Skip to main content

Black Pepper

  • Chapter
  • First Online:
Essentials of Medicinal and Aromatic Crops

Abstract

Spices are significant part of many meals in the world due to their aroma, taste and color for many decades. Black pepper (P. nigrum) is known as the “King of spices” owing to its antimicrobial, anti-pyretic, anti-cancerous, antioxidative, anti-inflammatory, neuroprotective, gastroprotective, cardio protective, anti-convulsive and hepato-protective properties. Black pepper is one of the top-notch spices & hold enormous trading shares in the international market due to its high demand in different regions of the world. Black pepper and its derivatives such as piperine, essential oil, methanol extract, acetic acid extract, chloroform and ether extract demonstrated aforementioned properties of P. nigrum. Black pepper along with its derivatives have been documented to fight against different malignancies such as colon, prostate, breast and fibrosarcoma cancer. Black pepper has been found to demonstrate potential scavenging action against reactive oxygen species (ROS). Ethanolic and hexane extracts of black pepper has been documented to show substantial pain alleviating actions, thus acting as strong analgesic candidate. Bioactive components of black peppers are extensively used in improving cognitive functioning as well as regulating the motor coordination of brain. Essential oils of black pepper are used as preservative agents for different food packaging as well as used in perfumes due to their aroma. The cultivation of black pepper is increasing day by day despite the several challenges. This chapter will discuss all the possible aspects of black pepper and its pharmacological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagalingam, M., & Arumugam, G. (2011). Antimicrobial activity of some Indian folklore medicinal plants against drug resistant bacteria and fungi isolated from clinical samples. Asian Journal of Plant Science & Research.

    Google Scholar 

  2. Scott, I. M., Helson, B. V., Strunz, G. M., Finlay, H., Sánchez-Vindas, P. E., Poveda, L., et al. (2007). Efficacy of Piper nigrum (Piperaceae) extract for control of insect defoliators of forest and ornamental trees. The Canadian Entomologist, 139(4), 513–522.

    Article  Google Scholar 

  3. Durant-Archibold, A. A., Santana, A. I., & Gupta, M. P. (2018). Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review. Journal of Ethnopharmacology, 217, 63–82.

    Article  PubMed  Google Scholar 

  4. Srinivasan, K. (2007). Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Critical Reviews in Food Science and Nutrition, 47(8), 735–748.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar, S., Kamboj, J., & Sharma, S. (2011). Overview for various aspects of the health benefits of Piper longum linn. fruit. Journal of Acupuncture and Meridian Studies, 4(2), 134–140.

    Article  PubMed  Google Scholar 

  6. Bui, T. T., Piao, C. H., Song, C. H., Shin, H. S., Shon, D. H., & Chai, O. H. (2017). Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cells activation. Cellular Immunology, 322, 64–73.

    Article  CAS  PubMed  Google Scholar 

  7. Ravindran, P. N., Divakaran, M., & Pillai, G. S. (2012). Handbook of herbs and spice, 1, 86–115.

    Article  Google Scholar 

  8. Hao, C. Y., Rui, F. A. N., Ribeiro, M. C., Tan, L. H., Wu, H. S., Yang, J. F., & Huan, Y. (2012). Modeling the potential geographic distribution of black pepper (Piper nigrum) in Asia using GIS tools. Journal of Integrative Agriculture, 11(4), 593–599.

    Article  Google Scholar 

  9. Hussain, M. S., Hegde, L., Sharatbabu, A. G., Hegde, N. K., Shantappa, T., Gurumurthy, S. B., et al. (2017). Evaluation of local black pepper (Piper nigrum L.) genotypes for yield and quality under arecanut based cropping system. International Journal of Pure & Applied Bioscience, 5(5), 1396–1400.

    Article  Google Scholar 

  10. Thapa, A., Datta, S., Dey, A. N., & Baisare, P. (2017). Advance propagation techniques in important spice crops. International Journal of Current Microbiology and Applied Sciences, 6(9), 1979–1985.

    Article  Google Scholar 

  11. Shango, A. J., Majubwa, R. O., & Maerere, A. P. (2021). Morphological characterization and yield of pepper (Piper nigrum L.) types grown in Morogoro District, Tanzania. CABI Agriculture and Bioscience, 2, 1–13.

    Article  Google Scholar 

  12. Nwofia, G. E., Kelechukwu, C., & Nwofia, B. K. (2013). Nutritional composition of some Piper nigrum (L.) accessions from Nigeria. International Journal of Medicinal and Aromatic Plants, 3(2), 2249–4340.

    Google Scholar 

  13. Vellaichamy, L., Balakrishnan, S., Panjamurthy, K., Manoharan, S., & Alias, L. M. (2009). Chemopreventive potential of piperine in 7, 12-dimethylbenz [a] anthracene-induced skin carcinogenesis in Swiss albino mice. Environmental Toxicology and Pharmacology, 28(1), 11–18.

    Article  CAS  PubMed  Google Scholar 

  14. Okumura, Y., Narukawa, M., & Watanabe, T. (2010). Adiposity suppression effect in mice due to black pepper and its main pungent component, piperine. Bioscience, Biotechnology, and Biochemistry, 74(8), 1545–1549.

    Article  CAS  PubMed  Google Scholar 

  15. Bang, J. S., Oh, D. H., Choi, H. M., Sur, B. J., Lim, S. J., Kim, J. Y., et al. (2009). Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Research & Therapy, 11(2), 1–9.

    Article  Google Scholar 

  16. Zachariah, T. J., Safeer, A. L., Jayarajan, K., Leela, N. K., Vipin, T. M., Saji, K. V., et al. (2010). Correlation of metabolites in the leaf and berries of selected black pepper varieties. Scientia Horticulturae, 123(3), 418–422.

    Article  CAS  Google Scholar 

  17. Dorman, H. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316.

    Article  CAS  PubMed  Google Scholar 

  18. George, K. M., Joy, M. T., Chandran, C. V., & Verghese, J. (1988). The angular rotation of black pepper oil. Indian Perfumer, 32(1), 51–54.

    Google Scholar 

  19. Shankaracharya, N. B., Jaganmohan Rao, L., Pura Naik, J., & Nagalakshmi, S. (1997). Characterisation of chemical constituents of Indian long pepper (Piper longum L.). Journal of Food Science and Technology, 34(1), 73–75.

    CAS  Google Scholar 

  20. Tipsrisukond, N., Fernando, L. N., & Clarke, A. D. (1998). Antioxidant effects of essential oil and oleoresin of black pepper from supercritical carbon dioxide extractions in ground pork. Journal of Agricultural and Food Chemistry, 46(10), 4329–4333.

    Article  CAS  Google Scholar 

  21. Ferreira, S. R., & Meireles, M. A. A. (2002). Modeling the supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil. Journal of Food Engineering, 54(4), 263–269.

    Article  Google Scholar 

  22. Guenther, E. (1952). Essential oils of the plant family Piperaceae. The Essential Oils, 5 (pp. 135–161). Van Nostrand.

    Google Scholar 

  23. Govindarajan, V. S., & Stahl, W. H. (1977). Pepper—chemistry, technology, and quality evaluation. Critical Reviews in Food Science & Nutrition, 9(2), 115–225.

    Article  CAS  Google Scholar 

  24. Parmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha, A., et al. (1997). Phytochemistry of the genus Piper. Phytochemistry, 46(4), 597–673.

    Article  CAS  Google Scholar 

  25. Menon, A. N. (2000). The aromatic compounds of pepper. Journal of Medicinal and Aromatic Plant Sciences, 22(2–3), 185–190.

    CAS  Google Scholar 

  26. Menon, A. N., & Padmakumari, K. P. (2005). Studies on essential oil composition of cultivars of black pepper (Piper nigrum L.)—V. Journal of Essential Oil Research, 17(2), 153–155.

    Article  Google Scholar 

  27. Sasidharan, I., & Menon, A. N. (2010). Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). International Journal of Current Pharmaceutical Research, 2(4), 40–43.

    CAS  Google Scholar 

  28. Georgiev, E., & Stoyanova, A. (2005). Handbook for the specialist in aromatic industry. Plovdiv, BNAEOPC. Search in.

    Google Scholar 

  29. Al Juhaimi, F. Y., & Ghafoor, K. (2013). Extraction optimization and in vitro antioxidant properties of phenolic compounds from Cumin (Cuminum cyminum l.) seed. International Food Research Journal, 20(4).

    Google Scholar 

  30. Iacobellis, N. S., Lo Cantore, P., Capasso, F., & Senatore, F. (2005). Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. Journal of Agricultural and Food Chemistry, 53(1), 57–61.

    Article  CAS  PubMed  Google Scholar 

  31. Moghaddam, M., Miran, S. N. K., Pirbalouti, A. G., Mehdizadeh, L., & Ghaderi, Y. (2015). Variation in essential oil composition and antioxidant activity of cumin (Cuminum cyminum L.) fruits during stages of maturity. Industrial Crops and Products, 70, 163–169.

    Article  CAS  Google Scholar 

  32. Mostafa, D. M., Kassem, A. A., Asfour, M. H., Al Okbi, S. Y., Mohamed, D. A., & Hamed, T. E. S. (2015). Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: in-vitro and in-vivo evaluation. Journal of Molecular Liquids, 212, 6–15.

    Article  CAS  Google Scholar 

  33. Jeleń, H. H., & Gracka, A. (2015). Analysis of black pepper volatiles by solid phase microextraction–gas chromatography: A comparison of terpenes profiles with hydrodistillation. Journal of Chromatography A, 1418, 200–209.

    Article  PubMed  Google Scholar 

  34. Clery, R. A., Hammond, C. J., & Wright, A. C. (2006). Nitrogen-containing compounds in black pepper oil (Piper nigrum L.). Journal of Essential Oil Research, 18(1), 1–3.

    Article  CAS  Google Scholar 

  35. Jagella, T., & Grosch, W. (1999). Flavour and off-flavour compounds of black and white pepper (Piper nigrum L.) I. Evaluation of potent odorants of black pepper by dilution and concentration techniques: I. Evaluation of potent odorants of black pepper by dilution and concentration techniques. European Food Research and Technology, 209, 16–21.

    Article  CAS  Google Scholar 

  36. Megir, G., & Paulus, A. D. (2011). Pepper production technology in Malaysia. In L. K. Fong & S. S. Liang (Eds.), Malaysian pepper board. Sarawak.

    Google Scholar 

  37. Sen, S., Gode, A., Ramanujam, S., Ravikanth, G., & Aravind, N. A. (2016). Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models. Journal of Plant Research, 129, 1033–1040.

    Article  PubMed  Google Scholar 

  38. Kumar, B. M. (2008). Krishi Gita (Agricultural Verses)[A treatise on indigenous farming practices with special reference to Malayalam desam (Kerala)] (p. 111p). Asian Agri-History Foundation (AAHF), Secunderabad, Andhra Pradesh.

    Google Scholar 

  39. Ravindran, P. (2000). Other economically important species of Piper. In P. N. Ravindran (Ed.), Black Pepper–Piper nigrum (pp. 497–509). Medicinal and Aromatic Plants–Industrial Profiles.

    Chapter  Google Scholar 

  40. Ravindran, P. N., Babu, K. N., Sasikumar, B., & Krishnamurthy, K. S. (2000). Botany and crop improvement of black pepper. In Black pepper (pp. 43–164). CRC Press.

    Chapter  Google Scholar 

  41. Gopalam, A., & Ravindran, P. N. (1987). Indexing of quality parameters in black pepper cultivars. Indian Spice, 22, 8–11.

    Google Scholar 

  42. Meilawati, N. L. W., Susilowati, M., & Bermawie, N. (2020). Phyllogenetic of nine superior black pepper (Piper nigrum L.) varieties based on morphological and molecular markers. In IOP Conference Series: Earth and Environmental Science (Vol. 418, No. 1, p. 012056). IOP Publishing.

    Google Scholar 

  43. Pannaga, T. S., Narayanpur, V. B., Hiremath, J. S., Hegde, L., Gandolkar, K., Rathod, V., & Chandrakala, R. (2021). Evaluation of black pepper (Piper nigrum L.) cultivars for yield and quality parameters under hill zone of Karnataka. Journal of Pharmacognosy and Phytochemistry, 10(1), 1497–1500.

    CAS  Google Scholar 

  44. Kandiannan, K., Krishnamurthy, K. S., Ankegowda, S. J., & Anandaraj, M. (2014). Climate change and black pepper production.

    Google Scholar 

  45. Zu, C., Li, Z., Yang, J., Yu, H., Sun, Y., Tang, H., … & Wu, H. (2014). Acid soil is associated with reduced yield, root growth and nutrient uptake in black pepper (Piper nigrum L.). Agricultural Sciences, 2014.

    Google Scholar 

  46. Yap, C. (2012). Determination of nutrient uptake characteristic of black pepper (Piper nigrum L.). Journal of Agricultural Science and Technology, B, 2(10), 1091–1099.

    Google Scholar 

  47. Zakaria, Z., Gairola, S., & Shariff, N. M. (2010). Effective microorganisms (EM) technology for water quality restoration and potential for sustainable water resources and management.

    Google Scholar 

  48. Talaat, N. B., Ghoniem, A. E., Abdelhamid, M. T., & Shawky, B. T. (2015). Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regulation, 75, 281–295.

    Article  CAS  Google Scholar 

  49. Lee, C. T., Ismail, M. N., Razali, F., Muhamad, I. I., Sarmidi, M. R., & Khamis, A. K. (2008). Application of effective microorganisms on soil and maize. Journal of Chemical and Natural Resources Engineering, Special Edition, 1–13.

    Google Scholar 

  50. Keymer, D. P., & Lankau, R. A. (2017). Disruption of plant–soil–microbial relationships influences plant growth. Journal of Ecology, 105(3), 816–827.

    Article  CAS  Google Scholar 

  51. Park, H., & DuPonte, M. W. (2008). How to cultivate Indigenous Microorganisms. Biotechnology, 9, 1–7.

    Google Scholar 

  52. Van Bruggen, A. H. C., & Finckh, M. R. (2016). Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, 54, 25–54.

    Article  PubMed  Google Scholar 

  53. Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310.

    Article  PubMed  Google Scholar 

  54. Sandford, H. (1952). Pepper in Sarawak. Malaysian Agricultural Journal, 35, 208–224.

    Google Scholar 

  55. Risfaheri, & Nurdjannah, N. (2000). Pepper processing – The Indonesian Scenario. In P. N. Ravindran (Ed.), Black pepper (pp. 355–366). Harwood Academic.

    Google Scholar 

  56. Kozukue, N., Park, M. S., Choi, S. H., Lee, S. U., Ohnishi-Kameyama, M., Levin, C. E., & Friedman, M. (2007). Kinetics of Light-Induced cis− trans isomerization of four piperines and their levels in ground black peppers as determined by HPLC and LC/MS. Journal of Agricultural and Food Chemistry, 55(17), 7131–7139.

    Article  CAS  PubMed  Google Scholar 

  57. Suresh, D., Manjunatha, H., & Srinivasan, K. (2007). Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). Journal of Food Composition and Analysis, 20(3–4), 346–351.

    Article  CAS  Google Scholar 

  58. Nisha, P., Singhal, R. S., & Pandit, A. B. (2009). The degradation kinetics of flavor in black pepper (Piper nigrum L.). Journal of Food Engineering, 92(1), 44–49.

    Article  CAS  Google Scholar 

  59. De Alwis, H. M. G., & Grandison, A. S. (1992). Viscometry as a detection method for electron beam irradiation of black pepper. Food Control, 3(4), 205–208.

    Article  Google Scholar 

  60. Suhaj, M., Rácová, J., Polovka, M., & Brezová, V. (2006). Effect of γ-irradiation on antioxidant activity of black pepper (Piper nigrum L.). Food Chemistry, 97(4), 696–704.

    Article  CAS  Google Scholar 

  61. Sarma, Y. R., Premkumar, T., Ramana, K. V., Ramachandran, N., & Anandaraj, M. (1988). Diseases and pest management in pepper nurseries. Indian Cocoa, Arecanut & Spices Journal, 11, 123–127.

    Google Scholar 

  62. Sarma, Y. R., Ramachandran, N., & Anandaraj, M. (1988). Integrated disease management of ‘quick wilt’ (foot rot) of black pepper caused by Phytophthora palmivora MF4. Coffee Res, 68–72.

    Google Scholar 

  63. Anandaraj, M., Ramachandran, N., & Sarma, Y. R. (2017). Epidemiology of foot rot disease of black pepper (Piper nigrum L.) in India.

    Google Scholar 

  64. Mammootty, K. P., & Pillay, V. S. (1981). Studies on the chemical control of rotting disease of pepper cuttings in nursery. Indian Phytopathology, 34(2), 240.

    Google Scholar 

  65. Mammootty, K. P., Cheeran, A., & Peethambaran, C. K. (1980). Rhizoctonia stem rot of pepper (Piper nigrum L.) rooted cuttings. Indian Arecanut, Spices and Cocoa Journal, 4(2), 31.

    Google Scholar 

  66. Sarma, Y. R., Solomon, J. J., Ramachandran, N., & Anandaraj, M. (1988). Phyllody disease of black pepper (Piper nigrum L.). Journal of coffee research, 18, 61–67.

    Google Scholar 

  67. Gülçin, İ. (2005). The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. International Journal of Food Sciences and Nutrition, 57(7), 491–499.

    Google Scholar 

  68. Saxena, R., Venkaiah, K., Anitha, P., Venu, L., & Raghunath, M. (2007). Antioxidant activity of commonly consumed plant foods of India: contribution of their phenolic content. International Journal of Food Sciences and Nutrition, 58(4), 250–260.

    Article  CAS  PubMed  Google Scholar 

  69. Sunila, E. S., & Kuttan, G. (2004). Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. Journal of Ethnopharmacology, 90(2–3), 339–346.

    Article  CAS  PubMed  Google Scholar 

  70. Pradeep, C. R., & Kuttan, G. (2002). Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clinical & Experimental Metastasis, 19, 703–708.

    Article  CAS  Google Scholar 

  71. Bajad, S., Bedi, K. L., Singla, A. K., & Johri, R. K. (2001). Antidiarrhoeal activity of piperine in mice. Planta Medica, 67(03), 284–287.

    Article  CAS  PubMed  Google Scholar 

  72. Zachariah, T. J., & Parthasarathy, V. A. (2008). Chemistry of spices: Black pepper.

    Google Scholar 

  73. Spaulding, C. N., Klein, R. D., Schreiber, H. L., IV, Janetka, J. W., & Hultgren, S. J. (2018). Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms and Microbiomes, 4(1), 4.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Khan, M., & Siddiqui, M. (2007). Antimicrobial activity of Piper fruits.

    Google Scholar 

  75. Karsha, P. V., & Lakshmi, O. B. (2010). Antibacterial activity of black pepper (Piper nigrum Linn.) with special reference to its mode of action on bacteria.

    Google Scholar 

  76. Park, I. K., Kim, J., Lee, Y. S., & Shin, S. C. (2008). In vivo fungicidal activity of medicinal plant extracts against six phytopathogenic fungi. International Journal of Pest Management, 54(1), 63–68.

    Article  Google Scholar 

  77. Akthar, M. S., Birhanu, G., & Demisse, S. (2014). Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens. Asian Pacific Journal of Tropical Disease, 4, S911–S919.

    Article  Google Scholar 

  78. Shanmugapriya, K. S. P. S., Saravana, P. S., Payal, H., Mohammed, S., & Williams, B. (2012). Antioxidant potential of pepper (Piper nigrum Linn.) leaves and its antimicrobial potential against some pathogenic microbes.

    Google Scholar 

  79. Kapoor, I. P. S., Singh, B., Singh, G., De Heluani, C. S., De Lampasona, M. P., & Catalan, C. A. (2009). Chemistry and in vitro antioxidant activity of volatile oil and oleoresins of black pepper (Piper nigrum). Journal of Agricultural and Food Chemistry, 57(12), 5358–5364.

    Google Scholar 

  80. Vijayakumar, R. S., Surya, D., & Nalini, N. (2004). Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Report, 9(2), 105–110.

    Article  CAS  PubMed  Google Scholar 

  81. Abdelnour, S., Alagawany, M., Abd El-Hack, M. E., Sheiha, A. M., Saadeldin, I. M., & Swelum, A. A. (2018). Growth, carcass traits, blood hematology, serum metabolites, immunity, and oxidative indices of growing rabbits fed diets supplemented with red or black pepper oils. Animals, 8(10), 168.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ee, G. C. L., Lim, C. M., Lim, C. K., Rahmani, M., Shaari, K., & Bong, C. F. J. (2009). Alkaloids from Piper sarmentosum and Piper nigrum. Natural Product Research, 23(15), 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  83. Sriwiriyajan, S., Ninpesh, T., Sukpondma, Y., Nasomyon, T., & Graidist, P. (2014). Cytotoxicity screening of plants of genus Piper in breast cancer cell lines. Tropical Journal of Pharmaceutical Research, 13(6), 921–928.

    Article  Google Scholar 

  84. Prashant, A., Rangaswamy, C., Yadav, A. K., Reddy, V., Sowmya, M. N., & Madhunapantula, S. (2017). In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines. International Journal of Applied and Basic Medical Research, 7(1), 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Do, M. T., Kim, H. G., Choi, J. H., Khanal, T., Park, B. H., Tran, T. P., et al. (2013). Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chemistry, 141(3), 2591–2599.

    Article  CAS  PubMed  Google Scholar 

  86. Ouyang, D. Y., Zeng, L. H., Pan, H., Xu, L. H., Wang, Y., Liu, K. P., & He, X. H. (2013). Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food and Chemical Toxicology, 60, 424–430.

    Article  CAS  PubMed  Google Scholar 

  87. Ba, Y., & Malhotra, A. (2018). Potential of piperine in modulation of voltage-gated K+ current and its influences on cell cycle arrest and apoptosis in human prostate cancer cells. European Review for Medical and Pharmacological Sciences, 22(24), 8999–9011.

    CAS  PubMed  Google Scholar 

  88. Samykutty, A., Shetty, A. V., Dakshinamoorthy, G., Bartik, M. M., Johnson, G. L., Webb, B., et al. (2013). Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS One, 8(6), e65889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Selvendiran, K., Singh, J. P. V., & Sakthisekaran, D. (2006). In vivo effect of piperine on serum and tissue glycoprotein levels in benzo (a) pyrene induced lung carcinogenesis in Swiss albino mice. Pulmonary Pharmacology & Therapeutics, 19(2), 107–111.

    Article  CAS  Google Scholar 

  90. Li, N., Wen, S., Chen, G., & Wang, S. (2020). Antiproliferative potential of piperine and curcumin in drug-resistant human leukemia cancer cells are mediated via autophagy and apoptosis induction, S-phase cell cycle arrest and inhibition of cell invasion and migration. Journal of BUON, 25, 401–406.

    PubMed  Google Scholar 

  91. Yaffe, P. B., Power Coombs, M. R., Doucette, C. D., Walsh, M., & Hoskin, D. W. (2015). Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Molecular Carcinogenesis, 54(10), 1070–1085.

    Article  CAS  PubMed  Google Scholar 

  92. Fofaria, N. M., Kim, S. H., & Srivastava, S. K. (2014). Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation. PLoS One, 9(5), e94298.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dimri, G. P., Nakanishi, M., Desprez, P. Y., Smith, J. R., & Campisi, J. (1996). Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Molecular and Cellular Biology, 16(6), 2987–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qiu, M., Xue, C., & Zhang, L. (2019). Piperine alkaloid induces anticancer and apoptotic effects in cisplatin resistant ovarian carcinoma by inducing G2/M phase cell cycle arrest, caspase activation and inhibition of cell migration and PI3K/Akt/GSK3β signalling pathway. Journal of BUON, 24(6), 2316–2321.

    PubMed  Google Scholar 

  95. Zhang, J., Zhu, X., Li, H., Li, B., Sun, L., Xie, T., et al. (2015). Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/−9 expression. International Immunopharmacology, 24(1), 50–58.

    Article  PubMed  Google Scholar 

  96. Lin, Y., Xu, J., Liao, H., Li, L., & Pan, L. (2014). Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumor Biology, 35, 3305–3310.

    Article  CAS  PubMed  Google Scholar 

  97. Lai, L. H., Fu, Q. H., Liu, Y., Jiang, K., Guo, Q. M., Chen, Q. Y., et al. (2012). Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacologica Sinica, 33(4), 523–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abdelhamed, S., Yokoyama, S., Refaat, A., Ogura, K., Yagita, H., Awale, S., & Saiki, I. (2014). Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Research, 34(4), 1893–1899.

    CAS  PubMed  Google Scholar 

  99. Greenshields, A. L., Doucette, C. D., Sutton, K. M., Madera, L., Annan, H., Yaffe, P. B., & Hoskin, D. W. (2015). Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Letters, 357(1), 129–140.

    Article  CAS  PubMed  Google Scholar 

  100. Jiang, W. G., Sanders, A. J., Katoh, M., Ungefroren, H., Gieseler, F., Prince, M., et al. (2015, December). Tissue invasion and metastasis: Molecular, biological and clinical perspectives. In Seminars in cancer biology (Vol. 35, pp. S244–S275). Academic.

    Google Scholar 

  101. Pellikainen, J. M., Ropponen, K. M., Kataja, V. V., Kellokoski, J. K., Eskelinen, M. J., & Kosma, V. M. (2004). Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clinical Cancer Research, 10(22), 7621–7628.

    Article  CAS  PubMed  Google Scholar 

  102. Hwang, Y. P., Yun, H. J., Kim, H. G., Han, E. H., Choi, J. H., Chung, Y. C., & Jeong, H. G. (2011). Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicology Letters, 203(1), 9–19.

    Article  CAS  PubMed  Google Scholar 

  103. Balduyck, M., Zerimech, F., Gouyer, V., Lemaire, R., Hemon, B., Grard, G., et al. (2000). Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro. Clinical & Experimental Metastasis, 18, 171–178.

    Article  CAS  Google Scholar 

  104. Tasleem, F., Azhar, I., Ali, S. N., Perveen, S., & Mahmood, Z. A. (2014). Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pacific Journal of Tropical Medicine, 7, S461–S468.

    Article  Google Scholar 

  105. Jeena, K., Liju, V. B., Umadevi, N. P., & Kuttan, R. (2014). Antioxidant, anti-inflammatory and antinociceptive properties of black pepper essential oil (Piper nigrum Linn). Journal of Essential Oil Bearing Plants, 17(1), 1–12.

    Article  CAS  Google Scholar 

  106. Belemkar, S., Kumar, A., & Pata, M. K. (2013). Pharmacological screening of herbal extract of Piper nigrum (Maricha) and Cinnamomum zeylanicum (Dalchini) for anticonvulsant activity. Invent Rapid Ethnopharmacol, 2, 1–5.

    Google Scholar 

  107. Kaleem, M., Sheema, S. H., & Bano, B. (2005). Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats. Indian Journal of Physiology and Pharmacology, 49(1), 65–71.

    CAS  PubMed  Google Scholar 

  108. Onyesife, C. O., Ogugua, V. N., & Anaduaka, E. G. (2014). Hypoglycemic potentials of ethanol leaves extract of black pepper (Piper nigrum) on alloxan-induced diabetic rats. Annals of Biological Research, 5(6), 26–31.

    Google Scholar 

  109. Gupta, S., Singh, N., & Jaggi, A. S. (2014). Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera. Journal of Basic and Clinical Physiology and Pharmacology, 25(2), 255–265.

    Article  PubMed  Google Scholar 

  110. Hritcu, L., Noumedem, J. A., Cioanca, O., Hancianu, M., Postu, P., & Mihasan, M. (2015). Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in beta-amyloid (1–42) rat model of Alzheimer’s disease. Behavioral and Brain Functions, 11(1), 1–13.

    Article  Google Scholar 

  111. Yang, W., Chen, Y. H., Liu, H., & Qu, H. D. (2015). Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease mouse model. International Journal of Molecular Medicine, 36(5), 1369–1376.

    Article  CAS  PubMed  Google Scholar 

  112. Correia, A. O., Cruz, A. A. P., Aquino, A. T. R. D., Diniz, J. R. G., Santana, K. B. F., Cidade, P. I. M., … & Viana, G. S. D. B. (2015). Neuroprotective effects of piperine, an alkaloid from the Piper genus, on the Parkinson’s disease model in rats.

    Google Scholar 

  113. Xu, C., Gong, X., Fu, W., Xu, Y., Xu, H., Chen, W., & Li, M. (2020). The role of career adaptability and resilience in mental health problems in Chinese adolescents. Children and Youth Services Review, 112, 104893.

    Article  Google Scholar 

  114. Lindheimer, J. B., Loy, B. D., & O’Connor, P. J. (2013). Short-term effects of black pepper (Piper nigrum) and rosemary (Rosmarinus officinalis and Rosmarinus eriocalyx) on sustained attention and on energy and fatigue mood states in young adults with low energy. Journal of Medicinal Food, 16(8), 765–771.

    Article  PubMed  Google Scholar 

  115. Bhutani, M. K., Bishnoi, M., & Kulkarni, S. K. (2009). Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacology Biochemistry and Behavior, 92(1), 39–43.

    Article  CAS  PubMed  Google Scholar 

  116. Nazifi, M., Oryan, S., Esfahani, D. E., & Ashrafpoor, M. (2021). The functional effects of piperine and piperine plus donepezil on hippocampal synaptic plasticity impairment in rat model of Alzheimer’s disease. Life Sciences, 265, 118802.

    Article  CAS  PubMed  Google Scholar 

  117. Wang, C., Cai, Z., Wang, W., Wei, M., Kou, D., Li, T., et al. (2019). Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. The Journal of Nutritional Biochemistry, 70, 147–155.

    Article  CAS  PubMed  Google Scholar 

  118. Khalili-Fomeshi, M., Azizi, M. G., Esmaeili, M. R., Gol, M., Kazemi, S., Ashrafpour, M., et al. (2018). Piperine restores streptozotocin-induced cognitive impairments: Insights into oxidative balance in cerebrospinal fluid and hippocampus. Behavioural Brain Research, 337, 131–138.

    Article  CAS  PubMed  Google Scholar 

  119. Hsieh, T. Y., Chang, Y., & Wang, S. J. (2019). Piperine-mediated suppression of voltage-dependent Ca 2+ influx and glutamate release in rat hippocampal nerve terminals involves 5HT 1A receptors and G protein βγ activation. Food & Function, 10(5), 2720–2728.

    Article  CAS  Google Scholar 

  120. S Figueredo, SA., G de Oliveira, M., MVV Safadi, G., de Paula da Silva, C. H., B da Silva, V., A Taft, C., & LB de Aquino, G. (2015). The natural alkaloid piperine and its acid and ester synthetic derivatives are acetylcholinesterase inhibitors. Current Physical Chemistry, 5(4), 294–300.

    Google Scholar 

  121. Ravelli, K. G., Rosário, B. D. A., Camarini, R., Hernandes, M. S., & Britto, L. R. (2017). Intracerebroventricular streptozotocin as a model of Alzheimer’s disease: neurochemical and behavioral characterization in mice. Neurotoxicity Research, 31, 327–333.

    Article  CAS  PubMed  Google Scholar 

  122. Murata, K., Matsumura, S., Yoshioka, Y., Ueno, Y., & Matsuda, H. (2015). Screening of β-secretase and acetylcholinesterase inhibitors from plant resources. Journal of Natural Medicines, 69, 123–129.

    Article  CAS  PubMed  Google Scholar 

  123. Kumar, S., Chowdhury, S., Razdan, A., Kumari, D., Purty, R. S., Ram, H., et al. (2021). Downregulation of candidate gene expression and neuroprotection by piperine in streptozotocin-induced hyperglycemia and memory impairment in rats. Frontiers in Pharmacology, 11, 595471.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pal, A., Nayak, S., Sahu, P. K., & Swain, T. (2011). Piperine protects epilepsy associated depression: a study on role of monoamines. European Review for Medical and Pharmacological Sciences, 15(11), 1288–1295.

    CAS  PubMed  Google Scholar 

  125. da Cruz, G. M. P., Felipe, C. F. B., Scorza, F. A., da Costa, M. A. C., Tavares, A. F., Menezes, M. L. F., et al. (2013). Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms. Pharmacology Biochemistry and Behavior, 104, 144–153.

    Article  PubMed  Google Scholar 

  126. Mishra, A., Punia, J. K., Bladen, C., Zamponi, G. W., & Goel, R. K. (2015). Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels, 9(5), 317–323.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chen, C. Y., Li, W., Qu, K. P., & Chen, C. R. (2013). Piperine exerts anti-seizure effects via the TRPV1 receptor in mice. European Journal of Pharmacology, 714(1–3), 288–294.

    Article  CAS  PubMed  Google Scholar 

  128. Dong, Y., Yin, Y., Vu, S., Yang, F., Yarov-Yarovoy, V., Tian, Y., & Zheng, J. (2019). A distinct structural mechanism underlies TRPV1 activation by piperine. Biochemical and Biophysical Research Communications, 516(2), 365–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ren, T., Yang, M., Xiao, M., Zhu, J., Xie, W., & Zuo, Z. (2019). Time-dependent inhibition of carbamazepine metabolism by piperine in anti-epileptic treatment. Life Sciences, 218, 314–323.

    Article  CAS  PubMed  Google Scholar 

  130. Pattanaik, S., Hota, D., Prabhakar, S., Kharbanda, P., & Pandhi, P. (2009). Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(9), 1281–1286.

    Article  CAS  Google Scholar 

  131. Ononiwu, I. M., Ibeneme, C. E., & Ebong, O. O. (2002). Effects of piperine on gastric acid secretion in albino rats. African Journal of Medicine and Medical Sciences, 31(4), 293–295.

    CAS  PubMed  Google Scholar 

  132. Suresh, D., & Srinivasan, K. (2007). Studies on the in vitro absorption of spice principles–curcumin, capsaicin and piperine in rat intestines. Food and Chemical Toxicology, 45(8), 1437–1442.

    Article  CAS  PubMed  Google Scholar 

  133. Badmaev, V., Majeed, M., & Prakash, L. (2000). Piperine derived from black pepper increases the plasma levels of coenzyme Q10 following oral supplementation. The Journal of Nutritional Biochemistry, 11(2), 109–113.

    Article  CAS  PubMed  Google Scholar 

  134. Capasso, R., Izzo, A. A., Borrelli, F., Russo, A., Sautebin, L., Pinto, A., et al. (2002). Effect of piperine, the active ingredient of black pepper, on intestinal secretion in mice. Life Sciences, 71(19), 2311–2317.

    Article  CAS  PubMed  Google Scholar 

  135. Ahmad, N., Fazal, H., Abbasi, B. H., Rashid, M., Mahmood, T., & Fatima, N. (2010). Efficient regeneration and antioxidant potential in regenerated tissues of Piper nigrum L. Plant Cell. Tissue and Organ Culture (PCTOC), 102, 129–134.

    Article  CAS  Google Scholar 

  136. Singh, A., & Duggal, S. (2009). Piperine-review of advances in pharmacology. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 2(3), 615–620.

    Article  CAS  Google Scholar 

  137. Reshmi, S. K., Sathya, E., & Devi, P. S. (2010). Isolation of piperdine from Piper nigrum and its antiproliferative activity. Journal of Medicinal Plants Research, 4(15), 1535–1546.

    CAS  Google Scholar 

  138. Yan, J., Xu, S. C., Kong, C. Y., Zhou, X. Y., Bian, Z. Y., Yan, L., & Tang, Q. Z. (2019). Piperine alleviates doxorubicin-induced cardiotoxicity via activating PPAR-γ in mice. PPAR Research, 2019.

    Google Scholar 

  139. Chakraborty, M., Bhattacharjee, A., & Kamath, J. V. (2017). Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian Journal of Pharmacology, 49(1), 65.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Upadhyay, R. K., & Jaiswal, G. (2007). Evaluation of biological activities of Piper nigrum oil against Tribolium castaneum. Bulletin of Insectology, 60(1), 57.

    Google Scholar 

  141. Naseem, M. T., & Khan, R. R. (2011). Comparison of repellency of essential oils against red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Journal of Stored Products and Postharvest Research, 2(7), 131–134.

    Google Scholar 

  142. Vijayakumar, R. S., Surya, D., Senthilkumar, R., & Nalini, N. (2002). Hypolipidemic effect of black pepper (Piper nigrum Linn.) in rats fed high fat diet. Journal of Clinical Biochemistry and Nutrition, 32, 31–42.

    Article  CAS  Google Scholar 

  143. Rani, S. S., Saxena, N., & Udaysree, N. (2013). Antimicrobial activity of black pepper (Piper nigrum L.). Global. Journal de Pharmacologie, 7(1), 87–90.

    Google Scholar 

  144. Damanhouri, Z. A., & Ahmad, A. (2014). A review on therapeutic potential of black pepper (Piper nigrum L.): the king of spices. Journal of Medicinal and Aromatic Plants, 3(3), 161.

    Google Scholar 

  145. D’Hooge, R., Pei, Y. Q., Raes, A., Lebrun, P., Van Bogaert, P. P., & De Deyn, P. P. (1996). Anticonvulsant activity of piperine on seizures induced by excitatory amino acid receptor agonists. Arzneimittel-Forschung, 46(6), 557–560.

    PubMed  Google Scholar 

  146. Bai, Y. F., & Xu, H. (2000). Protective action of piperine against experimental gastric ulcer. Acta Pharmacologica Sinica, 21(4), 357–359.

    CAS  PubMed  Google Scholar 

  147. Concon, J. M., Newburg, D. S., & Swerczek, T. W. (1979). Black pepper [Piper nigrum]: evidence of carcinogenicity.

    Google Scholar 

  148. Namiki, K., Yamanaka, M., Osawa, T., & Namiki, M. (1984). Mutagen formation by nitrite-spice reactions. Journal of Agricultural and Food Chemistry, 32(4), 948–952.

    Article  CAS  Google Scholar 

  149. World Health Organization. (2008). Traditional medicine: fact sheet no. 134. World Health Organization.

    Google Scholar 

  150. Johri, R. K., Thusu, N., Khajuria, A., & Zutshi, U. (1992). Piperine-mediated changes in the permeability of rat intestinal epithelial cells: the status of γ-glutamyl transpeptidase activity, uptake of amino acids and lipid peroxidation. Biochemical Pharmacology, 43(7), 1401–1407.

    Article  CAS  PubMed  Google Scholar 

  151. Prakash, U. N., & Srinivasan, K. (2010). Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. British Journal of Nutrition, 104(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  152. Bernardo, A. R., da Rocha, J. D. B., de Lima, M. E. F., Ricardo, D. D., da Silva, L. H. P., Peçanha, L. M. T., & Danelli, M. D. G. M. (2015). Modulating effect of the piperine, the main alkaloid from Piper nigrum Linn., on murine B lymphocyte function. Brazilian. Journal of Veterinary Medicine, 37(3), 209–216.

    Google Scholar 

  153. Lee, Y. M., Choi, J. H., Min, W. K., Han, J. K., & Oh, J. W. (2018). Induction of functional erythropoietin and erythropoietin receptor gene expression by gamma-aminobutyric acid and piperine in kidney epithelial cells. Life Sciences, 215, 207–215.

    Article  CAS  PubMed  Google Scholar 

  154. Aswar, U., Shintre, S., Chepurwar, S., & Aswar, M. (2015). Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharmaceutical Biology, 53(9), 1358–1366.

    Article  CAS  PubMed  Google Scholar 

  155. Kim, S. H., & Lee, Y. C. (2009). Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. Journal of Pharmacy and Pharmacology, 61(3), 353–359.

    Article  CAS  PubMed  Google Scholar 

  156. Panda, S., & Kar, A. (2003). Piperine lowers the serum concentrations of thyroid hormones, glucose and hepatic 5′ D activity in adult male mice. Hormone and Metabolic Research, 35(09), 523–526.

    Article  CAS  PubMed  Google Scholar 

  157. Dalvi, R. R., & Dalvi, P. S. (1991). Comparison of the effects of piperine administered intragastrically and intraperitoneally on the liver and liver mixed-function oxidases in rats. Drug Metabolism and Drug Interactions, 9(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  158. Dalvi, R. R., & Dalvi, P. S. (1991). Differences in the effects of piperine and piperonyl butoxide on hepatic drug-metabolizing enzyme system in rats. Drug and Chemical Toxicology, 14(1–2), 219–229.

    Article  CAS  PubMed  Google Scholar 

  159. Singh, A., & Rao, A. R. (1993). Evaluation of the modulatory influence of black pepper. (Piper nigrum, L.) on the hepatic detoxication system. Cancer letters, 72(1–2), 5–9.

    CAS  Google Scholar 

  160. Kang, A. H., Won, S. M., Park, S. S., Kim, S. G., Novak, R. F., & Kim, N. D. (1994). Piperine effects on the expression of P4502E1, P4502B and P4501A in rat. Xenobiotica, 24(12), 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  161. Duangjai, A., Ingkaninan, K., Praputbut, S., & Limpeanchob, N. (2013). Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins. Journal of Natural Medicines, 67, 303–310.

    Article  CAS  PubMed  Google Scholar 

  162. Yang, Y., Kanev, D., Nedeva, R., Jozwik, A., Rollinger, J. M., Grzybek, W., et al. (2019). Black pepper dietary supplementation increases high-density lipoprotein (HDL) levels in pigs. Current Research in Biotechnology, 1, 28–33.

    Article  Google Scholar 

  163. Rupasinghe, H. V., & Yu, L. J. (2012). Emerging preservation methods for fruit juices and beverages. Food additive, 22, 65–82.

    Google Scholar 

  164. Atal, C. K., Zutshi, U., & Rao, P. G. (1981). Scientific evidence on the role of Ayurvedic herbals on bioavailability of drugs. Journal of Ethnopharmacology, 4(2), 229–232.

    Article  CAS  PubMed  Google Scholar 

  165. Lambert, J. D., Hong, J., Kim, D. H., Mishin, V. M., & Yang, C. S. (2004). Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. The Journal of Nutrition, 134(8), 1948–1952.

    Article  CAS  PubMed  Google Scholar 

  166. Mueller, M., Beck, V., & Jungbauer, A. (2011). PPARα activation by culinary herbs and spices. Planta Medica, 77(05), 497–504.

    Article  CAS  PubMed  Google Scholar 

  167. Gomez-Pinilla, F., & Nguyen, T. T. (2012). Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders. Nutritional Neuroscience, 15(3), 127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umar Ijaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ijaz, M.U., Hayat, M.F., Ashraf, A., Rahman, I. (2023). Black Pepper. In: Zia-Ul-Haq, M., Abdulkreem AL-Huqail, A., Riaz, M., Farooq Gohar, U. (eds) Essentials of Medicinal and Aromatic Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-35403-8_12

Download citation

Publish with us

Policies and ethics