Skip to main content

Technologies for Remediation of Polluted Environments: Between Classic Processes and the Challenges of New Approaches

  • Conference paper
  • First Online:
New Technologies, Development and Application VI (NT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 707))

Abstract

The Holocene epoch in which we live is also the Anthropocene, which is an informal chronological term that extends into the Pleistocene epoch. Various scientific evidences shows human impact on environmental pollution dates back to the age of Homo neanderthalensis, which in Europe was about 70,000–40,000 years ago (or even 400,000 years before the current epoch-BCE). The negative effects on the environment of the life activities of our distant ancestors are reflected in their active use of fire in everyday life.

Later, the pollution of air, water, soil and food, accelerated and became more complicated, which led to the alarming situation in the present time and especially in the future. In the last few years, researchers have focused on poly- and perfluoroalkyl substances (PFASs) and micro- and nano plastics (M- and NPs, respectively), as global pollutants.

Environmental pollution requires technologies and processes for its protection and remediation (REM). Classical REM processes are: physical, chemical, physical-chemical and biological, and these are most often combined. The challenges of new approaches are primarily related to the application of new materials (e.g., 2D substances, such as graphene, nano materials, new catalysts) and advanced biotechnologies (e.g., enzyme engineering), nanobio/technologies, as ideal multidisciplinary approaches.

Modern REM concepts are based on the principles of green chemistry and green engineering, with the aim of "closing the loop" of the circular economy and fulfilling the unsustainable 2030 sustainable development (SD) agenda, which in real time coordinates can only be: smart development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaby, M. (ed.): 4th edn. Oxford University Press, Oxford (2010)

    Google Scholar 

  2. Auditing Waste Management–MOOC. https://sisu.ut.ee/waste/documents. Accessed 22 Dec 2022

  3. Lehr, J., Hyman, M., Gass, T.E., et al.: Handbook of Complex Environmental Remediation Problems. McGraw-Hill, New York (2002)

    Google Scholar 

  4. Suthersan, S.S., Payne, F.C.: In situ Remediation Engineering. CRC Press, Boca Raton (2005)

    Google Scholar 

  5. Groh, K.J., Arp, H.P.H., MacLeod, M., et al.: Assessing and managing environmental hazards of polymers: historical development, science advances and policy options. Environ. Sci. Process. Impacts Adv. 25, 10–25 (2023)

    Google Scholar 

  6. Gradstein, F.M., Ogg, J.G., Schmitz, M.D., et al. (eds.): Elsevier, Amsterdam (2012)

    Google Scholar 

  7. International Chronostratigraphic Chart - International Commission on Stratigraphy – v 2022/02. https://stratigraphy.org/ICSchart/ChronostratChart~2022-02.pdf. Accessed 18 Dec 2022

  8. What is the Timeline of Human Evolution?.https://www.twinkl.com/teaching-wiki/timeline-of-human-evolution. Accessed 23 Dec 2022

  9. Wijbenga, A., Hutzinger, O.: Chemicals, man and the environment-a historic perspective of pollution and related topics. Naturwissenschaften 71, 239–246 (1984)

    Article  Google Scholar 

  10. Lund, P.A., De Biase, D., Liran, O., et al.: Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front. Microbiol. 11, 556140 (2020)

    Article  Google Scholar 

  11. Environmental History - Timeline and Historical Insights. https://environmentalhistory.org/. Accessed 16 Dec 2022

  12. Higham, T., Douka, K., Wood, R.W., et al.: The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014)

    Google Scholar 

  13. When Did Humans Start Polluting the Earth? https://www.weforum.org/agenda/2015/02/when-did-humans-start-polluting-the-earth/. Accessed 28 Dec 2022

  14. Keeling, R.F., Powell, F.L., Shaffer, G., et al.: Impacts of changes in atmospheric O2 on human physiology. Is there a basis for concern?. Front. Physiol. 12, 571137 (2021)

    Google Scholar 

  15. Solomona, S., Plattnerb, G.-K., Knuttic, R., et al.: Irreversible climate change due to carbon dioxide emissions. PNAS 106, 1704–1709 (2009)

    Article  Google Scholar 

  16. The 16 New POPs-An Introduction to the Chemicals Added to the Stockholm Convention as Persistent Organic Pollutants by the Conference of the Parties. http://chm.pops.int/Implementation/IndustrialPOPs/PFAS/Overview/tabid/5221/Default.aspx. Accessed 14 Dec 2022

  17. Holloway, A.M., Wayne, R.P.: Atmospheric Chemistry. RSC, Cambridge (2010)

    Google Scholar 

  18. Sterner, O.: Chemistry, Health, and Environment, 2nd edn. Wiley, Hoboken (2010)

    Google Scholar 

  19. Merian, E., Anke, M., Ihnat, M., et al. (eds.): Elements and their Compounds in the Environment-Occurence, Analysis and Biological Relevance, 2nd edn, vol. 1. Wiley, Weinheim (2004)

    Google Scholar 

  20. Skene, S.A., Dewhurst, I.C., Greenberg, M.: Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: the risks to human health. A review. Hum. Toxicol. 8, 173–203 (1989)

    Article  Google Scholar 

  21. Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds.): Environmental Chemistry-Green Chemistry and Pollutants in Ecosystems. Springer, Heidelberg (2005). https://doi.org/10.1007/b137751

  22. Bodek, I., Lyman, W.J., Reehl, W.F., et al.: Environmental Inorganic Chemistry. Pergamon Press, New York (1988)

    Google Scholar 

  23. Merian, E., Anke, M., Ihnat, M., et al. (eds.): Elements and Their Compounds in the Environment-Occurence, Analysis and Biological Relevance, 2nd edn, vol. 2. Wiley, Weinheim (2004)

    Google Scholar 

  24. Merian, E., Anke, M., Ihnat, M., et al. (eds.): Elements and Their Compounds in the Environment-Occurence, Analysis and Biological Relevance, 2nd edn, vol. 3. Wiley, Weinheim (2004)

    Google Scholar 

  25. Wittcoff, H.A., Reuben, B.G.: Industrial Organic Chemicals. Wiley, New York (1996)

    Google Scholar 

  26. Li, X., Chevez, T., De Silva, A.O., et al.: Which of the (mixed) halogenated n-alkanes are likely to be persistent organic pollutants? Environ. Sci. Technol. 55, 15912–15920 (2021)

    Article  Google Scholar 

  27. The Stockholm Convention on Persistent Organic Pollutants. http://chm.pops.int/TheConvention/Overview/tabid/3351/Default.aspx. Accessed 14 Dec 2022

  28. Yanga, L., Liuabc, G., Shena, J., et al.: Polychlorinated biphenyls (PCBs) in the environment: occupational and exposure events, effects on human health and fertility. Environ. Int. 152, 106450 (2021)

    Google Scholar 

  29. Akmal, M., Laessig, R.H., Reed, K.D.: Polybrominated diphenyl ethers (pbdes): new pollutants-old diseases. Clin. Med. Res. 1, 281–290 (2003)

    Article  Google Scholar 

  30. Faure, G.: Principles and Applications of Geochemistry, 2nd edn. Prentice Hall, Upper Suddle River (1998)

    Google Scholar 

  31. Dragun, J.: The Soil Chemistry of Hazardous Materials. ASP, Amherst (1998)

    Google Scholar 

  32. Yazdan, M.M.S., Kumar, R., Leung, S.W.: The environmental and health impacts of steroids and hormones in wastewater effluent, as well as existing removal technologies: a review. Ecologies 3, 206–224 (2022)

    Google Scholar 

  33. Kraemer, S.A., Ramachandran, A., Perron, G.G.: Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7, 180 (2019)

    Article  Google Scholar 

  34. Liu, J.-L., Wong, M.-H.: Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ. Int. 59, 208–224 (2013)

    Article  Google Scholar 

  35. There are 5 Trillion Pieces of Plastic Floating in Our Oceans. https://www.vox.com/2016/5/23/11735856/plastic-ocean. Accessed 30 Dec 2022

  36. Stocker, T.F., Qin, D., Plattner, G.-K., et al. (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK (2013)

    Google Scholar 

  37. The Water Cycle-U.S. Geological Survey. https://www.usgs.gov/special-topics/water-science-school/science/water-cycle. Accessed 1 Dec 2022

  38. Jayakumar, S., Koh, T., Beckman, R., et al. (eds.): Transboundary Pollution. EE Pub., Cheltenham (2021)

    Google Scholar 

  39. Özkara, A., Akyıl, D.: Environmental pollution and pollutants on the ecosystem: a review. Turkish J. Sci. Rev. 11, 11–17 (2018)

    Google Scholar 

  40. Glüge, J., Scheringer, M., Cousins, I.T., et al.: An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 22, 2345–2373 (2020)

    Article  Google Scholar 

  41. Ian, T., Cousins, I.T., Johansson, J.H., Salter, M.E.: Outside the safe operating space of a new planetary boundary for per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Technol. 56, 11172–11179 (2022)

    Google Scholar 

  42. Beskoski, V.P., Takemine, S., Nakano, T., et al.: Perfluorinated compounds in sediment samples from the wastewater canal of Pancevo (Serbia) industrial area. Chemosphere 91, 1408–1415 (2013)

    Article  Google Scholar 

  43. Hogue, C.: PFOA in rain worldwide exceeds EPA advisory level. Chem. Eng. News 100(27), 6 (2022)

    Article  Google Scholar 

  44. Giesy, J., Kannan, K.: Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 35, 1339–1342 (2001)

    Article  Google Scholar 

  45. Ng, C., Cousins, I.T., DeWitt, J.C., et al.: Addressing urgent questions for PFAS in the 21st century. Environ. Sci. Technol. 55, 12755–12765 (2021)

    Google Scholar 

  46. Surprising Plastic Pollution Statistics and Facts of 2022. https://www.santacruzworks.org/news/plastic-pollution-statistics-facts. Accessed 23 June 2022

  47. Plastic in Our Oceans is Killing Marine Mammals. https://www.wwf.org.au/news/blogs/plastic-in-our-oceans-is-killing-marine-mammals. Accessed 07 July 2021

  48. Ramsperger, A.F.R.M., Bergamaschi, E., Panizzolo., et al.: Nano- and microplastics: a comprehensive review on their exposure routes, translocation, and fate in humans. NanoImpact 9, 100441 (2023)

    Google Scholar 

  49. Miao, L., Li, W., Adyel, T.M., et al.: Spatio-temporal succession of microbial communities in plastisphere and their potentials for plastic degradation in freshwater ecosystems. Water Res. 229, 119406 (2023)

    Article  Google Scholar 

  50. Morgana, S., Casentini, B., Amalfitano, S.: Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. J. Hazard. Mater. 419, 126507 (2021)

    Article  Google Scholar 

  51. Muensterman, D.J., Cahuas, L., Titaley, I.A., et al.: Per- and polyfluoroalkyl substances (PFAS) in facemasks: potential source of human exposure to PFAS with implications for disposal to landfill. Environ. Sci. Technol. Lett. 9, 320–326 (2022)

    Article  Google Scholar 

  52. Evans, G.M., Furlong, J.C.: Environmental Biotechnology, 2nd edn. Wiley, Chichester (2011)

    Google Scholar 

  53. Conner, J.R.: Chemical Fixation and Solidification of Hazardous Wastes. VNR, New York (1990)

    Google Scholar 

  54. Wise, D.L., Trantolo, D.J., Cichon, E.J., et al. (eds.): Marcel Dekker, New York (2000)

    Google Scholar 

  55. Testa, S.M., Winegardner, D.I.: Restoration of Contamiined Aquifers, 2nd edn. CRC Press, Boca Raton (2000)

    Google Scholar 

  56. Reddy, K.R., Cameselle, C.: Electrochemical Remediation Technologies. Wiley, Hoboken (2001)

    Google Scholar 

  57. Hester, R.E., Harrison, R.M. (eds.): Waste Incineration and the Environment. RSC, Chemistry, Cambridge (1994)

    Google Scholar 

  58. Shokri, A., Farad, M.S.: A critical review in Fenton-like approach for the removal of pollutants in the aqueous environment. Environ. Challenges 7, 100534 (2022)

    Article  Google Scholar 

  59. Rivas, F.J.: Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J. Hazard. Mater. 138, 234–251 (2006)

    Article  Google Scholar 

  60. Saval, S., Terzić, J.S., Vrvić, M.M.: Bioremediation of contaminated soils and aquifers. Mikrobiologija (Serbia) 43, 65–76 (2006)

    Google Scholar 

  61. McCutcheon, S.C., Schnoor, J.L. (eds.): Phytoremediation. Wiley, Hoboken (2003)

    Google Scholar 

  62. George, L.B., Nandotriya, M.M., Highland, H.N., et al.: Zooremediation: the new approach of bioremediation study-a review. J. Multidisc. Subjects 11, 266–286 (2017)

    Google Scholar 

  63. Srivastava, J., Naraian, R., Kalra, S.J.S., Chandra, H.: Advances in microbial bioremediation and the factors influencing the process. Int. J. Environ. Sci. Technol. 11(6), 1787–1800 (2013). https://doi.org/10.1007/s13762-013-0412-z

    Article  Google Scholar 

  64. Bulatović, S., Marić, N., Knudsen, T., et al.: Bioremediation of groundwater contaminated with petroleum hydrocarbons applied at a site in Belgrade (Serbia). J. Serb. Chem. Soc. 85, 1067–1081 (2020)

    Article  Google Scholar 

  65. Young, L.Y., Cerniglia, C.E. (eds.): Wiley, New York (1995)

    Google Scholar 

  66. Kotrba, P., Mackova, M., Macek, T. (eds.): Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0443-5

    Book  Google Scholar 

  67. Huang, D., Hu, C., Zeng, G., et al.: Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total Environ. 574, 1599–1610 (2017)

    Article  Google Scholar 

  68. Types of Environmental Remediation. https://a-otc.com/25-types-of-environmental-remediation/. Accessed 27 Dec 2022

  69. Shakya, P., Nayak, A., Jogi, J., et al.: Futuristic approach to environment cleansing: bioremediation. Int. J. Curr. Microbiol. Appl. Sci. 9, 418–425 (2020)

    Google Scholar 

  70. Yang, S., Twiss, M.R., Fernando, S., et al.: Mitigation of cyanobacterial harmful algal blooms (cHABs) and cyanotoxins by electrochemical oxidation: from a bench-scale study to field application. Sustain. Chem. Eng. 2, 1160–1168 (2022)

    Google Scholar 

  71. Curiel-Alegre, S., Velasco-Arroyo, B., Rumbo, C., et al.: Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere 307, 135638 (2022)

    Article  Google Scholar 

  72. Cai, F., Lei, L., Li, Y., et al.: A review of aerobic granular sludge (AGS) treating recalcitrant wastewater: refractory organics removal mechanism, application and prospect. Sci. Total Environ. 785, 146852 (2021)

    Article  Google Scholar 

  73. Trang, B., Li, Y., Xue, X.-S., et al.: Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022)

    Article  Google Scholar 

  74. Mitchell, S.M., Ahmad, M., Teel, A.L., et al.: Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions. Environ. Chem. Technol. Lett. 1, 117–121 (2014)

    Article  Google Scholar 

  75. Hao, S., Choi, Y.J., Deeb, R.A., et al.: Application of hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in contaminated groundwater and soil. Environ. Sci. Technol. 56, 6647–6657 (2022)

    Article  Google Scholar 

  76. Zhanga, Z., Sarkar, D., Biswas, J.K., et al.: Biodegradation of per- and polyfluoroalkyl substances (PFAS): a review. Biores. Technol. 344, 126223 (2022)

    Article  Google Scholar 

  77. Franke, V., Ullberg, M., McCleaf, P., et al.: The price of really clean water: combining nanofiltration with granular activated carbon and anion exchange resins for the removal of per- and polyfluoralkyl substances (PFASs) in drinking water production. Environ. Sci. Technol. Water 1, 782–795 (2021)

    Google Scholar 

  78. Yanga, Z., Lüa, F., Zhanga, H., et al.: Is incineration the terminator of plastics and microplastics? J. Hazard. Mater. 401, 123429 (2021)

    Article  Google Scholar 

  79. Hu, K., Zhou, P., Yang, J., et al.: Degradation of microplastics by a thermal fenton reaction. Environ. Sci. Technol. Eng. 2, 110–120 (2022)

    Google Scholar 

  80. Tanasupawat, S., Takehana, T., Yoshida, S., et al.: Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly (ethyleneterephthalate). Int. J. System. Evol. Microbiol. 66, 2813–2818 (2016)

    Google Scholar 

  81. Tournier, V., Topham, C.M., Gilles, A., et al.: An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020)

    Article  Google Scholar 

  82. Carbios Clearing the Bottleneck – Enzymatic Recycling Tech Hits 90% Depolymerization in 10 Hours. https://www.biofuelsdigest.com/bdigest/2020/04/12/carbios-clearing-the-bottleneck-enzymatic-recycling-tech-hits-90-depolymerization-in-10-hours/. Accessed 14 Apr 2020

  83. Sun, J., Prabhu, A., Aroney, S.T.N., et al.: Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobasmorio) microbiome in styrofoam feeding trials. Microbial Genom. 8, 000842 (2022)

    Google Scholar 

  84. Khosrovyan, A., Doria, H.B., Kahru, A., et al.: Polyamide microplastic exposure elicits rapid, strong and genome-wide evolutionary response in the freshwater non-biting midge. Chironomus riparius Chemosphere 299, 134452 (2022)

    Google Scholar 

  85. Ru, J., Huo, Y., Yang, Y.: Microbial degradation and valorization of plastic wastes. Front. Microbiol. 11, 442 (2020)

    Google Scholar 

  86. Zheng, K., Wu, Y., Hu, Z., et al.: Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem. Soc. Rev. 52, 8–29 (2023)

    Article  Google Scholar 

  87. Al-Obaidi, M., Kara/Zaitri, C., Mujtaba, I.M.: Wastewater Treatment by Reverse Osmosis Process. CRC Press, Boca Raton (2020)

    Google Scholar 

  88. Sharma, V.K. (ed.): Ferrates. ACS, Wasington DC (2008)

    Google Scholar 

  89. Ahmed, N., Vione, D., Rivoira, L., et al.: A review on the degradation of pollutants by fenton-like systems based on zero-valent iron and persulfate: effects of reduction potentials, ph, and anions occurring in waste waters. Molecules 26, 4584 (2021)

    Article  Google Scholar 

  90. Gong, Y., Wang, Y., Lin, N., et al.: Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: recent advances and perspectives. Environ. Pollut. 299, 118871 (2022)

    Article  Google Scholar 

  91. Yentekakis, I.Y., Dong, F.: Grand challenges for catalytic remediation in environmental and energy applications toward a cleaner and sustainable future. Front. Environ. Chem. 1, 005 (2020)

    Article  Google Scholar 

  92. Burns, R.G., Dick, R.P.: Enzymes in the Environment. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  93. Priyadharshini, S.D., Manikandan, S., Kiruthig, R., et al.: Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: recent trends and perspectives – a review. Environ. Pollut. 306, 119377 (2022)

    Article  Google Scholar 

  94. Hussain, A., Rehman, F., Rafeeq, H., et al.: In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air – a review. Chemosphere 289, 133252 (2022)

    Article  Google Scholar 

  95. Khan, M.M., Islam, M.R.: Zero Waste Engineering. Wiley, Hoboken (2012)

    Book  Google Scholar 

  96. Transforming Our World: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda. Accessed 31 July 2022

  97. Xiang, L., Harindintwali, J.D., Wang, F., et al.: Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environ. Sci. Technol. 56, 16546–16566 (2022)

    Article  Google Scholar 

  98. Bala, S., Garg, D., Thirumalesh, B.V., et al.: Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics 10, 484 (2022)

    Article  Google Scholar 

  99. Das, R.K., Sanyala, D., Kumar, P., et al.: Science-society-policy interface for microplastic and nanoplastic: environmental and biomedical aspects. Environ. Pollut. 290, 117985 (2021)

    Google Scholar 

  100. Sgroi, F.: Circular economy and environmental protection. AIMS Environ. Sci. 9, 122–127 (2022)

    Article  Google Scholar 

  101. Horváth, I.T.: Introduction: sustainable chemistry. Chem. Rev. 118, 369–371 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the European Union’s Horizon Europe Project GREENLand - Twinning Microplastic-free Environment under grant agreement number 101079267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Vrvić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vrvić, M. (2023). Technologies for Remediation of Polluted Environments: Between Classic Processes and the Challenges of New Approaches. In: Karabegovic, I., Kovačević, A., Mandzuka, S. (eds) New Technologies, Development and Application VI. NT 2023. Lecture Notes in Networks and Systems, vol 707. Springer, Cham. https://doi.org/10.1007/978-3-031-34721-4_23

Download citation

Publish with us

Policies and ethics