Skip to main content

Sub-Wavelength Optical Fluorescence Microscopy for Biological Applications

  • Conference paper
  • First Online:
Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale

Abstract

Visualization of sub-cellular structures and their temporal evolution contributes substantially to our understanding of biological processes. Far-field optical microscopy is arguably the most powerful imaging technique for cells and tissues because it allows live specimens to be studied over extended periods of time with only minimal perturbation due to the measurement. In fluorescence microscopy, biomolecules or supramolecular structures of interest are specifically labeled by light-emitting moieties and thus can be imaged with excellent contrast. A disadvantage of standard optical microscopy is its moderate spatial resolution, which is restricted to about half the wavelength of visible light (∼200 nm) by fundamental physical laws governing wave optics. Consequently, molecular interactions occurring on spatial scales of 1–100 nm cannot be resolved. However, a variety of super-resolution fluorescence microscopy techniques have recently been developed that overcome the resolution limitation. Here we present a brief overview of these techniques and their application to cellular biophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikr Anat 9:413–468

    Article  Google Scholar 

  2. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 A. resolution. Nature 185:422–7

    Article  ADS  Google Scholar 

  3. Perutz MF, Miurhead H, Cox JM, Goaman LC, Mathews FS, McGandy EL, Webb LE (1968) Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: (1) x-ray analysis. Nature 219:29–32

    Article  ADS  Google Scholar 

  4. Friedrich W, Knipping P, Laue M (1913) Eine quantitative Prüfung der Theorie für die Interferenzerscheinungen bei Röntgenstrahlen. Ann Phys 41:989–1002

    Google Scholar 

  5. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  ADS  Google Scholar 

  6. Knoll M, Ruska E (1932) Das Elektronenmikroskop. Z Physik 78:318–339

    Article  ADS  Google Scholar 

  7. Lucic V, Forster F, Baumeister W (2005) Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74:833–65

    Article  Google Scholar 

  8. Binning G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  9. Müller DJ, Wu N, Palczewski K (2008) Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Pharmacol Rev 60:43–78

    Article  Google Scholar 

  10. Wüthrich K (1987) Nuclear magnetic resonance–from molecules to man. Q Rev Biophys 19:3–5

    Article  Google Scholar 

  11. Lange OF, Lakomek NA, Fares C, Schröder GF, Walter KF, Becker S, Meiler J, Grubmüller H, Griesinger C, de Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–5

    Article  ADS  Google Scholar 

  12. Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Springer

    Book  Google Scholar 

  13. Nienhaus GU (2008) The green fluorescent protein: a key tool to study chemical processes in living cells. Angew Chem Int Ed Engl 47:8992–4

    Article  Google Scholar 

  14. Shimomura O (2006) Discovery of green fluorescent protein. Methods Biochem Anal 47:1–13

    Google Scholar 

  15. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–31

    Article  ADS  Google Scholar 

  16. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–44

    Article  ADS  Google Scholar 

  17. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A 104:727–32

    Article  ADS  Google Scholar 

  18. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–83

    Article  Google Scholar 

  19. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–6

    Article  ADS  Google Scholar 

  20. Helmchen F, Denk W (2002) New developments in multiphoton microscopy. Curr Opin Neurobiol 12:593–601

    Article  Google Scholar 

  21. Hell SW, Stelzer EHK (1992) Fundamental improvement of resolution with a 4Pi-confocal microscope using two-photon excitation. Opt Commun 93:277–282

    Article  ADS  Google Scholar 

  22. Gugel H, Bewersdorf J, Jakobs S, Engelhardt J, Storz R, Hell SW (2004) Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. Biophys J 87:4146–52

    Article  Google Scholar 

  23. Glaschick S, Röcker C, Deuschle K, Wiedenmann J, Oswald F, Mailander V, Nienhaus GU (2007) Axial resolution enhancement by 4Pi confocal fluorescence microscopy with two-photon excitation. J Biol Phys 33:433–43

    Article  Google Scholar 

  24. Gustafsson MG (1999) Extended resolution fluorescence microscopy. Curr Opin Struct Biol 9:627–34

    Article  MathSciNet  Google Scholar 

  25. Nagorni M, Hell SW (1998) 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J Struct Biol 123:236–47

    Article  Google Scholar 

  26. Egner A, Verrier S, Goroshkov A, Soling HD, Hell SW (2004) 4Pi-microscopy of the Golgi apparatus in live mammalian cells. J Struct Biol 147:70–6

    Article  Google Scholar 

  27. Medda R, Jakobs S, Hell SW, Bewersdorf J (2006) 4Pi microscopy of quantum dot-labeled cellular structures. J Struct Biol 156:517–23

    Article  Google Scholar 

  28. Ivanchenko S, Glaschick S, Röcker C, Oswald F, Wiedenmann J, Nienhaus GU (2007) Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy. Biophys J 92:4451–7

    Article  Google Scholar 

  29. Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21:1303–4

    Article  Google Scholar 

  30. Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MG (2008) I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 94:4971–83

    Article  Google Scholar 

  31. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–7

    Article  Google Scholar 

  32. Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–70

    Article  Google Scholar 

  33. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–6

    Article  ADS  Google Scholar 

  34. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–42

    Article  Google Scholar 

  35. Hirvonen LM, Wicker K, Mandula O, Heintzmann R (2009) Structured illumination microscopy of a living cell. Eur Biophys J 38:807–12

    Article  Google Scholar 

  36. Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3:361–74

    Article  Google Scholar 

  37. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–7

    Article  ADS  Google Scholar 

  38. Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 104:17370–5

    Article  ADS  Google Scholar 

  39. Verkhusha VV, Sorkin A (2005) Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12:279–85

    Article  Google Scholar 

  40. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651–6

    Article  ADS  Google Scholar 

  41. Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–8

    Article  Google Scholar 

  42. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101:15905–10

    Article  ADS  Google Scholar 

  43. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102:17565–9

    Article  ADS  Google Scholar 

  44. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–82

    Article  Google Scholar 

  45. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–3

    Article  ADS  Google Scholar 

  46. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208

    Article  ADS  Google Scholar 

  47. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104:20308–13

    Article  ADS  Google Scholar 

  48. Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schönle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95:2989–97

    Article  Google Scholar 

  49. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci U S A 105:18343–8

    Article  ADS  Google Scholar 

  50. Fuchs J, Böhme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) Imaging protein movement in live cells with super-resolution using mIrisFP. Nat Methods 7:627–630

    Article  Google Scholar 

  51. Fölling J, Belov V, Kunetsky R, Medda R, Schönle A, Egner A, Eggeling C, Bossi M, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed Engl 46:6266–70

    Article  Google Scholar 

  52. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–5

    Article  Google Scholar 

  53. Mitchison TJ, Sawin KE, Theriot JA, Gee K, Mallavarapu A (1998) Caged fluorescent probes. Methods Enzymol 291:63–78

    Article  Google Scholar 

  54. Gee KR, Weinberg ES, Kozlowski DJ (2001) Caged Q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorg Med Chem Lett 11:2181–3

    Article  Google Scholar 

  55. Irvine SE, Staudt T, Rittweger E, Engelhardt J, Hell SW (2008) Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew Chem Int Ed Engl 47:2685–8

    Article  Google Scholar 

  56. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106:22287–92

    Article  ADS  Google Scholar 

  57. Shang L, Dong SJ, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6:401–418

    Article  Google Scholar 

  58. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–5

    Article  ADS  Google Scholar 

  59. Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38:574–82

    Article  Google Scholar 

  60. Nienhaus GU, Nienhaus K, Holzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Röcker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82:351–8

    Article  Google Scholar 

  61. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–5

    Article  ADS  Google Scholar 

  62. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–72

    Article  Google Scholar 

  63. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94:108101

    Article  ADS  Google Scholar 

  64. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–53

    Article  ADS  Google Scholar 

  65. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5:417–23

    Article  Google Scholar 

  66. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–6

    Article  Google Scholar 

  67. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6

    Article  Google Scholar 

  68. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C, Schönle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93:3285–90

    Article  Google Scholar 

  69. Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci U S A 106:8107–12

    Article  ADS  Google Scholar 

  70. Flors C, Hotta J, Uji-i H, Dedecker P, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. J Am Chem Soc 129:13970–7

    Article  Google Scholar 

  71. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–5

    Article  Google Scholar 

  72. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911–6

    Article  ADS  Google Scholar 

  73. Bock H, Geisler C, Wurm CA, von Middendorff C, Jakobs S, Schönle A, Egner A, Hell SW, Eggeling C (2007) Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl Phys B 88:161–165

    Article  ADS  Google Scholar 

  74. Schönle A, Hell SW (2007) Fluorescence nanoscopy goes multicolor. Nat Biotechnol 25:1234–5

    Article  Google Scholar 

  75. Andresen M, Stiel AC, Fölling J, Wenzel D, Schönle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26:1035–40

    Article  Google Scholar 

  76. van de Linde S, Endesfelder U, Mukherjee A, Schuttpelz M, Wiebusch G, Wolter S, Heilemann M, Sauer M (2009) Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem Photobiol Sci 8:465–9

    Article  Google Scholar 

  77. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–3

    Article  ADS  Google Scholar 

  78. Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106:2995–9

    Article  ADS  Google Scholar 

  79. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5:527–9

    Article  Google Scholar 

  80. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106:3125–30

    Article  ADS  Google Scholar 

  81. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–4

    Article  ADS  Google Scholar 

  82. Tang J, Akerboom J, Vaziri A, Looger LL, Shank CV (2010) Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc Natl Acad Sci U S A 107:10068–73

    Article  ADS  Google Scholar 

  83. Andersson SB (2008) Localization of a fluorescent source without numerical fitting. Opt Express 16:18714–24

    Article  ADS  Google Scholar 

  84. Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6:689–90

    Article  Google Scholar 

  85. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7:373–5

    Article  Google Scholar 

  86. Quan T, Li P, Long F, Zeng S, Luo Q, Hedde PN, Nienhaus GU, Huang Z-L (2010) Ultra-fast, high-precision image analysis for localization-based super resolution microscopy. Opt Express 18:11867–11876

    Article  ADS  Google Scholar 

  87. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in Image. J Nat Methods 7:339–40

    Article  Google Scholar 

  88. Zhuang XW, Jones SA, Shim SH, He J (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508

    Article  Google Scholar 

  89. Quan TW, Zhu HY, Liu XM, Liu YF, Ding JP, Zeng SQ, Huang ZL (2011) High-density localization of active molecules using Structured Sparse Model and Bayesian Information Criterion. Opt Express 19:16963–16974

    Article  ADS  Google Scholar 

  90. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat Methods 8:279–80

    Article  Google Scholar 

  91. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–2

    Article  ADS  Google Scholar 

  92. Bossi M, Belov V, Polyakova S, Hell SW (2006) Reversible red fluorescent molecular switches. Angew Chem Int Ed Engl 45:7462–5

    Article  Google Scholar 

  93. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  Google Scholar 

  94. Heintzmann R, Gustafsson MGL (2009) Subdiffraction resolution in continuous samples. Nat Photon 3:362–364

    Article  ADS  Google Scholar 

  95. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–8

    Article  ADS  Google Scholar 

  96. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–8

    Article  Google Scholar 

  97. Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18:1302–9

    Article  ADS  Google Scholar 

  98. Reuss M, Engelhardt J, Hell SW (2010) Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. Opt Express 18:1049–58

    Article  ADS  Google Scholar 

  99. Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43

    Article  MathSciNet  Google Scholar 

  100. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105:14271–6

    Article  ADS  Google Scholar 

  101. Nagerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–7

    Article  ADS  Google Scholar 

  102. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–9

    Article  ADS  Google Scholar 

  103. Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO, Donnert G, Hell SW (2008) Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4:1095–100

    Article  Google Scholar 

  104. Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, Schönle A, Jahn R, Jakobs S, Eggeling C, Hell SW (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–9

    Article  Google Scholar 

  105. Kastrup L, Blom H, Eggeling C, Hell SW (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94:178104

    Article  ADS  Google Scholar 

  106. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–62

    Article  ADS  Google Scholar 

  107. Han KY, Willig KI, Rittweger E, Jelezko F, Eggeling C, Hell SW (2009) Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett 9:3323–9

    Article  ADS  Google Scholar 

  108. Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497

    Article  ADS  Google Scholar 

  109. Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98:218103

    Article  ADS  Google Scholar 

  110. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–55

    Article  Google Scholar 

  111. Dedecker P, Hotta J, Flors C, Sliwa M, Uji-i H, Roeffaers MB, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc 129:16132–41

    Article  Google Scholar 

  112. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy–a concept for optical resolution improvement. J Opt Soc Am A Opt Image Sci Vis 19: 1599–609

    Article  ADS  Google Scholar 

  113. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–6

    Article  ADS  Google Scholar 

  114. van de Linde S, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J Biotechnol 149:260–266

    Article  Google Scholar 

  115. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–10

    Article  ADS  Google Scholar 

  116. Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft and the State of Baden-Württemberg through the Center for Functional Nanostructures (CFN), by the Deutsche Forschungsgemeinschaft, grant NI 291/9 and by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Ulrich Nienhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hedde, P.N., Nienhaus, G.U. (2013). Sub-Wavelength Optical Fluorescence Microscopy for Biological Applications. In: Di Bartolo, B., Collins, J. (eds) Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5313-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5313-6_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5312-9

  • Online ISBN: 978-94-007-5313-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics