Skip to main content

Types of Instruments

  • Chapter
  • First Online:
Geotechnical Instrumentation and Applications
  • 182 Accesses

Abstract

There are several types of geotechnical instruments. Some measure deformation, and other measure pressure and stress. In order to manage the geotechnical issues likely to encounter during and after construction, two basic categories of geotechnical instrumentation programmes are usually implemented.

Category A

Measurement of Ground behaviour during construction in order to control the construction process.

Category B

Monitoring of performance of ground during loading, unloading and soil improvement process.

By measuring deformations and stresses, progress leading to failure or progress of improvement can be detected. With systematic planning of monitoring frequencies, infrastructure can be built safely without failure by applying the observational method using data from geotechnical instruments installed in accordance with Category A. On the other hand, degree of soil improvement can be verified using monitoring data collected through geotechnical instrument installed in accordance with Category B. In both cases, any rectification required due to unforeseen or unexpected performances can be implemented when the monitoring data collected and interpreted results indicate as an alert. This chapter will walk through several types of geotechnical instrument available in the market to measure respective deformations, strains, stresses and pressures within/underneath and on the earth masses and structural elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

L :

length measured along the casing

θ :

Angle from vertical line

References

  • Antonello, G., Casagli, N., Farina, P., et al. (2004). Ground-based SAR interferometry for monitoring mass movements. Landslides, 1, 21–28. https://doi.org/10.1007/s10346-003-0009-6

    Article  Google Scholar 

  • Belli, R., & Inaudi, D. (2017). Distributed sensors for underground deformation monitoring. 9.

    Google Scholar 

  • Bennett, V., Abdoun, T., Shantz, T., Jang, D., & Thevanayagam, S. (2009). Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation. Smart Structures and Systems, 5(6), 663–679.

    Article  Google Scholar 

  • Bersan, S., Koelewijn, A. R., Putti, M., & Simonini, P. (2019). Large-scale testing of distributed temperature sensing for early detection of piping. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 04019052. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002058

    Article  Google Scholar 

  • Birch, G., & Anderson, I. (2011, May). LiDAR monitoring for the Folkestone Warren landslide. Ground Engineering.

    Google Scholar 

  • Bo, M. W., & Choa, V. (2004). Reclamation and ground improvement. Thomson Learning.

    Google Scholar 

  • Calcaterra, S., Cesi, C., Di Maio, C., et al. (2012). Surface displacements of two landslides evaluated by GPS and inclinometer systems: A case study in Southern Apennines, Italy. Natural Hazard, 61, 257–266. https://doi.org/10.1007/s11069-010-9633-3

    Article  Google Scholar 

  • Castagnetti, C., Bertacchini, E., Corsini, A., & Capra, A. (2013). Multi-sensors integrated system for landslide monitoring: Critical issues in system setup and data management. European Journal of Remote Sensing, 46(1), 104–124. https://doi.org/10.5721/EuJRS20134607

    Article  Google Scholar 

  • Caudal, P., Grenon, M., Turmel, D., et al. (2017). Analysis of a large rock slope failure on the east wall of the LAB chrysotile mine in Canada: LiDAR monitoring and displacement analyses. Rock Mechanics and Rock Engineering, 50, 807–824. https://doi.org/10.1007/s00603-016-1145-3

    Article  Google Scholar 

  • Cola, S., Girardi, V., Bersan, S., Simonini, P., Schenato, L., & De Polo, F. (2021). An optical fiber-based monitoring system to study the seepage flow below the landside toe of a river levee. Journal of Civil Structural Health Monitoring, 11(3), 691–705. https://doi.org/10.1007/s13349-021-00475-y

    Article  Google Scholar 

  • Croteau, H. (2022). Innovative application for ground temperature profiling in geotechnical monitoring. Canadian Geotechnique, 3(2), 53–54.

    Google Scholar 

  • Dardanelli, G., & Pipitone, C. (2017). Hydraulic models and finite elements for monitoring of an earth dam, by using GNSS techniques. Periodica Polytechnica: Civil Engineering, 61(3), 421–433. https://doi.org/10.3311/PPci.8217

    Article  Google Scholar 

  • Dixon, N., & Spriggs, M. (2007). Quantification of slope displacement rates using acoustic emission monitoring. Canadian Geotechnical Journal, 44(6), 966–976.

    Article  Google Scholar 

  • Dixon, N., & Spriggs, M. (2011). Apparatus and method for monitoring soil slope displacement rate. UK Patent Application GB 2467419A, Awarded May 2011.

    Google Scholar 

  • Dixon, N., Hill, R., & Kavanagh, J. (2003). Acoustic emission monitoring of slope instability: Development of an active wave guide system. Institution of Civil Engineers: Geotechnical Engineering Journal, 156(2), 83–95.

    Google Scholar 

  • Dornstädter, J. (1996). Sensitive monitoring of embankment dams. In S. Johansson & M. Cederstrom (Eds.), Repair and upgrading of dams (pp. 1400–1306). SwedCOLD.

    Google Scholar 

  • Dornstädter, J., Fabritius, A., & Heinemann, B. (2017). Online alarming for internal erosion. In European working group on internal erosion in embankment dams & their foundations, p. 160.

    Google Scholar 

  • Drusa, M., & Bulko, R. (2016). Rock slide monitoring by using TDR inclinometers. Civil and Environmental Engineering, 12(2), 137–144.

    Article  Google Scholar 

  • Dunnicliff, J. (1988). Geotechnical instrumentation for monitoring field performance. Wiley.

    Google Scholar 

  • Federico, A., Popescu, M., Elia, G., Fidelibus, C., Interno, G., & Murianni, A. (2012). Prediction of time to slope failure: A general framework. Environmental Earth Sciences, 66, 245–256.

    Article  Google Scholar 

  • Ferhat, G., Malet, J. P., Puissant, A., Caubet, D., & Huber, E. (2017). Geodetic monitoring of the Adroit landslide, Barcelonnette, French Southern Alps. In Proceeding of the 7th international conference on engineering surveying INGEO 2017, Lisbon, Portugal.

    Google Scholar 

  • Fukuzono, T. (1985). A new method for predicting the failure time of a slope. In Proceedings of the fourth international conference and field workshop on landslides, Tokyo, Japan. Landslide Society, pp. 145–150.

    Google Scholar 

  • Gokceoglu, C., Kocaman, S., Nefeslioglu, H. A., et al. (2021). Use of multisensor and multitemporal geospatial datasets to extract the foundation characteristics of a large building: A case study. Bulletin of Engineering Geology and the Environment, 80, 3251–3269. https://doi.org/10.1007/s10064-021-02116-6

    Article  Google Scholar 

  • Gong, W., Luo, Z., Juang, C. H., Huang, H., Zhang, J., & Wang, L. (2014). Optimization of site exploration program for improved prediction of tunnelling-induced ground settlement in clays. Computers and Geotechnics, 56, 69–79.

    Article  Google Scholar 

  • Jaboyedoff, M., Demers, D., Locat, J., Locat, A., Locat, P., Oppikofer, T., Robitaille, D., & Turme, D. (2009). Use of ground-based LIDAR for the analysis of retrogressive landslides in sensitive clay and of rotational landslides in river banks. Canadian Geotechnical Journal, 46(12), 1379–1390.

    Article  Google Scholar 

  • Kien, N. T., & Shimizu, N. (2021). Performance of a new low-cost GPS sensor with an average process for slope displacement monitoring. In T. Bui-Tien, L. Nguyen Ngoc, & G. De Roeck (Eds.), Proceedings of the 3rd international conference on sustainability in civil engineering (Lecture notes in civil engineering) (Vol. 145). Springer. https://doi.org/10.1007/978-981-16-0053-1_15

    Chapter  Google Scholar 

  • Kuras, P., Ortyl, Ł., Owerko, T., Borecka, A. (2020). Applied geomatics.

    Google Scholar 

  • Lovisolo, M., Ghirotto, S., Scardia, G., & Battaglio, M. (2003). The use of differential monitoring stability (DMS) for remote monitoring of excavation and landslide movements. In A. Myrvol (Ed.), Proceedings of the sixth international symposium on field measurements in geomechanics (pp. 519–524). Balkema.

    Chapter  Google Scholar 

  • Lucieer, A., de Jong, A. M., & Turner, D. (2014). Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97–116.

    Article  Google Scholar 

  • Mazzanti, P. (2017). Toward transportation asset management: What is the role of geotechnical monitoring? Journal of Civil Structural Health Monitoring, 7, 645–656. https://doi.org/10.1007/s13349-017-0249-0

    Article  Google Scholar 

  • Mazzanti, P., Bozzano, F., Cipriani, I., et al. (2015). New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study. Landslides, 12, 55–68. https://doi.org/10.1007/s10346-014-0469-x

    Article  Google Scholar 

  • Mazzanti, P., Thompson, P. D., Beckstrand, D. L., & Stanley, D. A. (2016). Geotechnical asset management for Italian transport agencies implementation principles and concepts (pp. 10–12). International Congress on Transport Infrastructure and Systems.

    Google Scholar 

  • Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., & Wang, G. (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1, 277–288.

    Article  Google Scholar 

  • Osasan, K. S., & Afeni, T. B. (2010). Review of surface mine slope monitoring techniques. Journal of Mining Science, 46(2), 177–186.

    Article  Google Scholar 

  • Rathje, E. M., & Franke, K. (2017). Remote sensing for geotechnical earthquake reconnaissance. Soil Dynamics and Earthquake Engineering, 91, 304–316.

    Article  Google Scholar 

  • Serrano-Juan, A., Vázquez-Suñè, E., Monserrat, O., Crosetto, M., Hoffmann, C., Ledesma, A., Criollo, R., Pujades, E., Velasco, V., Garcia-Gil, A., & Alcaraz, M. (2016). Gb-SAR interferometry displacement measurements during dewatering in construction works. Case of La Sagrera railway station in Barcelona, Spain. Engineering Geology, 205, 104–115. https://doi.org/10.1016/j.enggeo.2016.02.014

    Article  Google Scholar 

  • Shimizu, N., Nakashima, S., & Masunari, T. (2014). ISRM suggested method for monitoring rock displacements using the Global Positioning System (GPS). Rock Mechanics and Rock Engineering, 47, 313–328.

    Article  Google Scholar 

  • Song, Z., Shi, B., Juang, H., et al. (2017). Soil strain-field and stability analysis of cut slope based on optical fiber measurement. Bulletin of Engineering Geology and the Environment, 76, 937–946. https://doi.org/10.1007/s10064-016-0904-4

    Article  Google Scholar 

  • Stark, T. D., & Choi, H. (2008). Slope inclinometers for landslides. Landslides, 5(3), 339–350. https://doi.org/10.1007/s10346-008-0126-3

    Article  Google Scholar 

  • Su, M. B., & Chen, Y. J. (1998). Multiple reflection of metallic time domain reflectometry. Exploring Technologies, 22(1), 26–29.

    Google Scholar 

  • Su, M. B., & Chen, Y. J. (2000). TDR monitoring for integrity of structural systems. Journal of Infrastructure Systems, 6(2), 67–72.

    Article  Google Scholar 

  • Su, M. B., Chen, I. H., & Liao, C. H. (2009). Using TDR cables and GPS for landslide monitoring in high mountain area. Journal of Geotechnical and Geoenvironmental Engineering – ASCE, 135(8), 1113–1121.

    Article  Google Scholar 

  • Tedd, P., Powell, J. J., Charles, J. A. S., & Uglow, I. M. (1990). In-situ measurement of earth pressures using push-in spade-shaped pressure cells —10 years’ experience. In Geotechnical instrumentation in practice.

    Google Scholar 

  • Yin, Y., Wang, H., Gao, Y., & Li, X. (2010). Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7, 339–349.

    Article  Google Scholar 

  • Zhang, C. C., Zhu, H. H., & Shi, B. (2016). Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement. Scientific Reports, 6, 36469. https://doi.org/10.1038/srep36469

    Article  Google Scholar 

  • Zhu, H. H., Shi, B., Yan, J. F., Zhang, J., & Wang, J. (2015). Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network. Engineering Geology, 186, 34–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bo, M.W., Barrett, J. (2023). Types of Instruments. In: Geotechnical Instrumentation and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-34275-2_3

Download citation

Publish with us

Policies and ethics