Skip to main content

Geographic Information System and Remote Sensing in Deciphering Groundwater Potential Zones

  • Chapter
  • First Online:
Emerging Technologies for Water Supply, Conservation and Management

Part of the book series: Springer Water ((SPWA))

  • 167 Accesses

Abstract

Innovations in the techniques of Remote Sensing (RS) and Geographic Information System (GIS) have recently increased the demand for the effectiveness of predicting the potential of groundwater in the world, improving map accuracy. In this chapter, you will learn how to use GIS and RS techniques to decipher groundwater potential zones (GWPZs). We start with definitions and descriptions of conditioning factors (CFs) for groundwater potential. Then, we introduce and discuss various GIS-based techniques in detail in mapping groundwater potential zones. The GIS techniques, including Analytic Hierarchy Process (AHP), Fuzzy Logic (FL), Multi-Influencing Factor (MIF), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Frequency Ratio (FR), were introduced in this chapter. Notice that the term “groundwater potential” is used in this book to indicate the ability of the occurrence of a specific groundwater yield when prerequisites exist. Nevertheless, this term also refers to the ability to occur in spring or non-spring or groundwater storage. The result shows that the high potential of groundwater yield >10 m3/h was distributed mainly in the eastern Kanchanaburi. However, a difference was observed in terms of area extent in the output maps. The MIF, AHP, and FR models reached good results according to 78%, 71%, and 70% in validation, whereas the accuracy of the FL and TOPSIS model was 64% and 51%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abijith D, Saravanan S, Singh L, Jennifer JJ, Saranya T, Parthasarathy KSS (2020) GIS-based multi-criteria analysis for identification of potential groundwater recharge zones-a case study from Ponnaniyaru watershed, Tamil Nadu, India. HydroResearch 3:1–14. https://doi.org/10.1016/j.hydres.2020.02.002

    Article  Google Scholar 

  2. Ahmed JB II, Mansor S (2018) Overview of the application of geospatial technology to groundwater potential mapping in Nigeria. Arab J Geosci 11(17):1–16. https://doi.org/10.1007/s12517-018-3852-4

    Article  Google Scholar 

  3. Al-Ruzouq R, Shanableh A, Merabtene T, Siddique M, Khalil MA, Idris A, Almulla E (2019) Potential groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: North UAE. Catena 173:511–524. https://doi.org/10.1016/j.catena.2018.10.037

    Article  Google Scholar 

  4. An P, Moon WM, Rencz A (1991) Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Can J Explor Geophys 27(1):1–11

    Google Scholar 

  5. Bagyaraj M, Mengistie AT, Gnanachandrasamy G, Gemechu B (2019) Data of remote sensing and GIS-to demarcate the potential sector of groundwater in Debre Berhan, Amhara region, Ethiopia. Data Brief 26. https://doi.org/10.1016/j.dib.2019.104542

  6. Bhanja SN, Mukherjee A, Rodell M (2020) Groundwater storage change detection from in situ and GRACE-based estimates in major river basins across India. Hydrol Sci J 65(4):650–659. https://doi.org/10.1080/02626667.2020.1716238

    Article  Google Scholar 

  7. Bonham-Carter GF (1994) Geographic information systems for geoscientists-modeling with GIS. Comput Methods Geosci 13:398

    Google Scholar 

  8. Chen W, Pradhan B, Li S, Shahabi H, Rizeei HM, Hou E, Wang S (2019) Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis. Nat Resour Res 28(4):1239–1258. https://doi.org/10.1007/s11053-019-09465-w

    Article  Google Scholar 

  9. Choubin B, Rahmati O, Soleimani F, Alilou H, Moradi E, Alamdari N (2019) Regional groundwater potential analysis using classification and regression trees. In: Spatial modeling in GIS and R for earth and environmental sciences. Elsevier, pp 485–498. https://doi.org/10.1016/B978-0-12-815226-3.00022-3

  10. Díaz-Alcaide S, Martínez-Santos P (2019) Advances in groundwater potential mapping. Hydrogeol J 27(7):2307–2324. https://doi.org/10.1007/s10040-019-02001-3

    Article  Google Scholar 

  11. Elmahdy SI, Mohamed MM (2015) Probabilistic frequency ratio model for groundwater potential mapping in Al Jaww plain, UAE. Arab J Geosci 8(4):2405–2416. https://doi.org/10.1007/s12517-014-1327-9

    Article  Google Scholar 

  12. Etikala B, Golla V, Li P, Renati S (2019) Deciphering groundwater potential zones using MIF technique and GIS: a study from Tirupati area, Chittoor District, Andhra Pradesh, India. HydroResearch 1:1–7. https://doi.org/10.1016/j.hydres.2019.04.001

    Article  Google Scholar 

  13. Golkarian A, Naghibi SA, Kalantar B, Pradhan B (2018) Groundwater potential mapping using C5. 0, random forest, and multivariate adaptive regression spline models in GIS. Environ Monitor Assess 190(3):1–16. https://doi.org/10.1007/s10661-018-6507-8

  14. Gumma MK, Pavelic P (2013) Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environ Monit Assess 185(4):3561–3579. https://doi.org/10.1007/s10661-012-2810-y

    Article  Google Scholar 

  15. Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35(2):233–245. https://doi.org/10.1080/02508061003664419

    Article  Google Scholar 

  16. Guru B, Seshan K, Bera S (2017) Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. J King Saud Univ-Sci 29(3):333–347. https://doi.org/10.1016/j.jksus.2016.08.003

    Article  Google Scholar 

  17. Harrison L, Funk C, Peterson P (2019) Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ Res Lett 14(8):085007. https://doi.org/10.1088/1748-9326/ab2cae

    Article  Google Scholar 

  18. Hussein AA, Govindu V, Nigusse AGM (2017) Evaluation of groundwater potential using geospatial techniques. Appl Water Sci 7(5):2447–2461. https://doi.org/10.1007/s13201-016-0433-0

    Article  Google Scholar 

  19. Hwang CL, Yoon K (1981) Methods for multiple attribute decision making. In: Multiple attribute decision making. Springer, Berlin, Heidelberg, pp 58–191. https://doi.org/10.1007/978-3-642-48318-9

  20. Kaewdum N, Chotpantarat S (2021) Mapping potential zones for groundwater recharge using a GIS technique in the lower Khwae Hanuman Sub-Basin Area, Prachin Buri Province, Thailand. Front Earth Sci 814. https://doi.org/10.3389/feart.2021.717313

  21. Kaliraj S, Chandrasekar N, Magesh NS (2014) Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci 7(4):1385–1401. https://doi.org/10.1007/s12517-013-0849-x

    Article  Google Scholar 

  22. Khoshtinat S, Aminnejad B, Hassanzadeh Y, Ahmadi H (2019) Groundwater potential assessment of the Sero plain using bivariate models of the frequency ratio, Shannon entropy and evidential belief function. J Earth Syst Sci 128(6):1–16. https://doi.org/10.1007/s12040-019-1155-0

    Article  Google Scholar 

  23. Konkul J, Rojborwornwittaya W, Chotpantarat S (2014) Hydrogeologic characteristics and groundwater potentiality mapping using potential surface analysis in the Huay Sai area, Phetchaburi province, Thailand. Geosci J 18(1):89–103. https://doi.org/10.1007/s12303-013-0047-6

    Article  Google Scholar 

  24. Luo D, Wen X, Zhang H, Xu J, Zhang R (2020) An improved FAHP based methodology for groundwater potential zones in Longchuan River basin, Yunnan Province, China. Earth Sci Inform 13(3):847–857. https://doi.org/10.1007/s12145-020-00469-2

    Article  Google Scholar 

  25. Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour Manag 25(5):1359–1386. https://doi.org/10.1007/s11269-010-9749-y

    Article  Google Scholar 

  26. Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front 3(2):189–196. https://doi.org/10.1016/j.gsf.2011.10.007

    Article  Google Scholar 

  27. Mahmoud SH, Alazba AA (2016) Integrated remote sensing and GIS-based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environ Earth Sci 75(4):1–28. https://doi.org/10.1007/s12665-015-5156-2

    Article  Google Scholar 

  28. Maity DK, Mandal S (2019) Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach. Environ Dev Sustain 21(2):1013–1034. https://doi.org/10.1007/s10668-017-0072-0

    Article  Google Scholar 

  29. Mallick J, Khan RA, Ahmed M, Alqadhi SD, Alsubih M, Falqi I, Hasan MA (2019) Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water 11(12):2656. https://doi.org/10.3390/w11122656

    Article  Google Scholar 

  30. Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7(2):711–724. https://doi.org/10.1007/s12517-012-0795-z

    Article  Google Scholar 

  31. Martínez-Santos P, Renard P (2020) Mapping groundwater potential through an ensemble of big data methods. Groundwater 58(4):583–597. https://doi.org/10.1111/gwat.12939

    Article  Google Scholar 

  32. Massoud EC, Purdy AJ, Miro ME, Famiglietti JS (2018) Projecting groundwater storage changes in California’s Central Valley. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-31210-1

    Article  Google Scholar 

  33. Muavhi N, Thamaga KH, Mutoti MI (2021) Mapping groundwater potential zones using relative frequency ratio, analytic hierarchy process and their hybrid models: case of Nzhelele-Makhado area in South Africa. Geocarto Int 1–20. https://doi.org/10.1080/10106049.2021.1936212

  34. Mukherjee P, Singh CK, Mukherjee S (2012) Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS approach. Water Resour Manag 26(9):2643–2672. https://doi.org/10.1007/s11269-012-0038-9

    Article  Google Scholar 

  35. Naghibi SA, Ahmadi K, Daneshi A (2017) Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manag 31(9):2761–2775. https://doi.org/10.1007/s11269-017-1660-3

    Article  Google Scholar 

  36. Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188(1):1–27. https://doi.org/10.1007/s10661-015-5049-6

    Article  Google Scholar 

  37. Nanda S, Annadurai R, Barik KK (2017) Geospatial decipherment of groundwater potential of Kattankolathur block of Tamil Nadu using MCDM techniques. Remote Sens Appl: Soc Environ 8:240–250. https://doi.org/10.1016/j.rsase.2017.10.002

    Article  Google Scholar 

  38. Nguyen PT, Ha DH, Avand M, Jaafari A, Nguyen HD, Al-Ansari N, Phong TV, Sharma R, Kumar R, Le HV, Ho LS, Prakash I, Pham BT (2020) Soft computing ensemble models based on logistic regression for groundwater potential mapping. Appl Sci 10(7):2469. https://doi.org/10.3390/app10072469

    Article  Google Scholar 

  39. Nguyen PT, Ha DH, Jaafari A, Nguyen HD, Van Phong T, Al-Ansari N, Prakash I, Le HV, Pham BT (2020) Groundwater potential mapping combining artificial neural network and real AdaBoost ensemble technique: the DakNong province case-study, Vietnam. Int J Environ Res Publ Health 17(7):2473. https://doi.org/10.3390/ijerph17072473

    Article  Google Scholar 

  40. Pinto D, Shrestha S, Babel MS, Ninsawat S (2017) Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl Water Sci 7(1):503–519. https://doi.org/10.1007/s13201-015-0270-6

    Article  Google Scholar 

  41. Rahmati O, Pourghasemi HR, Melesse AM (2016) Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena 137:360–372. https://doi.org/10.1016/j.catena.2015.10.010

    Article  Google Scholar 

  42. Rajasekhar M, Raju GS, Sreenivasulu Y, Raju RS (2019) Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch 2:97–108. https://doi.org/10.1016/j.hydres.2019.11.006

    Article  Google Scholar 

  43. Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O (2015) Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inf 8(4):867–883. https://doi.org/10.1007/s12145-015-0220-8

    Article  Google Scholar 

  44. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  45. Sachdeva S, Kumar B (2020) Groundwater potential mapping using machine learning models for Northeastern Karbi Anglong district, Assam, India. In: 2020 2nd international conference on advances in computing, communication control and networking (ICACCCN). IEEE, pp 116–121. https://doi.org/10.1109/ICACCCN51052.2020.9362869

  46. Shaban A, Khawlie M, Bou Kheir R, Abdallah C (2001) Assessment of road instability along a typical mountainous road using GIS and aerial photos, Lebanon–eastern Mediterranean. Bull Eng Geol Env 60(2):93–101. https://doi.org/10.1007/s100640000092

    Article  Google Scholar 

  47. Shekhar S, Pandey AC (2015) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int 30(4):402–421. https://doi.org/10.1080/10106049.2014.894584

    Article  Google Scholar 

  48. Singh P, Thakur JK, Kumar S (2013) Delineating groundwater potential zones in a hard-rock terrain using geospatial tool. Hydrol Sci J 58(1):213–223. https://doi.org/10.1080/02626667.2012.745644

    Article  Google Scholar 

  49. Srinivasa Rao Y, Jugran DK (2003) Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrol Sci J 48(5):821–833. https://doi.org/10.1623/hysj.48.5.821.51452

    Article  Google Scholar 

  50. Sumdang N, Chotpantarat S, Cho KH, Thanh NN (2023) The risk assessment of arsenic contamination in the urbanized coastal aquifer of Rayong groundwater basin, Thailand using the machine learning approach. Ecotoxicol Environ Saf 253:114665. https://doi.org/10.1016/j.ecoenv.2023.114665

    Article  Google Scholar 

  51. Taheri K, Gutiérrez F, Mohseni H, Raeisi E, Taheri M (2015) Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude–frequency relationships: a case study in Hamadan province, Iran. Geomorphology 234:64–79. https://doi.org/10.1016/j.geomorph.2015.01.005

    Article  Google Scholar 

  52. Taheri K, Missimer TM, Taheri M, Moayedi H, Mohseni Pour F (2020) Critical zone assessments of an alluvial aquifer system using the multi-influencing factor (MIF) and analytical hierarchy process (AHP) models in Western Iran. Nat Resour Res 29(2):1163–1191. https://doi.org/10.1007/s11053-019-09516-2

    Article  Google Scholar 

  53. Tanachaichoksirikun P, Seeboonruang U, Saraphirom P (2018) Impact of climate change on the groundwater sustainability in the lower Chao Phraya basin, Thailand. In: MATEC web of conferences, vol 192. EDP Sciences, p 02006. https://doi.org/10.1051/matecconf/201819202006

  54. Thanh NN, Chotpantarat S, Ha N-T, Trung NH (2023) Determination of conditioning factors for mapping nickel contamination susceptibility in groundwater in Kanchanaburi Province, Thailand, using random forest and maximum entropy. Environ Geochem Health. https://doi.org/10.1007/s10653-023-01512-z

    Article  Google Scholar 

  55. Thanh NN, Chotpantarat S, Trung NH, Ngu NH (2022) Mapping groundwater potential zones in Kanchanaburi Province, Thailand by integrating of analytic hierarchy process, frequency ratio, and random forest. Ecol Ind 145:109591. https://doi.org/10.1016/j.ecolind.2022.109591

    Article  Google Scholar 

  56. Thanh NN, Thunyawatcharakul P, Ngu NH, Chotpantarat S (2022) Global review of groundwater potential models in the last decade: parameters, model techniques, and validation. J Hydrol 128501. https://doi.org/10.1016/j.jhydrol.2022.128501

  57. Thapa R, Gupta S, Guin S, Kaur H (2017) Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Appl Water Sci 7(7):4117–4131. https://doi.org/10.1007/s13201-017-0571-z

    Article  Google Scholar 

  58. Thomas R, Duraisamy V (2018) Hydrogeological delineation of groundwater vulnerability to droughts in semi-arid areas of western Ahmednagar district. Egypt J Remote Sens Space Sci 21(2):121–137. https://doi.org/10.1016/j.ejrs.2016.11.008

    Article  Google Scholar 

  59. Wang Y, Qiu M, Shi L, Xu D, Liu T, Qu X (2019) A GIS-based model of potential groundwater yield zonation for a sandstone aquifer based on the EWM and TOPSIS methods. In: IMWA mine water: technological and ecological challenges, pp 387–393

    Google Scholar 

  60. Zabihi M, Pourghasemi HR, Pourtaghi ZS, Behzadfar M (2016) GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ Earth Sci 75(8):1–19. https://doi.org/10.1007/s12665-016-5424-9

    Article  Google Scholar 

  61. Zhang C, Duan Q, Yeh PJF, Pan Y, Gong H, Moradkhani H, Gong W, Lei X, Liao W, Xu L, Huang Z, Zeng L, Guo X (2021) Sub-regional groundwater storage recovery in North China Plain after the South-to-North water diversion project. J Hydrol 597:126156. https://doi.org/10.1016/j.jhydrol.2021.126156

    Article  Google Scholar 

Download references

Acknowledgements

The researchers would like to thank the Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University and Hue University of Agriculture and Forestry, Hue University. We acknowledge partially financial support from the Thailand Science research and Innovation Fund Chulalongkorn University (CU_FRB65_dis(2)_090_23_20) and the Ratchadapisek Sompoch Endowment Fund (2022), Chulalongkorn University (765007-RES02), the ASEAN/NON-ASEAN Scholarship and the 90TH Anniversary of Chulalongkorn University Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srilert Chotpantarat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thanh, N.N., Chotpantarat, S. (2023). Geographic Information System and Remote Sensing in Deciphering Groundwater Potential Zones. In: Balaji, E., Veeraswamy, G., Mannala, P., Madhav, S. (eds) Emerging Technologies for Water Supply, Conservation and Management. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-35279-9_7

Download citation

Publish with us

Policies and ethics