Skip to main content

Probing the Optical Near-Field

  • Chapter
  • First Online:
Advances in Near-Field Optics

Abstract

Since the description of diffraction from the seventeenth century and the development of optical microscopy that has followed, many approaches have been developed for breaking the diffraction limit. Following the first proposition of near-field optical microscopy made in the 1920s, the first experimental demonstrations started in the early 1980s through scanning near-field optical microcopy, within the context of the swift development of scanning probe microscopies.

Since, different alternative approaches and concepts have emerged for probing the optical near-field with a sub-wavelength resolution.

The chapter is divided into four main sections. In Sect. 4.2, important theoretical principles will be reminded. They will allow the reader to acquire a general background in near-field optics. Section 4.3 describes how it is possible to probe the near-field with physical optical nano-antenna. In particular, different approaches of scanning near-field optical microscopy will be discussed. Section 4.4 is dedicated to the way free electrons can be used for probing the near-field. Section 4.5 deals with the use of nanoscale photochemistry for probing the optical near-field.

These three approaches present respective features and assets that will be illustrated by examples of achievements from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.I.E. Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, O. Soppera, Spectral degeneracy breaking in plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization. Phys. Rev. Lett. 98, 107402 (2007)

    Article  ADS  Google Scholar 

  2. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Adaptive subwavelength control of nano-optical fields. Nature 446, 301 (2007)

    Article  ADS  Google Scholar 

  3. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, D.V. Voroninec, Spatiotemporal control of nanooptical excitations. PNAS 107, 5329–5333 (2010). https://doi.org/10.1073/pnas.0913556107

    Article  ADS  Google Scholar 

  4. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, D.V. Voroninec, Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled Lorentzian oscillator models. Appl. Phys. B Lasers Opt. 122, 199 (2016). https://doi.org/10.1007/s00340-016-6471-3

    Article  ADS  Google Scholar 

  5. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. PRL 96, 113002 (2006)

    Article  ADS  Google Scholar 

  6. S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, P. Royer, Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy. Opt. Soc. Am. B Optical Physics 20(10), 2117–2124 (2003)

    Article  ADS  Google Scholar 

  7. C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, R. Bachelot, Selective excitation of plasmon resonances of single Au triangles by polarization dependent light excitation. J. Phys. Chem. C 16, 14591–14598 (2012). https://doi.org/10.1021/jp303475c

    Article  Google Scholar 

  8. A. Asenjo-Garcia, F. García de Abajo, Plasmon electron energy-gain spectroscopy. New J. Phys. 15, 103021 (2013)

    Article  ADS  Google Scholar 

  9. A.C. Atre, B.J.M. Brenny, T. Coenen, A. García-Etxarri, A. Polman, J.A. Dionne, Nanoscale optical tomography with cathodoluminescence spectroscopy. Nat. Nanotechnol. 10, 429–436 (2015)

    Article  ADS  Google Scholar 

  10. B. Barwick, D. Flannigan, A. Zewail, Photon-induced near-field electron microscopy. Nature 462, 902 (2009)

    Article  ADS  Google Scholar 

  11. R. Bachelot, G. Wurtz, P. Royer, An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation. Appl. Phys. Lett. 73(23), 3333–3335 (1998)

    Article  ADS  Google Scholar 

  12. R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, J.-P. Boilot, K. Lahlil, Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films. J. Appl. Phys. 94(3), 2060–2072 (2003)

    Article  ADS  Google Scholar 

  13. D. Van Baak, G. Herold, Response of a lock-in amplifier to noise. Am. J. Phys. 82(8), 785–797 (2014)

    Article  ADS  Google Scholar 

  14. T.A. Baker, A. Grubisic, D.J. Nesbitt, Plasmon mediated multiphoton photoemission microscopy of Au nanoholes and nanohole dimers. J. Phys. Chem. C 118, 6959–6971 (2014). https://doi.org/10.1021/jp411943f

    Article  Google Scholar 

  15. E. Bauer, Surface Microscopy with Low Energy Electrons (Springer Science + Business Media. ISBN 978-1-4939-0934-6 ISBN 978-1-4939-0935-3 (eBook), New York/Heidelberg/Dordrecht/London, 2014). https://doi.org/10.1007/978-1-4939-0935-3

    Book  Google Scholar 

  16. J.V. Bladel, Singular Electromagnetic Fields and Sources (IEEE Press, New York, 1991)

    Google Scholar 

  17. K.Y. Bliokh, I.P. Ivanov, G. Guzzinati, L. Clark, R. Van Boxem, A. Béché, R. Juchtmans, M.A. Alonso, P. Schattschneider, F. Nori, J. Verbeeck, Theory and applications of free-electron vortex states. Phys. Rep. 690, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. G.D. Bernasconi, J. Butet, V. Flauraud, D. Alexander, J. Brugger, O.J.F. Martin, Where does energy go in electron energy loss spectroscopy of nanostructures? ACS Photonics 4, 156–164 (2017). https://doi.org/10.1021/acsphotonics.6b00761

    Article  Google Scholar 

  19. E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257(5067), 189–195 (1992)

    Article  ADS  Google Scholar 

  20. J.-L. Bijeon, P.-M. Adam, D. Barchiesi, P. Royer, A simple resolution criterion in an Apertureless Scanning Near-Field Optical Microscope (A-SNOM): Contribution of the tip vibration and lock-in detection. Def. Eur. Phys. J. Appl. Phys. 26(1), 45–52 (2004)

    Article  ADS  Google Scholar 

  21. L. Billot, M.L. De La Chapelle, D. Barchiesi, S.-H. Chang, S.K. Gray, J.A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G.P. Wiederrecht, R. Bachelot, P. Royer, Error signal artifact in apertureless scanning near-field optical microscopy. Appl. Phys. Lett. 89(2), art.no.023105 (2006)

    Article  ADS  Google Scholar 

  22. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford, 1993)

    MATH  Google Scholar 

  23. O. Bryngdhal, Evanescent waves in optical imaging, in Progress in Optics XI, Chap IV, ed. by E. Wolf, (North Holland, Amsterdam, 1973)

    Google Scholar 

  24. N.M. Buckanie, P. Kirschbaum, S. Sindermann, F.-J. Meyer zu Heringdorf, Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy. Ultramicroscopy 130, 49–53 (2013). https://doi.org/10.1016/j.ultramic.2013.03.007

    Article  Google Scholar 

  25. F. Carbone, O.-H. Kwon, A.H. Zewail, Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181 (2009)

    Article  ADS  Google Scholar 

  26. R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrata, Y. De Wilde, Electromagnetic density of states in complex plasmonic systems. Surf. Sci. Rep. 70, 1–41 (2015)

    Article  ADS  Google Scholar 

  27. G.M. Caruso, F. Houdellier, S. Weber, M. Kociak, A. Arbouet, High brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source: Principle and applications. Adv. Phys. X 4, 1660214 (2019). https://doi.org/10.1080/23746149.2019.1660214

    Article  Google Scholar 

  28. L. Chelaru, F. Meyer zu Heringdorf, In situ monitoring of surface plasmons in single-crystalline Ag-nanowires. Surf. Sci. 601, 4541 (2007). https://doi.org/10.1016/j.susc.2007.04.146

    Article  ADS  Google Scholar 

  29. S.H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M.I. Stockman, M.F. Kling, U. Kleineberg, Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses. Appl. Phys. Lett. 100, 051904 (2012)

    Article  ADS  Google Scholar 

  30. M. Cinchetti, A. Gloskovskii, S.A. Nepjiko, G. Schönhense, H. Rochholz, M. Kreiter, Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett. 95(47601), 10.1103/PhysRevLett.95.047601 (2005)

    ADS  Google Scholar 

  31. T. Coenen, B.J.M. Brenny, E. Jan Vesseur, A. Polman, Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bull. 40, 359 (2015). https://doi.org/10.1557/mrs.2015.64

    Article  ADS  Google Scholar 

  32. T. Coenen, N.M. Haegel, Cathodoluminescence for the 21st century: Learning more from light featured. Appl. Phys. Rev. 4, 031103 (2017). https://doi.org/10.1063/1.4985767

    Article  ADS  Google Scholar 

  33. S.M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, P.A. Midgley, Excitation dependent Fano-like interference effects in plasmonic silver nanorods. Phys. Rev. B Condens. Matter Mater. Phys. 90, 155419 (2014)

    Article  ADS  Google Scholar 

  34. S.M. Collins, E. Ringe, M. Duchamp, Z. Saghi, R.E. Dunin-Borkowski, P.A. Midgley, Eigenmode tomography of surface charge oscillations of plasmonic nanoparticles by electron energy loss spectroscopy. ACS Photonics 2, 1628–1635 (2015). https://doi.org/10.1021/acsphotonics.5b00421

    Article  Google Scholar 

  35. S.M. Collins, P.A. Midgley, Progress and opportunities in EELS and EDS tomography. Ultramicroscopy 180, 133–141 (2017). https://doi.org/10.1016/j.ultramic.2017.01.003

    Article  Google Scholar 

  36. C. Colliex, M. Kociak, O. Stéphan, Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1–A24 (2016)

    Article  Google Scholar 

  37. D. Courjon, C. Bainier (eds.), Champ Proche Optique : Théorie et Applications, Collection Technique et Scientifique des Télécommunications, Chapter 8 (Springer, Cham, 2001), pp. 147–176

    Google Scholar 

  38. Y. Dai, M. Dąbrowski, V.A. Apkarian, H. Petek, Ultrafast microscopy of spin-momentum locked surface plasmon polaritons. ACS Nano 12, 6588–6596 (2018)

    Article  Google Scholar 

  39. Y. Dai, H. Petek, Plasmonic spin-hall effect in surface plasmon polariton focusing. ACS Photonics 6, 2005–2013 (2019)

    Article  Google Scholar 

  40. Y. Dai, M. Dabrowski, H. Petek, Optical field tuning of localized plasmon modes in Ag microcrystals at the nanofemto scale. J. Chem. Phys. 152, 054201 (2020). https://doi.org/10.1063/1.5139543

    Article  ADS  Google Scholar 

  41. Y. Dai, Z. Zhou, A. Ghosh, S. Yang, H. Chen-Bin Huang, Petek., Ultrafast nanofemto photoemission electron microscopy of vectorial plasmonic fields. MRS Bull. 46 (2021)

    Google Scholar 

  42. C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, O. Soppera, Plasmon-based free-radical photopolymerization: Effect of diffusion on nanolithography processes. Am. Chem. Soc. 133(27), 10535–10542 (2011)

    Article  Google Scholar 

  43. C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.-K. Jain, L. Huang, C. Ecoffet, L. Balan, P. Royer, Quantitative analysis of localized surface plasmons based on molecular probing. ACS Nano 4, 4579–4586 (2010)

    Article  Google Scholar 

  44. C. Delacour, S. Blaize, P. Grosse, J.M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, A. Chelnokov, Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal−oxide−silicon nanophotonics. Nano Lett. 10, 2922 (2009)

    Article  ADS  Google Scholar 

  45. B. Di Bartolo, J. Collins, L. Silvestri, Nano-Optics: Principles Enabling Basic Research and Applications. Part of the book series: NATO Science for Peace and Security Series B: Physics and Biophysics (NAPSB), conference proceeding (Springer, 2016)

    Google Scholar 

  46. T. Ding, J. Mertens, A. Lombardi, O.A. Scherman, J.J. Baumberg, Light-directed tuning of plasmon resonances via plasmon-induced polymerization using hot electrons. ACS Photonics 4(6), 1453–1458 (2017)

    Article  Google Scholar 

  47. P.A.M. Dirac, The quantum theory of emission and absorption of radiation. Roy. Soc. Lond. A 114(767), 243–265 (1927). https://doi.org/10.1098/rspa.1927.0039

    Article  ADS  MATH  Google Scholar 

  48. L. Douillard, F. Charra, C. Fiorini, P.-M. Adam, R. Bachelot, S. Kostcheev, G. Lerondel, M. Lamy de la Chapelle, P. Royer, Optical properties of metal nanoparticles as probed by photoemission electron microscopy. J. Appl. Phys. 101, 83518–83522 (2007). https://doi.org/10.1063/1.2719282

    Article  Google Scholar 

  49. L. Douillard, F. Charra, Z. Korczak, P.M. Adam, R. Bachelot, S. Kostcheev, G. Lerondel, P. Royer, Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett. 8, 935–940 (2008). https://doi.org/10.1021/nl080053v

    Article  ADS  Google Scholar 

  50. L. Douillard, F. Charra, High-resolution mapping of plasmonic modes: Photoemission and scanning tunnelling luminescence microscopies. J. Phys. D. Appl. Phys. 44, 464002 (2011). https://doi.org/10.1088/0022-3727/44/46/464002

    Article  ADS  Google Scholar 

  51. A. Drezet, M.J. Nasse, S. Huant, J.C. Woehl, The optical near-field of an aperture tip. Europhys. Lett. 66, 41 (2004)

    Article  ADS  Google Scholar 

  52. B. Egger, S.G. Sprecher, Super-Resolution STED and STORM/PALM Microscopy for Brain Imaging. Part of the Progress in Optical Science and Photonics book series POSP, vol. 5 (2019). https://doi.org/10.1007/978-981-10-9020-2_12

  53. P.Z. El-Khoury, P. Abellan, B.Y. Gong, A.F.S. Hage, J. Cottom, A.G. Joly, R. Brydson, C.Q.M. Ramasseb, W.P. Hessa, Visualizing surface plasmons with photons, photoelectrons, and electrons. Analyst 141, 3562 (2016). https://doi.org/10.1039/c6an00308g

    Article  ADS  Google Scholar 

  54. A. Feist, N. Bach, N.R. da Silva, T. Danz, M. Möller, K.E. Priebe, T. Domröse, J.G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis, S. Schäfer, C. Ropers, Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017). https://doi.org/10.1016/j.ultramic.2016.12.005

    Article  Google Scholar 

  55. G. Ferrini, F. Banfi, C. Giannetti, F. Parmigiani, Non-linear electron photoemission from metals with ultrashort pulses. Nuclear Inst. Methods Phys. Res. A 601, 123–131 (2009). https://doi.org/10.1016/j.nima.2008.12.107

    Article  ADS  Google Scholar 

  56. K.W. Frese, C. Chen, Theoretical models of hot carrier effects at metal-semiconductor electrodes. J. Electrochem. Soc. 139, 3234 (1992)

    Article  ADS  Google Scholar 

  57. F.J. Garcia de Abajo, Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Phys. Rev. B 59, 3095 (1999)

    Article  ADS  Google Scholar 

  58. K. Fukumoto, K. Onda, Y. Yamada, T. Matsuki, T. Mukuta, S.-i. Tanaka, S.-y. Koshihara, Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors. Rev. Sci. Instrum. 85, 083705 (2014)

    Article  ADS  Google Scholar 

  59. D. Ge, S. Marguet, A. Issa, S. Jradi, T. Hoa Nguyen, M. Nahra, J. Béal, R. Deturche, H. Chen, S. Blaize, J. Plain, C. Fiorini, L. Douillard, O. Soppera, X.Q. Dinh, C. Dang, X. Yang, T. Xu, B. Wei, X.W. Sun, C. Couteau, R. Bachelot, Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field. Nat. Commun. 11, 3414 (2020)

    Article  ADS  Google Scholar 

  60. T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, H. Misawa, Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization. Langmuir 28, 9041–9046 (2012)

    Article  Google Scholar 

  61. H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005)

    Article  ADS  Google Scholar 

  62. L. Gomez, R. Bachelot, A. Bouhelier, G.P. Wiederrecht, S.-H. Chang, S.K. Gray, F. Hua, S. Jeon, J.A. Rogers, M.E. Castro, S. Blaize, I. Stefanon, G. Lerondel, P.J. Royer, Apertureless scanning near-field optical microscopy: A comparison between homodyne and heterodyne approaches. Opt. Soc. Am. B Optical Physics 23(5), 823–833 (2006)

    Article  ADS  Google Scholar 

  63. J.-J. Greffet, R. Carminati, Image formation in near-field optics. Prog. Surf. Sci. 56(3), 133–237 (1997)

    Article  ADS  Google Scholar 

  64. S. Grésillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V.A. Shubin, A.K. Sarychev, V.M. Shalaev, Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4529 (1999)

    Article  ADS  Google Scholar 

  65. C. Gruber, A. Hirzer, V. Schmidt, A. Trügler, U. Hohenester, H. Ditlbacher, A. Hohenau, J.R. Krenn, Imaging nanowire plasmon modes with two-photon polymerization. Appl. Phys. Lett. 106, 081101 (2015). https://doi.org/10.1063/1.4913470

    Article  ADS  Google Scholar 

  66. A. Grubisic, E. Ringe, C.M. Cobley, Y. Xia, L.D. Marks, R.P. Van Duyne, D.J. Nesbit, Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: Correlated spatial and laser polarization microscopy studies of individual Ag nanocubes. Nano Lett. 12, 4823–4829 (2012). https://doi.org/10.1021/nl302271u

    Article  ADS  Google Scholar 

  67. A. Grubisic, V. Schweikhard, T.A. Baker, D.J. Nesbitt, Multiphoton photoelectron emission microscopy of single Au nanorods: Combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances. Phys. Chem. Chem. Phys. 15, 10616 (2013)

    Article  Google Scholar 

  68. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010)

    Article  ADS  Google Scholar 

  69. F.J. Garcia de Abajo, A. Asenjo-Garcia, M. Kociak, Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859 (2010)

    Article  ADS  Google Scholar 

  70. A. Garcia-Etxarri, I. Romero, F.J.G. de Abajo, R. Hillenbrand, J. Aizpurua, Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Phys. Rev. B 79(2009), 045111 (2009)

    Google Scholar 

  71. Y. Gong, A.G. Joly, P.Z. El-Khoury, W.P. Hess, Nonlinear photoemission electron micrographs of plasmonic nanoholes in gold thin films. J. Phys. Chem. C 118, 25671–25676 (2014). https://doi.org/10.1021/jp509900h

    Article  Google Scholar 

  72. Y. Gong, A. Joly, D. Hu, P. El-Khoury, W. Hess, Ultrafast imaging of surface plasmons propagating on a gold surface. NanoLetters 15, 3472 (2015)

    Article  ADS  Google Scholar 

  73. A. Gliserin, S.H. Chew, S. Choi, K. Kim, D.T. Hallinan, O. Jin-Woo, S. Kim, D.E. Kim, Interferometric time- and energy-resolved photoemission electron microscopy for few-femtosecond nanoplasmonic dynamics. Rev. Sci. Instrum. 90, 093904 (2019). https://doi.org/10.1063/1.5110705

    Article  ADS  Google Scholar 

  74. B. Goris, G. Guzzinati, C. Fernández-López, J. Pérez-Juste, L.M. Liz-Marzán, A. Trügler, U. Hohenester, J. Verbeeck, S. Bals, G. Van Tendeloo, Plasmon mapping in Au@Ag nanocube assemblies. J. Phys. Chem. C. Nanomater. Interf. 118, 15356 (2014)

    Article  Google Scholar 

  75. M. Haggui, M. Dridi, J. Plain, S. Marguet, P. Henri, G. Schatz, G. Wiederrecht, S. Gray, R. Bachelot, Spatial confinement of electromagnetic hot and cold spots in gold nanocubes. ACS Nano 6, 1299–1307 (2012)

    Article  Google Scholar 

  76. A. Hartschuh, H. Qian, C. Georgi, M. Böhmler, L. Novotny, Tip-enhanced near-field optical microscopy of carbon nanotubes. Anal. Bioanal. Chem. 394, 1787–1795 (2009). https://doi.org/10.1007/s00216-009-2827-4A

    Article  Google Scholar 

  77. M.T. Hassan, J.S. Baskin, B. Liao, A.H. Zewail, High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photonics 11, 425 (2017). https://doi.org/10.1038/NPHOTON.2017.79

    Article  ADS  Google Scholar 

  78. M. Hassan, Attomicroscopy: From femtosecond to attosecond electron microscopy. J. Phys. B Atomic Mol. Phys. 51, 032005 (2018)

    Article  ADS  Google Scholar 

  79. B. Hecht, H. Bielefeldt, Y. Inouye, D.W. Pohl, L. Novotny, Facts and artifacts in near-field optical microscopy. J. Appl. Phys. 81, 2492 (1997)

    Article  ADS  Google Scholar 

  80. P.N. Hedde, G.U. Nienhaus, Sub-wavelength optical fluorescence microscopy for biological applications, in Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale: Plasmonics, Photonic Crystals, Metamaterials and Sub-Wavelength Resolution, Springer Series: NATO Science for Peace and Security Series B: Physics and Biophysics, ed. by B. di Bartolo, J. Collins, (Springer Science + Business Media B.V, Dordrecht, 2013), pp. 47–71

    Chapter  Google Scholar 

  81. C. Hrelescu, T.K. Sau, A.L. Rogach, F. Jäckel, G. Laurent, L. Douillard, F. Charra, Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. Nano Lett. 11, 402–407 (2011). https://doi.org/10.1021/nl103007m

    Article  ADS  Google Scholar 

  82. R.G. Hobbs, W.P. Putnam, A. Fallahi, Y. Yang, F.X. Kärtner, K.K. Berggren, Mapping photoemission and hot-electron emission from plasmonic nanoantennas. Nano Lett. 17, 6069–6060 (2017)

    Article  ADS  Google Scholar 

  83. A. Hörl, A. Trügler, U. Hohenester, Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 111, 076801 (2013)

    Article  ADS  Google Scholar 

  84. A. Hörl, G. Haberfehlner, A. Trügler, F.-P. Schmidt, U. Hohenester, G. Kothleitner, Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat. Commun. 8, 37 (2017). https://doi.org/10.1038/s41467-017-00051-3

    Article  ADS  Google Scholar 

  85. A. Horrer, Y. Zhang, D. Gerard, J. Béal, M. Kociak, J. Plain, R. Bachelot, Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Lett. 20, 509–516 (2019)

    Article  ADS  Google Scholar 

  86. A. Howie, Photon interactions for electron microscopy applications. Eur. Phys. J.-Appl. Phys. 54, 33502 (2011)

    Article  ADS  Google Scholar 

  87. B. Huber, S. Pres, E. Wittmann, L. Dietrich, J. Lüttig, D. Fersch, E. Krauss, D. Friedrich, J. Kern, V. Lisinetskii, M. Hensen, B. Hecht, R. Bratschitsch, E. Riedle, T. Brixner, Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate. Rev. Sci. Instrum. 90, 113103 (2019). https://doi.org/10.1063/1.5115322

    Article  ADS  Google Scholar 

  88. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-H. Chang, S.K. Gray, G.P. Wiederrecht, G.C. Schatz, Near-field photochemical imaging of noble metal nanostructures. Nano Lett. 5(4), 615–619 (2005)

    Article  ADS  Google Scholar 

  89. C. Hubert, R. Bachelot, J. Plain, S. Kostcheev, G. Lerondel, M. Juan, P. Royer, S. Zou, G.C. Schatz, G.P. Wiederrecht, S.K. Gray, Near-field polarization effects in molecular-motion-induced photochemical imaging. J. Phys. Chem. C 112, 4111–4116 (2008)

    Article  Google Scholar 

  90. H.C.V.d. Hulst Dover, Light Scattering by Small Particles (Wiley, 1981)

    Google Scholar 

  91. A. Jalocha, N.F. van Hulst, Polarization contrast in fluorescence scanning near-field optical reflection microscopy. J. Opt. Soc. Am. B 12, 1577 (1995)

    Article  ADS  Google Scholar 

  92. R. Jazi, T.P.L. Ung, P. Maso, G.C.D. Francs, M. Nasilowski, B. Dubertret, J.-P. Hermier, X. Quélina, S. Bui, Measuring the orientation of a single CdSe/CdS nanocrystal at the end of a near-field tip for the realization of a versatile active SNOM probe. Phys. Chem. Chem. Phys. 20, 16444–16448 (2018)

    Article  Google Scholar 

  93. M. Juan, J. Plain, R. Bachelot, P. Royer, S.K. Gray, G.P. Wiederrecht, Stochastic model for photoinduced surface relief grating formation through molecular transport in polymer films. Appl. Phys. Lett. 93, 153304–153306 (2008)

    Article  ADS  Google Scholar 

  94. M.L. Juan, J. Plain, R. Bachelot, P. Royer, S.K. Gray, G.P. Wiederrecht, Multiscale model for photoinduced molecular motion in azo polymers. ACS Nano 3(6), 1573–1579 (2009)

    Article  Google Scholar 

  95. P. Kahl, D. Podbiel, C. Schneider, A. Makris, S. Sindermann, C. Witt, D. Kilbane, M.H.-v. Hoegen, M. Aeschlimann, F. Meyer zu Heringdorf, Direct observation of surface plasmon polariton propagation and interference by time-resolved imaging in normal-incidence two photon photoemission microscopy plasmonics. Plasmonics 13, 239–246 (2018)

    Article  Google Scholar 

  96. M.A. Kats, N. Yu, P. Genevet, Z. Gaburro, F. Capasso, Effect of radiation damping on the spectral response of plasmonic components. Opt. Express 19, 21748 (2011)

    Article  ADS  Google Scholar 

  97. H. Kawano, Effective work functions of the elements. Prog. Surf. Sci. 97, 100583 (2022)

    Article  Google Scholar 

  98. C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum, All-optical control and metrology of electron pulses. Science 352, 429 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum plasmonic nanoantennas. Nano Lett. 12, 6000–6004 (2012). https://doi.org/10.1021/nl303517v

    Article  ADS  Google Scholar 

  100. A.E. Klein, N. Janunts, M. Steinert, A. Tünnermann, T. Pertsch, Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system. Nano Lett. 14, 5010 (2014)

    Article  ADS  Google Scholar 

  101. M. Kociak, O. Stéphan, Mapping plasmons at the nanometer scale in an electron microscope. Chem. Soc. Rev. 43, 3865 (2014)

    Article  Google Scholar 

  102. M. Kociak, L.F. Zagonel, Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017)

    Article  Google Scholar 

  103. V. Krachmalnicoff et al., Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. Opt. Express 21, 11536 (2013)

    Article  ADS  Google Scholar 

  104. E. Kretschmann, H. Raether, Zeitschrift Fur Naturforschung Part A-Astrophysik Physik Und Physikalische Chemie A. 23, 2135–2136 (1968)

    Google Scholar 

  105. A. Kubo, N. Pontius, H. Petek, Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 7, –470 (2007). https://doi.org/10.1021/nl0627846

  106. A. Lahrech, R. Bachelot, P. Gleyzes, A.C. Boccara, Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600. Opt. Lett. 21(17), 1315–1317 (1996)

    Article  ADS  Google Scholar 

  107. A. Lahrech, R. Bachelot, P. Gleyzes, A.C. Boccara, Infrared near-field imaging of implanted semiconductors: Evidence of a pure dielectric contrast. Appl. Phys. Lett. 71(5), 575–577 (1997)

    Article  ADS  Google Scholar 

  108. M.J. Lagos, A. Trügler, U. Hohenester, P.E. Batson, Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529–532 (2017)

    Article  ADS  Google Scholar 

  109. H.S. Lee, C. Awada, S. Boutami, F. Charra, L. Douillard, R. de Lamaestre, Espiau., Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface. Opt. Express 20, 8974–8981 (2012). https://doi.org/10.1364/OE.20.008974

    Article  ADS  Google Scholar 

  110. P. Lefin, C. Fiorini, J.-M. Nunzi, Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices. J. Optics A Pure Appl. Optics 7(1), 71–82 (1998)

    Article  ADS  Google Scholar 

  111. M. Lehr, B. Foerster, M. Schmitt, K. Krüger, C. Sönnichsen, G. Schönhense, H.-J. Elmers, Momentum distribution of electrons emitted from resonantly excited individual gold nanorods. Nano Lett. 17, 6606–6612 (2017). https://doi.org/10.1021/acs.nanolett.7b02434

    Article  ADS  Google Scholar 

  112. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, M. Bauer, Mapping surface plasmon polariton propagation via counter-propagating light pulses. Opt. Express 20, 12877–12884 (2012). https://doi.org/10.1364/OE.20.012877

    Article  ADS  Google Scholar 

  113. M.A. Lieb, A.J. Meixner, A high numerical aperture parabolic mirror as imaging device for confocal microscopy. Opt. Express 8, 458–474 (2001)

    Article  ADS  Google Scholar 

  114. H. Liu, J.S. Baskin, A.H. Zewail, Infrared PINEM developed by diffraction in 4D UEM. PNAS 113, 2041–2046 (2016). https://doi.org/10.1073/pnas.1600317113

    Article  ADS  Google Scholar 

  115. C. Liu, W. Yueying, H. Zhongwei, J.A. Busche, E.K. Beutler, N.P. Montoni, T.M. Moore, G.A. Magel, J.P. Camden, D.J. Masiello, G. Duscher, P.D. Rack, Photon stimulated electron energy-gain and electron energy-loss spectroscopy of individual plasmonic nanoparticles. ACS Photonics 6, 2499–2508 (2019)

    Article  Google Scholar 

  116. G. Longo, M. Girasole, G. Pompeo, A. Cricenti, Optical super resolution using higher harmonics and difference acquisition modes in an aperture tapping SNOM. Phys. Status Solidi 247, 2056 (2010)

    Article  Google Scholar 

  117. A. Losquin, M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states. ACS Photonics 2, 1619–1627 (2015). https://doi.org/10.1021/acsphotonics.5b00416

    Article  Google Scholar 

  118. A. Losquin, L.F. Zagonel, V. Myroshnychenko, B. Rodríguez-González, M. Tencé, L. Scarabelli, J. Förstner, L.M. Liz-Marzán, F.J. García de Abajo, O. Stéphan, M. Kociak, Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15, 1229–1237 (2015)

    Article  ADS  Google Scholar 

  119. E. Lorek, E. Mårsell, A. Losquin, M. Miranda, A. Harth, C. Guo, R. Svärd, C.L. Arnold, A. L’Huiller, A. Mikkelsen, J. Mauritsson, Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas. Opt. Express 23, 31460 (2015)

    Article  ADS  Google Scholar 

  120. A. Losquin, T.T.A. Lummen, Electron microscopy methods for space-, energy-, time-resolved plasmonics. Front. Phys. 12, 127301 (2017). https://doi.org/10.1007/s11467-016-0605-2

    Article  ADS  Google Scholar 

  121. T.T.A. Lummen, R.J. Lamb, G. Berruto, T. LaGrange, F. Luca Dal Negro, J.G. de Abajo, D. McGrouther, B. Barwick, F. Carbone, Imaging and controlling plasmonic interference fields at buried interfaces. Nat. Commun. 7, 13156 (2016). https://doi.org/10.1038/ncomms13156

    Article  ADS  Google Scholar 

  122. M.K.L. Man, A. Margiolakis, S. Deckoff-Jones, T. Harada, E. Laine Wong, M.B.M. Krishna, J. Madéo, A. Winchester, S. Lei, R. Vajtai, P.M. Ajayan, K.M. Dani, Imaging the motion of electrons across semiconductor heterojunctions. Nature Nanotechnol. 12, 36 (2017)

    Article  ADS  Google Scholar 

  123. E. Mårsell, A. Losquin, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C.L. Arnold, X. Hongxing, A. L’Huillier, A. Mikkelsen, Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna. Nano Lett. 15, 6601–6608 (2015). https://doi.org/10.1021/acs.nanolett.5b02363

    Article  ADS  Google Scholar 

  124. M. Mankos, K. Shadman, R. Hahn, Y.J. Picard, D. Comparat, O. Fedchenko, G. Schönhense, L. Amiaud, A. Lafosse, N. Barrett, Design for a high resolution electron energy loss microscope. Ultramicroscopy 207, 112848 (2019). https://doi.org/10.1016/j.ultramic.2019.112848

    Article  Google Scholar 

  125. G.A. Massey, Microscopy and pattern generation with scanned evanescent waves. Appl. Opt. 23, 658 (1984)

    Article  ADS  Google Scholar 

  126. B.R. Masters, History of the optical microscope in cell biology and medicine, in Encyclopedia of Life Sciences, (Wiley, New York, 2008)

    Google Scholar 

  127. R.J. Matelon, D.M. Newman, M.L. Wears, Photoacoustic determination of the plasmon enhanced electric field at a corrugated metal interface. Rev. Sci. Instrum. 75, 2560–2563 (2004)

    Article  ADS  Google Scholar 

  128. T. Matsukata, C. Wadell, N. Matthaiakakis, N. Yamamoto, T. Sannomiya, Selected mode mixing and interference visualized within a single optical nanoantenna. ACS Photonics 5, 4986–4992 (2018). https://doi.org/10.1021/acsphotonics.8b01231

    Article  Google Scholar 

  129. M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M.H. Baier, E. Kapon, B. Deveaud, J.-D. Ganière, Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479 (2005). https://doi.org/10.1038/nature04298

    Article  ADS  Google Scholar 

  130. P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, M. Aeschlimann, Optical near-field interference in the excitation of a bowtie nanoantenna. Phys. Rev. B 83, 235407 (2011)

    Article  ADS  Google Scholar 

  131. A. Merlen, F. Lagugné-Labarthet, Imaging the optical near field in plasmonic nanostructures. Appl. Spec. OA 68, 1307 (2014). https://doi.org/10.1366/14-07699

    Article  ADS  Google Scholar 

  132. M. Merschdorf, C. Kennerknecht, W. Pfeiffer, Collective and single-particle dynamics in time-resolved two-photon photoemission. Phys. Rev. B 70, 193401 (2004)

    Article  ADS  Google Scholar 

  133. S. Meuret, M. Solà Garcia, T. Coenen, E. Kieft, H. Zeijlemaker, M. Lätzel, S. Christiansen, S.Y. Woo, Y.H. Ra, Z. Mi, A. Polman, Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope. Ultramicroscopy 197, 28–38 (2019)

    Article  Google Scholar 

  134. S. Mignuzzi, M. Mota, T. Coenen, Y. Li, A.P. Mihai, P.K. Petrov, R.F.M. Oulton, S.A. Maier, R. Sapienza, Energy−Momentum cathodoluminescence spectroscopy of dielectric nanostructures. ACS Photonics 5, 1381–1387 (2018). https://doi.org/10.1021/acsphotonics.7b01404

    Article  Google Scholar 

  135. O.L.A. Monti, T.A. Baker, D.J. Nesbitt, Imaging nanostructures with scanning photoionization microscopy. J. Chem. Phys. 125, 154709 (2006). https://doi.org/10.1063/1.2354478

    Article  ADS  Google Scholar 

  136. C. Moreno, J. Alda, E. Kinzel, G. Boreman, Phase imaging and detection in pseudo-heterodyne scattering scanning near-field optical microscopy measurements. Appl. Opt. 56, 1037 (2017)

    Article  ADS  Google Scholar 

  137. Y. Morimoto, P. Baum, Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018). https://doi.org/10.1038/s41567-017-0007-6

    Article  Google Scholar 

  138. M. Munzinger, C. Wiemann, M. Rohmer, L. Guo, M. Aeschlimann, M. Bauer, The lateral photoemission distribution from a defined cluster/substrate system as probed by photoemission electron microscopy. New J. Phys. 7, 68–83 (2005)

    Article  ADS  Google Scholar 

  139. V. Myroshnychenko, F. Natsuki Nishio, J. García, J. de Abajo, N.Y. Förstner, Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution. ACS Nano 12, 8436–8446 (2018). https://doi.org/10.1021/acsnano.8b03926

    Article  Google Scholar 

  140. S. Negm, H. Talaat, Surface plasmon resonance halfwidths as measured using attenuated total reflection, forward scattering and photoacoustics. J. Phys. Condens. Matter 1, 10201–10205 (1989)

    Article  ADS  Google Scholar 

  141. J. Nelayah, M. Kociak, O. Stephan, F.J.G. de Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)

    Article  Google Scholar 

  142. V.-Q. Nguyen, Y. Ai, P. Martin, J.-C. Lacroix, Plasmon-induced nanolocalized reduction of diazonium salts. ACS Omega 2(5), 1947–1955 (2017)

    Article  Google Scholar 

  143. O. Nicoletti, F. de la Peña, R.K. Leary, D.J. Holland, C. Ducati, P.A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80 (2013). https://doi.org/10.1038/nature12469

    Article  ADS  Google Scholar 

  144. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)

    Article  ADS  Google Scholar 

  145. L. Novotny, E.J. Sánchez, X. Sunney, J. Xie, Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams. Ultramicroscopy 71, 21–29 (1998)

    Article  Google Scholar 

  146. L. Novotny, N.F. Van Hulst, Antennas for light. Nat. Photonics 5, 83 (2011)

    Article  ADS  Google Scholar 

  147. L. Novotny, B. Hecht, Principle in nano-optics, 2nd edn. (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  148. A. Otto, Eine neue Methode der Anregung nichtstrahlender Oberflächenplasmaschwingungen. Phys. Status Solidi 26, K99–K102 (1968)

    Article  ADS  Google Scholar 

  149. T. Onuma, Y. Kagamitani, K. Hazu, T. Ishiguro, T. Fukuda, S.F. Chichibu, Femtosecond-laser-driven photoelectron gun for time-resolved cathodoluminescence measurement of GaN. Rev. Sci. Instrum. 83, 043905 (2012). https://doi.org/10.1063/1.3701368

    Article  ADS  Google Scholar 

  150. Y. Pan, B. Zhang, A. Gover, Anomalous photon-induced near-field electron microscopy. Phys. Rev. Lett. 122, 183204 (2019)

    Article  ADS  Google Scholar 

  151. S.T. Park, M. Lin, A.H. Zewail, Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental. New J. Phys. 12, 123028 (2010). https://doi.org/10.1088/1367-2630/12/12/123028

    Article  ADS  Google Scholar 

  152. S.T. Park, A.H. Zewail, Relativistic effects in photon-induced near-field electron microscopy. J. Phys. Chem. A 116, 11128 (2012)

    Article  Google Scholar 

  153. S.T. Park, A.H. Zewail, Photon-induced near field electron microscopy. Proc. SPIE Ultrafast Imag. Spectrosc. 8845, 884506 (2013). https://doi.org/10.1117/12.2023082

    Article  Google Scholar 

  154. S.J. Peppernick, A.G. Joly, K.M. Beck, W.P. Hess, Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy. J. Chem. Phys. 134, 034507 (2011). https://doi.org/10.1063/1.3543714

    Article  ADS  Google Scholar 

  155. L. Piazza et al., Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015)

    Article  ADS  Google Scholar 

  156. J. Plain, G.P. Wiederrecht, S.K. Gray, P. Royer, R. Bachelot, Multiscale optical imaging of complex fields based on the use of azobenzene nanomotors. J. Phys. Chem. Lett. 4(13), 2124–2132 (2013)

    Article  Google Scholar 

  157. D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T.J. Davis, H. Giessen, M.H.-v. Hoegen, F.J. Meyer zu Heringdorf., Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields. Nano Lett. 17(11), 6569–6574 (2017)

    Article  ADS  Google Scholar 

  158. D.W. Pohl. Scanning near-field optical microscopy (SNOM). Adv. Optic. Electr. Microsc. 12 (1991). ISBN 0-12-029912 Copyright © 1991 Academic

    Google Scholar 

  159. D. Pohl, D. Courjon, in Near Field Optics, NATO ASI Series E: Applied Sciences, vol. 242. Proceedings of NFO I: Besançon/Arc & Senans, France, 26–28 October 1992 (Kluwer Academic, Dordrecht, 1993)

    Google Scholar 

  160. A. Polman, F. Mathieu Kociak, J. García, de Abajo., Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019). https://doi.org/10.1038/s41563-019-0409-1

    Article  ADS  Google Scholar 

  161. M. Purcell, Spontanneaous emission probability at radio frequencies. Phys. Rev. 69, 681 (1946)

    Google Scholar 

  162. R. Qi, R. Wang, Y. Li, Y. Sun, S. Chen, B. Han, N. Li, Q. Zhang, X. Liu, Y. Dapeng, P. Gao, Probing far-infrared surface phonon polaritons in semiconductor nanostructures at nanoscale. Nano Lett. 19, 5070–5076 (2019). https://doi.org/10.1021/acs.nanolett.9b01350

    Article  ADS  Google Scholar 

  163. H. Rau, Photo isomerization of azobenzenes. Photoreact. Organic Thin Films, 3–47 (2002)

    Google Scholar 

  164. H.-G. von Ribbeck, M. Brehm, D.W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, F. Keilmann, Spectroscopic THz near-field microscope. Opt. Express 16, 3430 (2008)

    Article  ADS  Google Scholar 

  165. N. Rotenberg, L. Kuipers, Mapping nanoscale light fields. Nature Photos 8, 919 (2014)

    Article  ADS  Google Scholar 

  166. B.M. Ross, L.P. Lee, Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles. Opt. Lett. 34, 896–898 (2009)

    Article  ADS  Google Scholar 

  167. D. Rossouw et al., Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett. 11, 1499 (2011)

    Article  ADS  Google Scholar 

  168. B. Rothenhäusler, J. Rabe, P. Korpiun, W. Knoll, On the decay of plasmon surface polaritons at smooth and rough Ag-air interfaces: A reflectance and photo-acoustic study. Surf. Sci. 137, 373–383 (1984). https://doi.org/10.1016/0039-6028(84)90696-4

    Article  ADS  Google Scholar 

  169. A. Ryabov, P. Baum, Electron microscopy of electromagnetic waveforms. Science 353, 374 (2016)

    Article  ADS  Google Scholar 

  170. J. Schefold, S. Meuret, N. Schilder, T. Coenen, H. Agrawal, E.C. Garnett, A. Polman, Spatial resolution of coherent cathodoluminescence super-resolution microscopy. ACS Photonics 6, 1067–1072 (2019). https://doi.org/10.1021/acsphotonics.9b00164

    Article  Google Scholar 

  171. F.-P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J.R. Krenn, M. Kociak, How dark are radial breathing modes in plasmonic nanodisks? ACS Photonics 5, 861–866 (2018). https://doi.org/10.1021/acsphotonics.7b01060

    Article  Google Scholar 

  172. A.W. Schell, P. Enge, J.F.M. Werra, C. Wolff, K. Busch, O. Benson, Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states. Nano Lett. 14, 2623 (2014)

    Article  ADS  Google Scholar 

  173. V. Schweikhard, A. Grubisic, T.A. Baker, D.J. Nesbitt, Multiphoton scanning photoionization imaging microscopy for single-particle studies of plasmonic metal nanostructures. J. Phys. Chem. C 115, 83–91 (2011). https://doi.org/10.1021/jp1075143

    Article  Google Scholar 

  174. E. Shirai, Y. Urai, K. Itoh, Surface-enhanced photopolymerization of a diacetylene derivative in langmuir−blodgett films on a silver island film. J. Phys. Chem. B 102(19), 3765–3772 (1998)

    Article  Google Scholar 

  175. H.L. Skriver, N.M. Rosengaard, Surface energy and work function of elemental metals. Phys. Rev. B 46, 7157–7168 (1992)

    Article  ADS  Google Scholar 

  176. G. Spektor, D. Kilbane, A.K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, M. Aeschlimann, Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017)

    Article  ADS  Google Scholar 

  177. K.-H. Su, Q.-H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003)

    Article  ADS  Google Scholar 

  178. E.H. Synge, A suggested method for extending microscopic resolution into the ultramicroscopic region. Lond. Edinb. Dublin Philos. Mag. J. Sci 6(35), 356–362 (1928)

    Article  Google Scholar 

  179. N. Talebi, Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry. Adv. Phys. X 3(1), 1499438 (2018). https://doi.org/10.1080/23746149.2018.1499438

    Article  Google Scholar 

  180. T.H. Taminiau, F.D. Stefani, N.F. van Hulst, Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes. Nano Lett. 11, 1020–1024 (2011). https://doi.org/10.1021/nl103828n

    Article  ADS  Google Scholar 

  181. T. Taubner, F. Eilmann, R. Hillenbrand, Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. Opt. Express 13, 8893 (2005)

    Article  ADS  Google Scholar 

  182. A. Teulle, A. Sanchot, E. Ishow, J. Sharma, E. Dujardin, Photochemical mapping of the multimodal plasmonic response of 2D gold crystals. J. Phys. Chem. C 121(29), 15908–15914 (2017)

    Article  Google Scholar 

  183. I. Tijunelyte, I. Kherbouche, S. Gam-Derouich, M. Nguyen, C.N. Lidgi-Guigui, M.L. de la Chapelle, A. Lamouri, G. Lévi, J. Aubard, A. Chevillot-Biraud, C. Mangeney, N. Felidj, Multi-functionalization of lithographically designed gold nanodisks by plasmon-mediated reduction of aryl diazonium salts. Nanosc Horiz 3, 53 (2018)

    Article  ADS  Google Scholar 

  184. L. Tong, Q.S. Wei, A. Wei, J.X. Cheng, Gold nanorods as contrast agents for biological imaging: Optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85, 21–32 (2009). https://doi.org/10.1111/j.1751-1097.2008.00507.x

    Article  Google Scholar 

  185. Z. Thollar, C. Wadell, T. Matsukata, N. Yamamoto, T. Sannomiya, Three-dimensional multipole rotation in spherical silver nanoparticles observed by cathodoluminescence. ACS Photonics 5, 2555–2560 (2018). https://doi.org/10.1021/acsphotonics.7b01293

    Article  Google Scholar 

  186. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, H. Misawa, Nanogap-assisted surface plasmon nanolithography. J. Phys. Chem. Lett. 1(3), 657–662 (2010)

    Article  Google Scholar 

  187. A.V. Uskov, I.E. Protsenko, R.S. Ikhsanov, V.E. Babicheva, S.V. Zhukovsky, A.V. Lavrinenko, E.P. O’Reilly, X. Hongxing, Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects. Nanoscale 6, 4716 (2014)

    Article  ADS  Google Scholar 

  188. R. Vogelgesang, A. Dmitriev, Real-space imaging of nanoplasmonic resonances. Analyst 135, 1175–1181 (2010). https://doi.org/10.1039/C000887G

    Article  ADS  Google Scholar 

  189. B. Voigtländer, Atomic force microscopy, 2nd edn. (Springer, Cham, 2019)

    Book  Google Scholar 

  190. J.A. Veerman, A.M. Otter, L. Kuipers, N.F. van Hulst, High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. Lett. 72, 3115–3117 (1998). https://doi.org/10.1063/1.121564

    Article  ADS  Google Scholar 

  191. E.J.R. Vesseur, R.D. Waele, M. Kuttge, A. Polman, Direct observation of plasmonic modes in au nanowires using high-resolution cathodo luminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007)

    Article  ADS  Google Scholar 

  192. B. Vohnsen, S. Bozhevolnyi, R. Olesen, Study of shear force technique for near-field microscopy with an uncoated fiber tip. Ultramicroscopy 61, 207–213 (1995)

    Article  Google Scholar 

  193. G. Volpe, M. Noack, S.S. Aćimović, C. Reinhardt, R. Quidant, Near-field mapping of plasmonic antennas by multiphoton absorption in poly(methyl methacrylate). Nano Lett. 12(9), 4864–4868 (2012)

    Article  ADS  Google Scholar 

  194. Z. Vörös, R. Johnsen, A simple demonstration of frustrated total internal reflection. Am. J. Phys. 76, 246 (2008)

    Article  Google Scholar 

  195. F. Wang, Y. Ron Shen, General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006)

    Article  ADS  Google Scholar 

  196. Y. Wang, S. Wang, S. Zhang, O.A. Scherman, J.J. Baumberg, T. Ding, X. Hongxing, Plasmon-directed polymerization: Regulating polymer growth with light. Nano Res. 11, 6384–6390 (2018)

    Article  Google Scholar 

  197. K. Wang, R. Dahan, M. Shentcis, Y. Kauffmann, A.B. Hayun, O. Reinhardt, S. Tsesses, I. Kaminer, Coherent interaction between free electrons and a photonic cavity. Nature 582, 50 (2020)

    Article  ADS  Google Scholar 

  198. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 396 (1902)

    Article  Google Scholar 

  199. R. C. Word, T. Dornan, R. Könenkamp. Photoemission from localized surface plasmons in fractal metal nanostructures. Appl. Phys. Lett. 96, 251110 (2010); 10.1063/1.3457921

    Google Scholar 

  200. Y. Wu, G. Li, J.P. Camden, Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. 118, 2994–3031 (2018). https://doi.org/10.1021/acs.chemrev.7b00354

    Article  Google Scholar 

  201. Y. Wu, H. Zhongwei, X.-T. Kong, J.C. Idrobo, A.G. Nixon, P.D. Rack, D.J. Masiello, J.P. Camden, Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires. Phys. Rev. B 101, 085409 (2020)

    Article  ADS  Google Scholar 

  202. A. Yurtsever, A. Zewail, Direct visualization of near-fields in nanoplasmonics and nanophotonics. Nano Lett. 12, 3334 (2012)

    Article  ADS  Google Scholar 

  203. G. Wurtz, R.A. Bachelot, P. Royer, A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope. Rev. Sci. Instrum. 69, 1735–1743 (1998)

    Article  ADS  Google Scholar 

  204. G. Wurtz, D. Burget, C. Carre, in Photopolymerization-Induced Materialization of the Dipolar Response from Isolated Metallic Nanoparticles. Proceedings of the SPIE 5458, Optical Micro- and Nanometrology in Manufacturing Technology (17 August 2004); https://doi.org/10.1117/12.545655

  205. A.V. Zayats, I.I. Smolyaninov, Near-field photonics: Surface plasmon polaritons and localized surface plasmons. J. Optics A Pure Appl. Optics 5, S16–S50 (2003)

    Article  ADS  Google Scholar 

  206. C. Zhan, M. Moskovits, Z.-Q. Tian, Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020)

    Article  Google Scholar 

  207. Y. Zhang, G. Demesy, M. Haggui, D. Gerard, J. Béal, S. Dodson, Q. Xiong, J. Plain, N. Bonod, R. Bachelot, Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers. ACS Photon. 5(3), 918–928 (2017)

    Article  Google Scholar 

  208. X. Zhou, C. Deeb, S. Kostcheev, G.P. Wiederrecht, P.-M. Adam, J. Béal, J. Plain, D.J. Gosztola, J. Grand, N. Félidj, H. Wang, A. Vial, R. Bachelot, Selective functionalization of the nanogap of a plasmonic dimer. ACS Photonics 2(1), 121–129 (2014)

    Article  Google Scholar 

  209. S. Zu, T. Han, M. Jiang, F. Lin, X. Zhu, Z. Fang, Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures. ACS Nano 12, 3908–3916 (2018). https://doi.org/10.1021/acsnano.8b01380

    Article  Google Scholar 

  210. S. Zu, T. Han, M. Jiang, Z. Liu, Q. Jiang, F. Lin, X. Zhu, Z. Fang, Imaging of plasmonic chiral radiative local density of states with cathodoluminescence nanoscopy. Nano Lett. 19, 775–780 (2019). https://doi.org/10.1021/acs.nanolett.8b03850

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Bachelot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bachelot, R., Douillard, L. (2023). Probing the Optical Near-Field. In: Gordon, R. (eds) Advances in Near-Field Optics. Springer Series in Optical Sciences, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-031-34742-9_4

Download citation

Publish with us

Policies and ethics