43:283–293. https://doi.org/10.1111/j.1440-1827.1993.tb02569.x

    Article  CAS  Google Scholar 

  40. Monfort J, Tardif G, Reboul P et al (2006) Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site. Arthritis Res Ther 8:1–9. https://doi.org/10.1186/ar1873

    Article  CAS  Google Scholar 

  41. Funderburgh JL, Corpuz LM, Roth MR et al (1997) Mimecan, the 25-kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J Biol Chem 272:28089–28095.https://doi.org/10.1074/jbc.272.44.28089

  42. Michelacci YM (2003) Collagens and proteoglycans of the corneal extracellular matrix. Brazilian J Med Biol Res 36:1037–1046. https://doi.org/10.1590/S0100-879X2003000800009

    Article  CAS  Google Scholar 

  43. Brier J, Jayanti LD (2020) 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析 21:1–9

    Google Scholar 

  44. Gonzalez ACDO, Andrade ZDA, Costa TF, Medrado ARAP (2016) Wound healing—a literature review. An Bras Dermatol 91:614–620. https://doi.org/10.1590/abd1806-4841.20164741

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25:9–18. https://doi.org/10.1016/j.clindermatol.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  46. Baum CL, Arpey CJ (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatologic Surg 31:674–686. https://doi.org/10.1097/00042728-200506000-00011

    Article  CAS  Google Scholar 

  47. Pierce GF, Vande Berg J, Rudolph R et al (1991) Platelet-derived growth factor-BB and transforming growth factor beta1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds. Am J Pathol 138:629–646

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037. https://doi.org/10.1016/j.biocel.2003.12.003

    Article  CAS  PubMed  Google Scholar 

  49. Petreaca M, Martins-Green M (2020) The dynamics of cell-extracellular matrix interactions, with implications for tissue engineering. INC

    Google Scholar 

  50. Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30:1019–1030. https://doi.org/10.1016/S1357-2725(98)00058-2

    Article  CAS  PubMed  Google Scholar 

  51. Codispoti B, Makeeva I, Sied J et al (2019) Should we reconsider the apoptosis as a strategic player in tissue regeneration? Int J Biol Sci 15:2029–2036. https://doi.org/10.7150/ijbs.36362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guerin DJ, Kha CX, Tseng KAS (2021) From cell death to regeneration: rebuilding after injury. Front Cell Dev Biol 9:1–7. https://doi.org/10.3389/fcell.2021.655048

    Article  Google Scholar 

  53. Tseng AS, Adams DS, Qiu D et al (2007) Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 301:62–69. https://doi.org/10.1016/j.ydbio.2006.10.048

    Article  CAS  PubMed  Google Scholar 

  54. Fan Y, Wang S, Hernandez J et al (2014) Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in drosophila. PLoS Genet 10. https://doi.org/10.1371/journal.pgen.1004131

  55. Chera S, Ghila L, Dobretz K et al (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17:279–289. https://doi.org/10.1016/j.devcel.2009.07.014

    Article  CAS  PubMed  Google Scholar 

  56. Brown DL, Kao WWY, Greenhalgh DG (1997) Apoptosis down-regulates inflammation under the advancing epithelial wound edge: delayed patterns in diabetes and improvement with topical growth factors. Surgery 121:372–380. https://doi.org/10.1016/S0039-6060(97)90306-8

    Article  CAS  PubMed  Google Scholar 

  57. Dudas M, Wysocki A, Gelpi B, Tuan TL (2008) Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res 63:502–512. https://doi.org/10.1203/PDR.0b013e31816a7453

    Article  PubMed  Google Scholar 

  58. Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49:35–43. https://doi.org/10.1159/000339613

    Article  CAS  PubMed  Google Scholar 

  59. Sephel GC, Woodward S (2007) Repair, Regeneration, and fibrosis. Rubin’s Pathol: 71–98

    Google Scholar 

  60. Goldenring JR, Mills JC (2022) Cellular plasticity, reprogramming, and regeneration: metaplasia in the stomach and beyond. Gastroenterology 162:415–430. https://doi.org/10.1053/j.gastro.2021.10.036

    Article  CAS  PubMed  Google Scholar 

  61. Carr NJ (2022) The pathology of healing and repair. Surg (United Kingdom) 40:13–19. https://doi.org/10.1016/j.mpsur.2021.11.003

    Article  Google Scholar 

  62. Wlaschek M, Maity P, Makrantonaki E, Scharffetter-Kochanek K (2021) Connective tissue and fibroblast senescence in skin aging. J Invest Dermatol 141:985–992. https://doi.org/10.1016/j.jid.2020.11.010

    Article  CAS  PubMed  Google Scholar 

  63. Khan S, Hashmi GS (2015) Histology and functions of connective tissues. Univ J Dent Sci 1:1–2

    Google Scholar 

  64. Ariana R (2016) 済無

    Google Scholar 

  65. Journal H, Street RP, Brunswick N (1981) Connective tissue: an eclectic historical review with particular reference to the liver I. 396:341–396

    Google Scholar 

  66. Kamrani P, Jan A (2019) Anatomy, connective tissue blood supply and lymphatics. StatPearls Publ: 3–5

    Google Scholar 

  67. Nezwek TA, Varacallo M (2023) Physiology, connective tissue. 2–6

    Google Scholar 

  68. Schneider U, Murrell WD, Hollands P (2021) The regeneration of damaged connective tissue: wishful thinking or reality? CellR4: 1–11. https://doi.org/10.32113/cellr4

  69. Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20:857–869. https://doi.org/10.1038/nm.3653

    Article  CAS  PubMed  Google Scholar 

  70. Madhavan G (2003) Tissue and organ regeneration in adults

    Google Scholar 

  71. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: a cellular perspective. Physiol Rev 99:665–706. https://doi.org/10.1152/physrev.00067.2017

    Article  CAS  PubMed  Google Scholar 

  72. Wilkinson HN, Hardman MJ (2020) Wound healing: cellular mechanisms and pathological outcomes: cellular mechanisms of wound repair. Open Biol 10. https://doi.org/10.1098/rsob.200223

  73. Etc MCS, Das C, Lucia MS, HK, TJ (2019) 乳鼠心肌提取 HHS public access. Physiol Behav 176:139–148. https://doi.org/10.1016/j.addr.2018.09.010.Therapeutic

  74. Takeo M, Lee W, Ito M (2015) Wound healing and skin regeneration. Cold Spring Harb Perspect Med 5:1–12. https://doi.org/10.1101/cshperspect.a023267

    Article  CAS  Google Scholar 

  75. Wang PH, Huang BS, Horng HC et al (2018) Wound healing. J Chin Med Assoc 81:94–101. https://doi.org/10.1016/j.jcma.2017.11.002

    Article  PubMed  Google Scholar 

  76. Badiu D, Vasile M, Teren O (2011) Regulation of wound healing by growth factors and cytokines. Wound Heal Process Phases Promot: 73–93

    Google Scholar 

  77. Griffith CM, Wiley MJ, Sanders EJ (1992) The vertebrate tail bud: three germ layers from one tissue. Anat Embryol (Berl) 185:101–113. https://doi.org/10.1007/BF00185911

    Article  CAS  PubMed  Google Scholar 

  78. Sorg H, Tilkorn DJ, Hager S et al (2017) Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res 58:81–94. https://doi.org/10.1159/000454919

    Article  PubMed  Google Scholar 

  79. Baron JM, Glatz M, Proksch E (2020) Optimal support of wound healing: new insights. Dermatology 236:593–600. https://doi.org/10.1159/000505291

    Article  CAS  PubMed  Google Scholar 

  80. Guillamat-Prats R (2021) The role of MSC in wound healing, scarring and regeneration. Cells 10. https://doi.org/10.3390/cells10071729

  81. Martin P, Nunan R (2015) Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 173:370–378. https://doi.org/10.1111/bjd.13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008. https://doi.org/10.1038/sj.jid.5700786

    Article  CAS  PubMed  Google Scholar 

  83. Tai K, Cockburn K, Greco V (2019) Flexibility sustains epithelial tissue homeostasis. Curr Opin Cell Biol 60:84–91. https://doi.org/10.1016/j.ceb.2019.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maclaren OJ, Byrne HM, Fletcher AG, Maini PK (2015) Models, measurement and inference in epithelial tissue dynamics. Math Biosci Eng 12:1321–1340. https://doi.org/10.3934/mbe.2015.12.1321

    Article  PubMed  Google Scholar 

  85. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458. https://doi.org/10.1016/j.cell.2007.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen X, Reiter PL, McRee A-L (2011) 乳鼠心肌提取 HHS public access. Physiol Behav 176:139–148. https://doi.org/10.1016/j.cell.2021.05.036.Inflammatory

  87. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5:675–688. https://doi.org/10.1038/nrc1695

    Article  CAS  PubMed  Google Scholar 

  88. Horseman ND, Collier RJ (2014) Serotonin: a local regulator in the mammary gland epithelium. Annu Rev Anim Biosci 2:353–374. https://doi.org/10.1146/annurev-animal-022513-114227

    Article  CAS  PubMed  Google Scholar 

  89. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557. https://doi.org/10.1002/wdev.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. O’Leary CE, Schneider C, Locksley RM (2019) Tuft cells-systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu Rev Immunol 37:47–72. https://doi.org/10.1146/annurev-immunol-042718-041505

    Article  CAS  PubMed  Google Scholar 

  91. Alcolea MP, Jones PH (2014) Lineage analysis of epidermal stem cells. Cold Spring Harb Perspect Med 4:1–16. https://doi.org/10.1101/cshperspect.a015206

    Article  CAS  Google Scholar 

  92. Shpichka A, Butnaru D, Bezrukov EA et al (2019) Skin tissue regeneration for burn injury. Stem Cell Res Ther 10:1–16. https://doi.org/10.1186/s13287-019-1203-3

    Article  CAS  Google Scholar 

  93. Yang R, Wang J, Chen X et al (2020) Epidermal stem cells in wound healing and regeneration. Stem Cells Int 2020:9148310. https://doi.org/10.1155/2020/9148310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kolios G, Moodley Y (2013) Introduction to stem cells and regenerative medicine. Respiration 85:3–10. https://doi.org/10.1159/000345615

    Article  PubMed  Google Scholar 

  95. Weatherbee BAT, Cui T, Zernicka-Goetz M (2021) Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol 474:91–99. https://doi.org/10.1016/j.ydbio.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  96. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10:68. https://doi.org/10.1186/s13287-019-1165-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blanpain C, Fuchs E (2014) Plasticity of epithelial stem cells in tissue regeneration. Science 344. https://doi.org/10.1126/science.1242281

  98. Liu Y, Chen Y-G (2020) Intestinal epithelial plasticity and regeneration via cell dedifferentiation. Cell Regen (London, England) 9:14. https://doi.org/10.1186/s13619-020-00053-5

    Article  PubMed Central  Google Scholar 

  99. Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S (2019) A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res Part A 107:2425–2446. https://doi.org/10.1002/jbm.a.36749

    Article  CAS  Google Scholar 

  100. Lutzweiler G, Halili AN, Vrana NE (2020) The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics 12:1–29. https://doi.org/10.3390/pharmaceutics12070602

    Article  CAS  Google Scholar 

  101. Alysandratos KD, Herriges MJ, Kotton DN (2021) Epithelial stem and progenitor cells in lung repair and regeneration. Annu Rev Physiol 83:529–550. https://doi.org/10.1146/annurev-physiol-041520-092904

    Article  CAS  PubMed  Google Scholar 

  102. Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126:1459–1468. https://doi.org/10.1038/sj.jid.5700376

    Article  CAS  PubMed  Google Scholar 

  103. Houschyar KS, Borrelli MR, Tapking C et al (2020) Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms. Dermatology 236:271–280. https://doi.org/10.1159/000506155

    Article  PubMed  Google Scholar 

  104. Crosby LM, Waters CM (2010) Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 298:1–19. https://doi.org/10.1152/ajplung.00361.2009

    Article  CAS  Google Scholar 

  105. Heath DE (2019) A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regen Eng Transl Med 5:155–166. https://doi.org/10.1007/s40883-018-0080-0

    Article  CAS  Google Scholar 

  106. Kamimura J, Lee D, Baden HP et al (1997) Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential. J Invest Dermatol 109:534–540. https://doi.org/10.1111/1523-1747.ep12336704

    Article  CAS  PubMed  Google Scholar 

  107. McKee CT, Last JA, Russell P, Murphy CJ (2011) Indentation versus tensile measurements of young’s modulus for soft biological tissues. Tissue Eng Part B Rev 17:155–164. https://doi.org/10.1089/ten.teb.2010.0520

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rumpold H, Wolf D, Koeck R, Gunsilius E (2004) Endothelial progenitor cells: a source for therapeutic vasculogenesis? J Cell Mol Med 8:509–518. https://doi.org/10.1111/j.1582-4934.2004.tb00475.x

    Article  PubMed  PubMed Central  Google Scholar 

  109. Baghdadi MB, Tajbakhsh S (2018) Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 433:200–209. https://doi.org/10.1016/j.ydbio.2017.07.026

    Article  CAS  PubMed  Google Scholar 

  110. Dong R, Ma PX, Guo B (2020) Conductive biomaterials for muscle tissue engineering. Biomaterials 229:119584. https://doi.org/10.1016/j.biomaterials.2019.119584

    Article  CAS  PubMed  Google Scholar 

  111. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5:1027–1059. https://doi.org/10.1002/cphy.c140068

    Article  PubMed  Google Scholar 

  112. Zammit PS, Beauchamp JR (2001) Satellite_Stemcell_Zammit.Pdf: 193–204

    Google Scholar 

  113. Yang W, Hu P (2018) Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl 13:25–32. https://doi.org/10.1016/j.jot.2018.01.002

    Article  Google Scholar 

  114. Forcina L, Cosentino M, Musarò A (2020) Mechanisms regulating muscle regeneration: insights into the interrelated and time-dependent phases of tissue healing. Cells 9. https://doi.org/10.3390/cells9051297

  115. Laumonier T, Menetrey J (2016) Muscle injuries and strategies for improving their repair. J Exp Orthop 3. https://doi.org/10.1186/s40634-016-0051-7

  116. Fukada S, Akimoto T, Sotiropoulos A (2020) Role of damage and management in muscle hypertrophy: different behaviors of muscle stem cells in regeneration and hypertrophy. Biochim Biophys Acta Mol Cell Res 1867:118742. https://doi.org/10.1016/j.bbamcr.2020.118742

  117. Brown C, McKee C, Bakshi S et al (2019) Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med 13:1738–1755. https://doi.org/10.1002/term.2914

    Article  CAS  PubMed  Google Scholar 

  118. Hashimoto H, Olson EN, Bassel-Duby R (2018) Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol 15:585–600. https://doi.org/10.1038/s41569-018-0036-6

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tenreiro MF, Louro AF, Alves PM, Serra M (2021) Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 6. https://doi.org/10.1038/s41536-021-00140-4

  120. Yi S, Zhang Y, Gu X et al (2020) Application of stem cells in peripheral nerve regeneration. Burn Trauma 8. https://doi.org/10.1093/burnst/tkaa002

  121. Dalton PD, Harvey AR, Oudega M, Plant GW (2014) Tissue engineering of the nervous system. Tissue Eng Second Ed: 583–625. https://doi.org/10.1016/B978-0-12-420145-3.00017-1

  122. Gordon T (2020) Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci 21:1–24. https://doi.org/10.3390/ijms21228652

    Article  CAS  Google Scholar 

  123. Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731

    Article  CAS  PubMed  Google Scholar 

  124. Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019. https://doi.org/10.1155/2019/3429527

  125. Roseti L, Parisi V, Petretta M et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262. https://doi.org/10.1016/j.msec.2017.05.017

    Article  CAS  Google Scholar 

  126. Khalil HPSA, Jummaat F, Yahya EB et al (2020) A review on micro- to nanocellulose biopolymer scaffold forming for tissue engineering applications. Polymers (Basel) 12. https://doi.org/10.3390/polym12092043

  127. Ambekar RS, Kandasubramanian B (2019) Progress in the advancement of porous biopolymer Scaffold: tissue engineering application. Ind Eng Chem Res 58:6163–6194. https://doi.org/10.1021/acs.iecr.8b05334

    Article  CAS  Google Scholar 

  128. Xiong Y, Wang W, Gao R et al (2020) Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application. Mater Des 195:108994. https://doi.org/10.1016/j.matdes.2020.108994

    Article  CAS  Google Scholar 

  129. Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68:355–369. https://doi.org/10.1007/s10616-015-9895-4

    Article  CAS  PubMed  Google Scholar 

  130. Binette JS, Garon M, Savard P et al (2004) Tetrapolar measurement of electrical conductivity and thickness of articular cartilage. J Biomech Eng 126:475–484. https://doi.org/10.1115/1.1785805

    Article  CAS  PubMed  Google Scholar 

  131. Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521(Pt 1):307–313. https://doi.org/10.1111/j.1469-7793.1999.00307.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Weber M, Rothschild MA, Niehoff A (2021) Anisotropic and age-dependent elastic material behavior of the human costal cartilage. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-93176-x

    Article  CAS  Google Scholar 

  133. Joines WT, Zhang Y, Li C, Jirtle RL (1994) The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys 21:547–550. https://doi.org/10.1118/1.597312

    Article  CAS  PubMed  Google Scholar 

  134. Zieliński PS, Gudeti PKR, Rikmanspoel T, Włodarczyk-Biegun MK (2023) 3D printing of bio-instructive materials: toward directing thecell. Bioact Mater 19:292–327. https://doi.org/10.1016/j.bioactmat.2022.04.008

    Article  CAS  PubMed  Google Scholar 

  135. Hardarson T, Hanson C, Claesson M, Stenevi U (2004) Time-lapse recordings of human corneal epithelial healing. Acta Ophthalmol Scand 82:184–188. https://doi.org/10.1111/j.1600-0420.2004.00250.x

    Article  PubMed  Google Scholar 

  136. Tran RT, Thevenot P, Zhang Y et al (2010) Scaffold sheet design strategy for soft tissue engineering. Materials (Basel) 3:1375–1389. https://doi.org/10.3390/ma3021375

    Article  CAS  Google Scholar 

  137. Lee JH, Yoon YC, Kim HS et al (2022) In vivo electrical conductivity measurement of muscle, cartilage, and peripheral nerve around knee joint using MR-electrical properties tomography. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-021-03928-y

    Article  CAS  Google Scholar 

  138. Spedden E, White JD, Naumova EN et al (2012) Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J 103:868–877. https://doi.org/10.1016/j.bpj.2012.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ren J, Jia L, Xu L et al (2009) Removal of autoantibodies by 4-mercaptoethylpyridine-based adsorbent. J Chromatogr B Anal Technol Biomed Life Sci 877:1200–1204. https://doi.org/10.1016/j.jchromb.2009.03.017

    Article  CAS  Google Scholar 

  140. Cheng A, Schwartz Z, Kahn A et al (2019) Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev 25:14–29. https://doi.org/10.1089/ten.teb.2018.0119

    Article  PubMed  PubMed Central  Google Scholar 

  141. Collins MN, Ren G, Young K et al (2021) Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater 31. https://doi.org/10.1002/adfm.202010609

  142. Okada M, Matsumoto T (2016) Fabrication methods of hydroxyapatite nanocomposites. Nano Biomed 8:15–26. https://doi.org/10.11344/nano.8.15

  143. Aras D (2015) 3.9.2015 1

    Google Scholar 

  144. Daskalakis E, Liu F, Cooper G, Weightman A (2021) Bio-materials and prototyping applications in medicine. Bio-Mater Prototyp Appl Med. https://doi.org/10.1007/978-3-030-35876-1

    Article  Google Scholar 

  145. Ravarian R, Zhong X, Barbeck M et al (2013) Nanoscale chemical interaction enhances the physical properties of bioglass composites. ACS Nano 7:8469–8483. https://doi.org/10.1021/nn402157n

    Article  CAS  PubMed  Google Scholar 

  146. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  147. Souza IEP, Cambraia LV, Gomide VS, Nunes EHM (2022) Short review on the use of graphene as a biomaterial—prospects, and challenges in Brazil. J Mater Res Technol 19:2410–2430. https://doi.org/10.1016/j.jmrt.2022.05.170

    Article  CAS  Google Scholar 

  148. Wei W, Qu X (2012) Extraordinary physical properties of functionalized graphene. Small 8:2138–2151. https://doi.org/10.1002/smll.201200104

    Article  CAS  PubMed  Google Scholar 

  149. Varghese S, Elisseeff JH (2006) Hydrogels for musculoskeletal tissue engineering. Adv Polym Sci 203:95–144. https://doi.org/10.1007/12_072

    Article  CAS  Google Scholar 

  150. Martín C, Jun G, Schurhammer R et al (2019) Enzymatic degradation of graphene quantum dots by human peroxidases. Small 15. https://doi.org/10.1002/smll.201905405

  151. Beri P, Matte BF, Fattet L et al (2018) Biomaterials to model and measure epithelial cancers. Nat Rev Mater 3:418–430. https://doi.org/10.1038/s41578-018-0051-6

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hamilton TD, Bučar DK, Baltrusaitis J et al (2011) Thixotropic hydrogel derived from a product of an organic solid-state synthesis: properties and densities of metal-organic nanoparticles. J Am Chem Soc 133:3365–3371. https://doi.org/10.1021/ja106095w

    Article  CAS  PubMed  Google Scholar 

  153. Vetrík M, Přádný M, Hrubý M, Michálek J (2011) Hydrazone-based hydrogel hydrolytically degradable in acidic environment. Polym Degrad Stab 96:756–759. https://doi.org/10.1016/j.polymdegradstab.2011.02.020

    Article  CAS  Google Scholar 

  154. Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017. https://doi.org/10.1155/2017/9831534

  155. Choudhury D, Yee M, Sheng ZLJ et al (2020) Decellularization systems and devices: state-of-the-art. Acta Biomater 115:51–59. https://doi.org/10.1016/j.actbio.2020.07.060

    Article  CAS  PubMed  Google Scholar 

  156. Yi S, Ding F, Gong L, Gu X (2017) Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Curr Stem Cell Res Ther 12:233–246. https://doi.org/10.2174/1574888x11666160905092513

    Article  CAS  PubMed  Google Scholar 

  157. Zhang X, Chen X, Hong H et al (2022) Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater 10:15–31. https://doi.org/10.1016/j.bioactmat.2021.09.014

    Article  CAS  PubMed  Google Scholar 

  158. Lima EO, Ferrasi AC, Kaasi A (2019) Decellularization of human pericardium with potential application in regenerative medicine. Arq Bras Cardiol 113:18–19. https://doi.org/10.5935/abc.20190130

  159. Kasravi M, Ahmadi A, Babajani A et al (2023) Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 27:1–24. https://doi.org/10.1186/s40824-023-00348-z

    Article  CAS  Google Scholar 

  160. Sitthisang S, Leong MF, Chian KS (2021) Perfusion decellularization of porcine esophagus: study of two processing factors affecting the folded mucosal structure of the esophageal scaffold. J Biomed Mater Res Part A 109:745–753. https://doi.org/10.1002/jbm.a.37060

    Article  CAS  Google Scholar 

  161. Daskalakis E, Liu F, Cooper G, Weightman A, Koç B, Blunn G, Bártolo PJ (2021) Bioglasses for bone tissue engineering. In: Bio-materials and prototyping applications in medicine, pp 165–193. https://doi.org/10.1007/978-3-030-35876-1_9

  162. Amani H, Kazerooni H, Hassanpoor H et al (2019) Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artif Cells Nanomed Biotechnol 47:3524–3539. https://doi.org/10.1080/21691401.2019.1639723

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Yilmazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oktay, A. et al. (2023). Tissue Regeneration Processing and Mimicking. In: Gunduz, O., Egles, C., Pérez, R.A., Ficai, D., Ustundag, C.B. (eds) Biomaterials and Tissue Engineering. Stem Cell Biology and Regenerative Medicine, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-031-35832-6_2

Download citation

Publish with us

Policies and ethics