Skip to main content

Fast-MC-PET: A Novel Deep Learning-Aided Motion Correction and Reconstruction Framework for Accelerated PET

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Patient motion during PET is inevitable. Its long acquisition time not only increases the motion and the associated artifacts but also the patient’s discomfort, thus PET acceleration is desirable. However, accelerating PET acquisition will result in reconstructed images with low SNR, and the image quality will still be degraded by motion-induced artifacts. Most of the previous PET motion correction methods are motion type specific that require motion modeling, thus may fail when multiple types of motion present together. Also, those methods are customized for standard long acquisition and could not be directly applied to accelerated PET. To this end, modeling-free universal motion correction reconstruction for accelerated PET is still highly under-explored. In this work, we propose a novel deep learning-aided motion correction and reconstruction framework for accelerated PET, called Fast-MC-PET. Our framework consists of a universal motion correction (UMC) and a short-to-long acquisition reconstruction (SL-Reon) module. The UMC enables modeling-free motion correction by estimating quasi-continuous motion from ultra-short frame reconstructions and using this information for motion-compensated reconstruction. Then, the SL-Recon converts the accelerated UMC image with low counts to a high-quality image with high counts for our final reconstruction output. Our experimental results on human studies show that our Fast-MC-PET can enable 7-fold acceleration and use only 2 min acquisition to generate high-quality reconstruction images that outperform/match previous motion correction reconstruction methods using standard 15 min long acquisition data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, J.L.: How to obtain high-accuracy image registration: application to movement correction of dynamic positron emission tomography data. Eur. J. Nucl. Med. 25(6), 575–586 (1998)

    Article  Google Scholar 

  2. Bai, W., Brady, M.: Regularized b-spline deformable registration for respiratory motion correction in pet images. Phys. Med. Biol. 54(9), 2719 (2009)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Chan, C., et al.: Non-rigid event-by-event continuous respiratory motion compensated list-mode reconstruction for pet. IEEE Trans. Med. Imaging 37(2), 504–515 (2017)

    Article  Google Scholar 

  5. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. Med. Image Anal. 82, 102615 (2022)

    Article  Google Scholar 

  6. Jin, X., et al.: List-mode reconstruction for the biograph MCT with physics modeling and event-by-event motion correction. Phys. Med. Biol. 58(16), 5567 (2013)

    Article  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Lasnon, C., et al.: How fast can we scan patients with modern (digital) PET/CT systems? Eur. J. Radiol. 129, 109144 (2020)

    Article  Google Scholar 

  9. Lindemann, M.E., Stebner, V., Tschischka, A., Kirchner, J., Umutlu, L., Quick, H.H.: Towards fast whole-body PET/MR: investigation of pet image quality versus reduced pet acquisition times. PLoS ONE 13(10), e0206573 (2018)

    Article  Google Scholar 

  10. Lu, Y., et al.: Respiratory motion compensation for PET/CT with motion information derived from matched attenuation-corrected gated pet data. J. Nucl. Med. 59(9), 1480–1486 (2018)

    Article  Google Scholar 

  11. Lu, Y., et al.: Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic pet. Phys. Med. Biol. 64(6), 065002 (2019)

    Article  Google Scholar 

  12. Lu, Y., Liu, C.: Patient motion correction for dynamic cardiac pet: current status and challenges. J. Nucl. Cardiol. 27(6), 1999–2002 (2020)

    Article  Google Scholar 

  13. Normandin, M.D., et al.: In vivo imaging of endogenous pancreatic \(\beta \)-cell mass in healthy and type 1 diabetic subjects using 18f-fluoropropyl-dihydrotetrabenazine and pet. J. Nucl. Med. 53(6), 908–916 (2012)

    Article  Google Scholar 

  14. Papademetris, X., et al.: Bioimage suite: an integrated medical image analysis suite: an update. Insight J. 2006, 209 (2006)

    Google Scholar 

  15. Ren, S., et al.: Data-driven event-by-event respiratory motion correction using TOF PET list-mode centroid of distribution. Phys. Med. Biol. 62(12), 4741 (2017)

    Article  Google Scholar 

  16. Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-Net: convolutional networks for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells, William M.., Frangi, Alejandro F.. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Song, T.A., Yang, F., Dutta, J.: Noise2void: unsupervised denoising of pet images. Phys. Med. Biol. 66(21), 214002 (2021)

    Article  Google Scholar 

  18. Spangler-Bickell, M.G., Deller, T.W., Bettinardi, V., Jansen, F.: Ultra-fast list-mode reconstruction of short pet frames and example applications. J. Nucl. Med. 62(2), 287–292 (2021)

    Article  Google Scholar 

  19. Weyts, K., et al.: Artificial intelligence-based pet denoising could allow a two-fold reduction in [18f] FDG PET acquisition time in digital PET/CT. Eur. J. Nucl. Med. Mol. Imaging 49, 1–11 (2022). https://doi.org/10.1007/s00259-022-05800-1

    Article  Google Scholar 

  20. Xu, Z., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)

    Article  Google Scholar 

  21. Zhang, J., Fontaine, K., Carson, R., Onofrey, J., Lu, Y.: Deep learning-aided data-driven quasi-continous non-rigid motion correction in PET. In: 2021 28th IEEE Nuclear Science Symposium and Medical Imaging Conference (2021)

    Google Scholar 

  22. Zhou, B., et al.: Federated transfer learning for low-dose pet denoising: a pilot study with simulated heterogeneous data. IEEE Trans. Rad. Plasma Med. Sci. (2022)

    Google Scholar 

  23. Zhou, B., Tsai, Y.J., Chen, X., Duncan, J.S., Liu, C.: MDPET: a unified motion correction and denoising adversarial network for low-dose gated PET. IEEE Trans. Med. Imaging 40(11), 3154–3164 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, B. et al. (2023). Fast-MC-PET: A Novel Deep Learning-Aided Motion Correction and Reconstruction Framework for Accelerated PET. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics