Skip to main content

Human-Centric Machine Learning: The Role of Users in the Development of IoT Device Identification and Vulnerability Assessment

  • Conference paper
  • First Online:
HCI for Cybersecurity, Privacy and Trust (HCII 2023)

Abstract

Big data, Artificial Intelligence (AI), and Machine Learning (ML) have recently been posited as both a challenge and an opportunity for Human-Computer Interaction (HCI) research. Researchers and practitioners have also expressed concern about these systems’ potential for favouritism, lack of transparency, and impartiality. We focus on the real-world utilization of various IoT devices and systems, communications technologies, and privacy and security considerations specific to the industry. We found that while the survey responses did validate some of our initial assumptions about privacy and security needs at Canadian ports, responses to the survey questions on IoT device and system usage and privacy and security needs were diverse, indicating an initial requirement for flexibility in UX design.

A. A. Ghorbani—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, C., Lei, W., He, X., de Rijke, M., Chua, T.-S.: Advances and challenges in conversational recommender systems: a survey. AI Open 2, 100–126 (2021). https://doi.org/10.1016/j.aiopen.2021.06.002

    Article  Google Scholar 

  2. Lee, M.K., et al.: Human-centered approaches to fair and responsible AI. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (CHI EA 2020), pp. 1–8. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3334480.3375158

  3. Rockefeller, S.: A kill chain analysis of the 2013 target data breach. Committee on Commerce, Science and Transportation, Tech. Rep. (2014)

    Google Scholar 

  4. Meyer-Larsen, N., Müller, R.: Enhancing the cybersecurity of port community systems. In: Freitag, M., Kotzab, H., Pannek, J. (eds.) LDIC 2018. LNL, pp. 318–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74225-0_43

    Chapter  Google Scholar 

  5. Trimble, D., Monken, J., Sand, A.F.L.: A framework for cybersecurity assessments of critical port infrastructure. In: 2017 International Conference on Cyber Conflict (CyCon U.S.), pp. 1–7 (2017). https://doi.org/10.1109/CYCONUS.2017.8167506

  6. Moustakis, V.S., Herrmann, J.: Where do machine learning and human-computer interaction meet? Appl. Artif. Intell. 11(7–8), 595–609 (1997)

    Article  Google Scholar 

  7. Vaughan, J.W., Wallach, H.: A human-centered agenda for intelligible machine learning. Machines We Trust: Getting Along with Artificial Intelligence (2020)

    Google Scholar 

  8. Jun, W.K., Lee, M.-K., Choi, J.Y.: Impact of the smart port industry on the Korean national economy using input-output analysis. Transp. Res. A Policy Pract. 118, 480–493 (2018). https://doi.org/10.1016/j.tra.2018.10.004

    Article  Google Scholar 

  9. Yang, Y., Zhong, M., Yao, H., Yu, F., Fu, X., Postolache, O.: Internet of things for smart ports: technologies and challenges. IEEE Instrum. Meas. Mag. 21(1), 34–43 (2018). https://doi.org/10.1109/MIM.2018.8278808

    Article  Google Scholar 

  10. Philipp, R.: Digital readiness index assessment towards smart port development. Sustain. Manag. Forum | NachhaltigkeitsManagementForum 28(1), 49–60 (2020). https://doi.org/10.1007/s00550-020-00501-5

    Article  Google Scholar 

  11. Minerva, R., Biru, A., Rotondi, D.: Towards a definition of the internet of things (IoT). IEEE Internet Initiative 1(1), 1–86 (2015)

    Google Scholar 

  12. Davies, R.: The internet of things: opportunities and challenges (2015)

    Google Scholar 

  13. Noaman, M., Khan, M.S., Abrar, M.F., Ali, S., Alvi, A., Saleem, M.A.: Challenges in integration of heterogeneous internet of things. Sci. Program. 2022, 8626882 (2022). https://doi.org/10.1155/2022/8626882

    Article  Google Scholar 

  14. Dadkhah, S., Mahdikhani, H., Danso, P.K., Zohourian, A., Truong, K.A., Ghorbani, A.A.: Towards the development of a realistic multidimensional IoT profiling dataset. In: 2022 19th Annual International Conference on Privacy, Security and Trust (PST), pp. 1–11 (2022). https://doi.org/10.1109/PST55820.2022.9851966

  15. Punla, C.S., Farro, R.C.: Are we there yet?: an analysis of the competencies of BEED graduates of BPSU-DC. Int. Multidiscip. Res. J. 4(3), 50–59 (2022)

    Article  Google Scholar 

  16. Hamad, S.A., Sheng, Q.Z., Zhang, W.E., Nepal, S.: Realizing an internet of secure things: a survey on issues and enabling technologies. IEEE Commun. Surv. Tutor. 22(2), 1372–1391 (2020). https://doi.org/10.1109/COMST.2020.2976075

    Article  Google Scholar 

  17. Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: Iot security: ongoing challenges and research opportunities. In: 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, pp. 230–234 (2014). https://doi.org/10.1109/SOCA.2014.58

  18. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and other botnets. Computer 50(7), 80–84 (2017). https://doi.org/10.1109/MC.2017.201

    Article  Google Scholar 

  19. Butun, I., Österberg, P., Song, H.: Security of the internet of things: vulnerabilities, attacks, and countermeasures. IEEE Commun. Surv. Tutor. 22(1), 616–644 (2020). https://doi.org/10.1109/COMST.2019.2953364

    Article  Google Scholar 

  20. Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., Ghani, N.: Demystifying IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Commun. Surv. Tutor. 21(3), 2702–2733 (2019). https://doi.org/10.1109/COMST.2019.2910750

    Article  Google Scholar 

  21. Lipford, H.R., Tabassum, M., Bahirat, P., Yao, Y., Knijnenburg, B.P.: Privacy and the internet of things. In: Knijnenburg, B.P., Page, X., Wisniewski, P., Lipford, H.R., Proferes, N., Romano, J. (eds.) Modern Socio-Technical Perspectives on Privacy, pp, 233–264. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82786-1_11

  22. Policy Group, R., et al.: The internet of things: an introduction to privacy issues with a focus on the retail and home environments. Office of the Privacy Commissioner of Canada (2016)

    Google Scholar 

  23. Zhou, W., Jia, Y., Peng, A., Zhang, Y., Liu, P.: The effect of IoT new features on security and privacy: new threats, existing solutions, and challenges yet to be solved. IEEE Internet Things J. 6(2), 1606–1616 (2019). https://doi.org/10.1109/JIOT.2018.2847733

    Article  Google Scholar 

  24. Jia, Y., et al.: ContexIoT: towards providing contextual integrity to appified IoT platforms. In: Network and Distributed System Security Symposium (2017)

    Google Scholar 

  25. Rubio-Hernan, J., Rodolfo-Mejias, J., Garcia-Alfaro, J.: Security of cyber-physical systems. In: Cuppens-Boulahia, N., Lambrinoudakis, C., Cuppens, F., Katsikas, S. (eds.) CyberICPS 2016. LNCS, vol. 10166, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61437-3_1

    Chapter  Google Scholar 

  26. Davidson, D., Moench, B., Ristenpart, T., Jha, S.: Fie on firmware: finding vulnerabilities in embedded systems using symbolic execution. In: USENIX Security Symposium (2013)

    Google Scholar 

  27. Li, T., Liu, Y., Tian, Y., Shen, S., Mao, W.: A storage solution for massive IoT data based on NoSQL. In: 2012 IEEE International Conference on Green Computing and Communications, pp. 50–57 (2012). https://doi.org/10.1109/GreenCom.2012.18

  28. Zhao, L., Li, G., De Sutter, B., Regehr, J.: ARMor: fully verified software fault isolation. In: 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT), pp. 289–298 (2011)

    Google Scholar 

  29. McDermott, C.D., Majdani, F., Petrovski, A.V.: Botnet detection in the internet of things using deep learning approaches. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018). https://doi.org/10.1109/IJCNN.2018.8489489

  30. Mazhar, N., Salleh, R., Zeeshan, M., Hameed, M.M.: Role of device identification and manufacturer usage description in IoT security: a survey. IEEE Access 9, 41757–41786 (2021). https://doi.org/10.1109/ACCESS.2021.3065123

    Article  Google Scholar 

  31. Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N., Qin, J.: A survey on application of machine learning for Internet of Things. Int. J. Mach. Learn. Cybern. 9(8), 1399–1417 (2018). https://doi.org/10.1007/s13042-018-0834-5

    Article  Google Scholar 

  32. Charyyev, B., Gunes, M.H.: Locality-sensitive IoT network traffic fingerprinting for device identification. IEEE Internet Things J. 8(3), 1272–1281 (2021). https://doi.org/10.1109/JIOT.2020.3035087

    Article  Google Scholar 

  33. Meidan, Y., et al.: Detection of unauthorized IoT devices using machine learning techniques. arXiv preprint arXiv:1709.04647 (2017)

  34. Kotak, J., Elovici, Y.: IoT device identification using deep learning. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) CISIS 2019. AISC, vol. 1267, pp. 76–86. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57805-3_8

    Chapter  Google Scholar 

  35. Alam, S.R., Jain, S., Doriya, R.: Security threats and solutions to IoT using blockchain: a review. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 268–273 (2021). https://doi.org/10.1109/ICICCS51141.2021.9432325

  36. Lear, E., Droms, R., Romascanu, D.: Manufacturer usage description specification. RFC Editor (2019). https://doi.org/10.17487/RFC8520. https://www.rfc-editor.org/info/rfc8520

Download references

Acknowledgments

The authors graciously acknowledge the support from the Canadian Institute for Cybersecurity (CIC), the funding support from the National Research Council of Canada (NRC) through the AI for Logistics collaborative program, the NSERC Discovery Grant (no. RGPIN 231074), and Tier 1 Canada Research Chair Dr. Ghorbani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla Kyei Danso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Danso, P.K. et al. (2023). Human-Centric Machine Learning: The Role of Users in the Development of IoT Device Identification and Vulnerability Assessment. In: Moallem, A. (eds) HCI for Cybersecurity, Privacy and Trust. HCII 2023. Lecture Notes in Computer Science, vol 14045. Springer, Cham. https://doi.org/10.1007/978-3-031-35822-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35822-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35821-0

  • Online ISBN: 978-3-031-35822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics