Skip to main content

Nudging the Safe Zone: Design and Assessment of HMI Strategies Based on Intelligent Driver State Monitoring Systems

  • Conference paper
  • First Online:
HCI in Mobility, Transport, and Automotive Systems (HCII 2023)

Abstract

Dangerous driver behavior can arise from different factors: distraction, sleepiness, and emotional states like anger, anxiety, boredom, or happiness. The Driver Monitoring Systems (DMS) collect data on driver behavior and emotional states, which can help design safer driving systems. Human-machine interfaces (HMIs) can leverage the detection of altered states and foster a safe driving style. To this end, we presents two visual HMI prototypes designed to assist drivers in countering distraction conditions and emotional states of too high or too low activation. The HMI prototypes combine voice assistance, ambient lighting, and visual displays. The HMI visual strategies are designed to indicate the dangerous conditions to the driver and to provide the driver with additional information about the type of dangerous state detected. This work provides details on the design and of the methodology applied to evaluate the two HMI prototypes and presents the results of a user assessment with 26 participants, showing insights into user attitudes and helping to identify future design directions.

This study is part of the NextPerception project that has received funding from the European Union Horizon 2020, \(ECSEL-2019-2-RIA\) Joint Undertaking (Grant Agreement Number 876487). The authors would like to thank Luca Tramarin for his help in the implementation of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.nextperception.eu.

  2. 2.

    The level of distraction is calculated as the maximum between the percentage of visual distraction events detected in the observation window and the percentage of cognitive distraction events detected in the observation windows.

  3. 3.

    The level of arousal is calculated as the average value of the N numerical estimations of the arousal performed by the arousal classifier in the observation window.

References

  1. NHTSA: 2016 fatal motor vehicle crashes: Overview. traffic safety facts: research note. Report No. DOT HS 812 456 (2017)

    Google Scholar 

  2. Braun, M., Schubert, J., Pfleging, B., Alt, F.: Improving driver emotions with affective strategies. Multimodal Technol. Interac. 3(1), 21 (2019)

    Article  Google Scholar 

  3. Braun, M., Weber, F., Alt, F.: Affective automotive user interfaces-reviewing the state of driver affect research and emotion regulation in the car. ACM Comput. Surv. (CSUR) 54(7), 1–26 (2021)

    Article  Google Scholar 

  4. Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability evaluation in industry 189(194), 4–7 (1996)

    Google Scholar 

  5. Cai, H., Lin, Y.: Modeling of operators’ emotion and task performance in a virtual driving environment. Int. J. Hum Comput Stud. 69(9), 571–586 (2011)

    Article  Google Scholar 

  6. Caraban, A., Karapanos, E., Gonçalves, D., Campos, P.: 23 ways to nudge: a review of technology-mediated nudging in human-computer interaction. In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp. 1–15 (2019)

    Google Scholar 

  7. Davoli, L., et al.: On driver behavior recognition for increased safety: a roadmap. Safety 6(4), 55 (2020)

    Article  Google Scholar 

  8. De Simone, F., Presta, R.: A song can do that: an emotion induction study for the development of intelligent emotion-aware systems. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol. 543, pp. 363–377. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16078-3_24

  9. Di Lena, P., Mirri, S., Prandi, C., Salomoni, P., Delnevo, G.: In-vehicle human machine interface: an approach to enhance eco-driving behaviors. In: Proceedings of the 2017 ACM Workshop on Interacting With Smart Objects, pp. 7–12 (2017)

    Google Scholar 

  10. François, M., Osiurak, F., Fort, A., Crave, P., Navarro, J.: Automotive HMI design and participatory user involvement: review and perspectives. Ergonomics 60(4), 541–552 (2017)

    Article  Google Scholar 

  11. Franke, T., Attig, C., Wessel, D.: A personal resource for technology interaction: development and validation of the affinity for technology interaction (ati) scale. Int. J. Human-Comput. Interac. 35(6), 456–467 (2019)

    Article  Google Scholar 

  12. Guido, G., Peluso, A.M., Capestro, M., Miglietta, M.: An Italian version of the 10-item big five inventory: An application to hedonic and utilitarian shopping values. Personality Individ. Differ. 76, 135–140 (2015)

    Article  Google Scholar 

  13. Hassib, M., Braun, M., Pfleging, B., Alt, F.: Detecting and influencing driver emotions using psycho-physiological sensors and ambient light. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds.) INTERACT 2019. LNCS, vol. 11746, pp. 721–742. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29381-9_43

    Chapter  Google Scholar 

  14. Horberry, T., et al.: Human-centered design for an in-vehicle truck driver fatigue and distraction warning system. IEEE Trans. Intell. Transp. Syst. PP, 1–10 (2021)

    Google Scholar 

  15. Jeon, M.: Emotions and affect in human factors and human-computer interaction: taxonomy, theories, approaches, and methods. Emotions and affect in human factors and human-computer interaction, pp. 3–26 (2017)

    Google Scholar 

  16. Kaber, D.B., Liang, Y., Zhang, Y., Rogers, M.L., Gangakhedkar, S.: Driver performance effects of simultaneous visual and cognitive distraction and adaptation behavior. Transport. Res. F: Traffic Psychol. Behav. 15(5), 491–501 (2012)

    Article  Google Scholar 

  17. Koesdwiady, A., Soua, R., Karray, F., Kamel, M.S.: Recent trends in driver safety monitoring systems: state of the art and challenges. IEEE Trans. Veh. Technol. 66(6), 4550–4563 (2016)

    Article  Google Scholar 

  18. Koo, J., Kwac, J., Ju, W., Steinert, M., Leifer, L., Nass, C.: Why did my car just do that? explaining semi-autonomous driving actions to improve driver understanding, trust, and performance. Int. J. Inter. Design Manufact. (IJIDeM) 9, 269–275 (2015)

    Google Scholar 

  19. Manstetten, D., et al.: The evolution of driver monitoring systems: a shortened story on past, current and future approaches how cars acquire knowledge about the driver’s state. In: 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 1–6 (2020)

    Google Scholar 

  20. Andruccioli, M., Mengozzi, M., Presta, R., Mirri, S., Girau, R.: Arousal effects on fitness-to-drive assessment: algorithms and experiments. In: 2023 IEEE 20th Annual Consumer Communications & Networking Conference (CCNC). IEEE (2023)

    Google Scholar 

  21. Meck, A.M., Precht, L.: How to design the perfect prompt: a linguistic approach to prompt design in automotive voice assistants-an exploratory study. In: 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 237–246 (2021)

    Google Scholar 

  22. Neta, M., Cantelon, J., Haga, Z., Mahoney, C.R., Taylor, H.A., Davis, F.C.: The impact of uncertain threat on affective bias: Individual differences in response to ambiguity. Emotion 17(8), 1137 (2017)

    Article  Google Scholar 

  23. Oehl, M., Lienhop, M., Ihme, K.: Mitigating frustration in the car: which emotion regulation strategies might work for different age groups? In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1421, pp. 273–280. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78645-8_34

    Chapter  Google Scholar 

  24. Pinder, C., Vermeulen, J., Cowan, B.R., Beale, R.: Digital behaviour change interventions to break and form habits. ACM Trans. Comput.-Human Inter. (TOCHI) 25(3), 1–66 (2018)

    Article  Google Scholar 

  25. Presta, R., Chiesa, S., Tancredi, C.: Driver monitoring systems to increase road safety. Human Body Interaction, p. 247 (2022)

    Google Scholar 

  26. Presta, R., De Simone, F., Mancuso, L., Chiesa, S., Montanari, R.: Would i consent if it monitors me better? a technology acceptance comparison of bci-based and unobtrusive driver monitoring systems. In: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 545–550. IEEE (2022)

    Google Scholar 

  27. Rahman, M.M., Strawderman, L., Lesch, M.F., Horrey, W.J., Babski-Reeves, K., Garrison, T.: Modelling driver acceptance of driver support systems. Accident Anal. Preven.ion 121, 134–147 (2018)

    Article  Google Scholar 

  28. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  29. Schrepp, M., Hinderks, A., Thomaschewski, J.: Design and evaluation of a short version of the user experience questionnaire (ueq-s). Int. J. Inter. Multimedia Artif. Intell. 4(6), 103–108 (2017)

    Google Scholar 

  30. Swan, M.: Connected car: quantified self becomes quantified car. J. Sens. Actuator Netw. 4(1), 2–29 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wadley, G., Smith, W., Koval, P., Gross, J.J.: Digital emotion regulation. Curr. Dir. Psychol. Sci. 29(4), 412–418 (2020)

    Article  Google Scholar 

  32. Zepf, S., Hernandez, J., Schmitt, A., Minker, W., Picard, R.W.: Driver emotion recognition for intelligent vehicles: a survey. ACM Comput. Surv. (CSUR) 53(3), 1–30 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Presta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Presta, R., De Simone, F., Tancredi, C., Chiesa, S. (2023). Nudging the Safe Zone: Design and Assessment of HMI Strategies Based on Intelligent Driver State Monitoring Systems. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2023. Lecture Notes in Computer Science, vol 14048. Springer, Cham. https://doi.org/10.1007/978-3-031-35678-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35678-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35677-3

  • Online ISBN: 978-3-031-35678-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics