Skip to main content

Systemic Antifungal Agents

  • Chapter
  • First Online:
Diagnosis and Treatment of Fungal Infections

Abstract

Systemic antifungal drugs used to treat serious fungal disease fall chiefly into three drug classes—azoles, echinocandins, and polyenes. A fourth class, pyrimidine analogues, consists of a single agent, flucytosine, that is only used in combination with other antifungals. Both azoles and polyenes target the cell membrane, while echinocandins specifically target cell wall synthesis. This chapter details drugs mechanisms of action, spectrum of activity, pharmacokinetics, and toxicities associated with the clinical use of currently approved systemic antifungals to treat life-threatening mycoses. In addition to drug characteristics, the detection and interpretation of antifungal resistance is discussed for common clinically relevant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the horizon: novel fungal treatments in development. Open Forum Infect Dis. 2020;7:16.

    Article  Google Scholar 

  2. Sokol-Anderson M, Sligh JE Jr, Elberg S, Brajtburg J, Kobayashi GS, Medoff G. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother. 1988;32:702–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson TM, Clay MC, Cioffi AG, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10:400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol. 1998;44:343–500.

    Article  CAS  PubMed  Google Scholar 

  5. Brüggemann RJM, Alffenaar J-WC, Blijlevens NMA, et al. Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis. 2009;48:1441–58.

    Article  PubMed  Google Scholar 

  6. Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev. 1993;6:1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kurtz MB, Heath IB, Marrinan J, Dreikorn S. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1, 3)-beta-D-glucan synthase. Antimicrob Agents Chemother. 1994;38(7):1480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaw KJ, Ibrahim AS. Fosmanogepix: a review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J Fungi. 2020;6:239.

    Article  CAS  Google Scholar 

  9. Wiederhold NP. Review of the novel investigational antifungal olorofim. J Fungi. 2020;6:122.

    Article  CAS  Google Scholar 

  10. Hargrove TY, Friggeri L, Wawrzak Z, et al. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem. 2017;292(16):6728–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–92.

    Article  PubMed  Google Scholar 

  12. Clinical LS. M27 4th edition: reference method for broth dilution antifungal susceptibility testing of yeasts. 2017.

    Google Scholar 

  13. Clinical LSI. M60 performance standards for antifungal susceptibility testing of yeasts, 2nd edition. 2020.

    Google Scholar 

  14. Berkow EL, Lockhart SR, Ostrosky-Zeichner L. Antifungal susceptibility testing: current approaches. Clin Microbiol Rev. 2020;33:e00069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. EUCAST. Antifungal susceptibility testing. https://www.eucast.org/ast_of_fungi/.

  16. Rex JH, Pfaller MA. Has antifungal susceptibility testing come of age. Clin Infect Dis. 2002;35:982–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22:291–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marichal P, Gorrens J, Coene MC, Le Jeune L, Vanden BH. Origin of differences in susceptibility of Candida krusei to azole antifungal agents. Mycoses. 1995;38:111–7.

    Article  CAS  PubMed  Google Scholar 

  19. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11:382–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alexander BD, Johnson MD, Pfeiffer CD, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56:1724–32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beyda ND, John J, Kilic A, Alam MJ, Lasco TM, Garey KW. FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia. Clin Infect Dis. 2014;59:819–25.

    Article  CAS  PubMed  Google Scholar 

  22. Tsai HF, Bard M, Izumikawa K, et al. Candida glabrata erg1 mutant with increased sensitivity to azoles and to low oxygen tension. Antimicrob Agents Chemother. 2004;48:2483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 2021;121:3390–411.

    Article  CAS  PubMed  Google Scholar 

  24. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2014;5:a019752.

    Article  PubMed  Google Scholar 

  25. Pappagianis D, Collins MS, Hector R, Remington J. Development of resistance to amphotericin B in Candida lusitaniae infecting a human. Antimicrob Agents Chemother. 1979;16:123–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Merz WG. Candida lusitaniae: frequency of recovery, colonization, infection, and amphotericin B resistance. J Clin Microbiol. 1984;20:1194–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Atkinson AJ Jr, Bennett JE. Amphotericin B pharmacokinetics in humans. Antimicrob Agents Chemother. 1978;13:271–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46:834–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christiansen KJ, Bernard EM, Gold JW, Armstrong D. Distribution and activity of amphotericin B in humans. J Infect Dis. 1985;152:1037–43.

    Article  CAS  PubMed  Google Scholar 

  30. Collette N, van der Auwera P, Lopez AP, Heymans C, Meunier F. Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B-deoxycholate. Antimicrob Agents Chemother. 1989;33:362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collette N, Van der Auwera P, Meunier F, Lambert C, Sculier JP, Coune A. Tissue distribution and bioactivity of amphotericin B administered in liposomes to cancer patients. J Antimicrob Chemother. 1991;27:535–48.

    Article  CAS  PubMed  Google Scholar 

  32. Arning M, Kliche KO, Heer-Sonderhoff AH, Wehmeier A. Infusion-related toxicity of three different amphotericin B formulations and its relation to cytokine plasma levels. Mycoses. 1995;38:459–65.

    Article  CAS  PubMed  Google Scholar 

  33. Gigliotti F, Shenep JL, Lott L, Thornton D. Induction of prostaglandin synthesis as the mechanism responsible for the chills and fever produced by infusing amphotericin B. J Infect Dis. 1987;156:784–9.

    Article  CAS  PubMed  Google Scholar 

  34. Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216:106–21.

    Article  CAS  PubMed  Google Scholar 

  35. Branch RA. Prevention of amphotericin B—induced renal impairment: a review on the use of sodium supplementation. Arch Intern Med. 1988;148:2389–94.

    Article  CAS  PubMed  Google Scholar 

  36. Sawaya BP, Weihprecht H, Campbell WR, et al. Direct vasoconstriction as a possible cause for amphotericin B-induced nephrotoxicity in rats. J Clin Invest. 1991;87:2097–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsuchen CC, Feingold DS. Selective membrane toxicity of the polyene antibiotics: studies on natural membranes. Antimicrob Agents Chemother. 1973;4:316–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bicanic T, Bottomley C, Loyse A, et al. Toxicity of amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob Agents Chemother. 2015;59:7224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barton CH, Pahl M, Vaziri ND, Cesario T. Renal magnesium wasting associated with amphotericin B therapy. Am J Med. 1984;77:471–4.

    Article  CAS  PubMed  Google Scholar 

  40. Allen D, Wilson D, Drew R, Perfect J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti-Infect Ther. 2015;13:787–98.

    Article  CAS  PubMed  Google Scholar 

  41. Mølgaard-Nielsen D, Pasternak B, Hviid A. Use of oral fluconazole during pregnancy and the risk of birth defects. N Engl J Med. 2013;369:830–9.

    Article  PubMed  Google Scholar 

  42. Lawrence DS, Youssouf N, Molloy SF, et al. AMBIsome Therapy Induction OptimisatioN (AMBITION): high dose ambisome for cryptococcal meningitis induction therapy in sub-Saharan Africa: study protocol for a phase 3 randomised controlled non-inferiority trial. Trials. 2018;19:649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hope W, Stone NRH, Johnson A, et al. Fluconazole monotherapy is a suboptimal option for initial treatment of cryptococcal meningitis because of emergence of resistance. MBio. 2019;10:e02575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Belga S, MacDonald C, Kabbani D, Roelofs K, Hussain MW, Cervera C. When medicine transforms art. Transpl Infect Dis. 2019;21:e13130.

    Article  PubMed  Google Scholar 

  45. Clancy CJ, Nguyen MH. Long-term voriconazole and skin cancer: is there cause for concern. Curr Infect Dis Rep. 2011;13:536–43.

    Article  PubMed  Google Scholar 

  46. Epaulard O, Leccia M-T, Blanche S, et al. Phototoxicity and photocarcinogenesis associated with voriconazole. Med Mal Infect. 2011;41:639–45.

    Article  CAS  PubMed  Google Scholar 

  47. Epaulard O, Villier C, Ravaud P, et al. A multistep voriconazole-related phototoxic pathway may lead to skin carcinoma: results from a French nationwide study. Clin Infect Dis. 2013;57:182–8.

    Article  Google Scholar 

  48. Ona K, Oh DH. Voriconazole N-oxide and its ultraviolet B photoproduct sensitize keratinocytes to ultraviolet A. Br J Dermatol. 2015;173:751–9.

    Article  CAS  PubMed  Google Scholar 

  49. Bucknor MD, Gross AJ, Link TM. Voriconazole-induced periostitis in two post-transplant patients. J Radiol Case Rep. 2013;7:10–7.

    PubMed  PubMed Central  Google Scholar 

  50. Gerber B, Guggenberger R, Fasler D, et al. Reversible skeletal disease and high fluoride serum levels in hematologic patients receiving voriconazole. Blood. 2012;120:2390–4.

    Article  CAS  PubMed  Google Scholar 

  51. Wermers RA, Cooper K, Razonable RR, et al. Fluoride excess and periostitis in transplant patients receiving long-term voriconazole therapy. Clin Infect Dis. 2011;52:604–11.

    Article  CAS  PubMed  Google Scholar 

  52. Malani AN, Kerr L, Obear J, Singal B, Kauffman CA. Alopecia and nail changes associated with voriconazole therapy. Clin Infect Dis. 2014;59(3):61–5.

    Article  Google Scholar 

  53. Aksoy F, Akdogan E, Aydin K, et al. Voriconazole-induced neuropathy. Chemotherapy. 2008;54:224–7.

    Article  CAS  PubMed  Google Scholar 

  54. Baxter CG, Marshall A, Roberts M, Felton TW, Denning DW. Peripheral neuropathy in patients on long-term triazole antifungal therapy. J Antimicrob Chemother. 2011;66:2136–9.

    Article  CAS  PubMed  Google Scholar 

  55. Cornely OA, Duarte RF, Haider S, et al. Phase 3 pharmacokinetics and safety study of a posaconazole tablet formulation in patients at risk for invasive fungal disease. J Antimicrob Chemother. 2015;71:718–26.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cornely OA, Robertson MN, Haider S, et al. Pharmacokinetics and safety results from the Phase 3 randomized, open-label, study of intravenous posaconazole in patients at risk of invasive fungal disease. J Antimicrob Chemother. 2017;72:3406–13.

    Article  CAS  PubMed  Google Scholar 

  57. Maertens JA, Raad II, Marr KA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet. 2016;387:760–9.

    Article  CAS  PubMed  Google Scholar 

  58. Cornely OA, Alastruey-Izquierdo A, Arenz D, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019;19:e405–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dodds-Ashley E. Management of drug and food interactions with azole antifungal agents in transplant recipients. Pharmacotherapy. 2010;30:842–54.

    Article  CAS  PubMed  Google Scholar 

  60. Marr KA, Leisenring W, Crippa F, et al. Cyclophosphamide metabolism is affected by azole antifungals. Blood. 2004;103:1557–9.

    Article  CAS  PubMed  Google Scholar 

  61. Vallabhaneni S, Cleveland AA, Farley MM, et al. Epidemiology and risk factors for echinocandin nonsusceptible candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008–2014. Open Forum Infect Dis. 2015;2:163.

    Article  Google Scholar 

  62. Martial LC, Brüggemann RJM, Schouten JA, et al. Dose reduction of caspofungin in intensive care unit patients with child pugh B will result in suboptimal exposure. Clin Pharmacokinet. 2015;55(6):723–33.

    Article  PubMed Central  Google Scholar 

  63. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69:1162–76.

    Article  CAS  PubMed  Google Scholar 

  64. Day JN, Chau TTH, Wolbers M, et al. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013;368:1291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marr KA, Schlamm HT, Herbrecht R, et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med. 2015;162:81–9.

    Article  PubMed  Google Scholar 

  66. Park WB, Kim N-H, Kim K-H, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55:1080–7.

    Article  CAS  PubMed  Google Scholar 

  67. Stott KE, Hope WW. Therapeutic drug monitoring for invasive mould infections and disease: pharmacokinetic and pharmacodynamic considerations. J Antimicrob Chemother. 2017;72:i12–8.

    Article  CAS  PubMed  Google Scholar 

  68. Lestner JM, Roberts SA, Moore CB, Howard SJ, Denning DW, Hope WW. Toxicodynamics of itraconazole: implications for therapeutic drug monitoring. Clin Infect Dis. 2009;49:928–30.

    Article  CAS  PubMed  Google Scholar 

  69. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–11.

    Article  CAS  PubMed  Google Scholar 

  70. Heo ST, Aitken SL, Tverdek FP, Kontoyiannis DP. How common is subsequent central nervous system toxicity in asymptomatic patients with haematologic malignancy and supratherapeutic voriconazole serum levels. Clin Microbiol Infect. 2017;23:387–90.

    Article  CAS  PubMed  Google Scholar 

  71. Furfaro E, Signori A, Di Grazia C, et al. Serial monitoring of isavuconazole blood levels during prolonged antifungal therapy. J Antimicrob Chemother. 2019;74:2341–6.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Berkow EL, Lockhart SR, Ostrosky-Zeichner L. Antifungal susceptibility testing: current approaches. Clin Microbiol Rev. 2020;33:e00069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–92.

    Article  PubMed  Google Scholar 

  • Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the horizon: novel fungal treatments in development. Open Forum Infect Dis. 2020;7:16.

    Article  Google Scholar 

  • Stott KE, Hope WW. Therapeutic drug monitoring for invasive mould infections and disease: pharmacokinetic and pharmacodynamic considerations. J Antimicrob Chemother. 2017;72:i12–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell E. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewis, R.E., Wiederhold, N.P. (2023). Systemic Antifungal Agents. In: Hospenthal, D.R., Rinaldi, M.G., Walsh, T.J. (eds) Diagnosis and Treatment of Fungal Infections. Springer, Cham. https://doi.org/10.1007/978-3-031-35803-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35803-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35802-9

  • Online ISBN: 978-3-031-35803-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics