Skip to main content

Meat and Alcohol Consumption: Diet and Lifestyle Choice and Cancer

  • Chapter
  • First Online:
Environmental Oncology
  • 219 Accesses

Abstract

The American Cancer Society estimates that at least 18% of all cancers and about 16% of cancer deaths in the United States of America (USA) are related to excess body weight, physical inactivity, alcohol consumption, and/or poor nutrition. A western diet has been strongly associated with an increased risk for colorectal cancer (CRC) compared to a diet that is rich in fiber from fruits, vegetables, whole grains, and lean proteins.

The mechanisms that are discussed to explain the relationship between red meat and CRC include: Heme-iron in red meat, heterocyclic amines (HCAs), formation of N-glycolylneuraminic acid (Neu5Gc), polycyclic aromatic hydrocarbons (PAHs) formed when cooking meat and N-nitroso compounds (NOCs) and more recently the effects on the intestinal microbiota.

It has also been established that alcohol consumption increases the risk to at least six different cancer types: breast, nasopharyngeal, mouth, laryngeal, esophageal, and colon. Yet, many Americans are unaware that alcohol consumption is associated with increased cancer risk. Alcohol is metabolized to acetaldehyde (AA), which increases the risk to carcinogenesis by directly and indirectly causing DNA damage.

Our diet and lifestyle offer a unique opportunity to help reduce our risk by changing our behaviors and actions, which can be achieved by educating the public and encouraging proactive changes to health policies. Lastly, efforts should be made to create equitable access to healthy food and safe environments for all socioeconomic classes; this is an essential step in changing health policy and impacting population health and our environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murphy N, et al. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Asp Med. 2019;69:2–9.

    Article  Google Scholar 

  3. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32.

    Article  PubMed  Google Scholar 

  4. Rock CL, et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J Clin. 2020;70(4):245–71.

    Article  PubMed  Google Scholar 

  5. Terry P, et al. Prospective study of major dietary patterns and colorectal cancer risk in women. Am J Epidemiol. 2001;154(12):1143–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wu K, et al. Dietary patterns and risk of colon cancer and adenoma in a cohort of men (United States). Cancer Causes Control. 2004;15(9):853–62.

    Article  PubMed  Google Scholar 

  7. Magalhães B, Peleteiro B, Lunet N. Dietary patterns and colorectal cancer: systematic review and meta-analysis. Eur J Cancer Prev. 2012;21(1):15–23.

    Article  PubMed  Google Scholar 

  8. Kim MK, et al. Dietary patterns and subsequent colorectal cancer risk by subsite: a prospective cohort study. Int J Cancer. 2005;115(5):790–8.

    Article  CAS  PubMed  Google Scholar 

  9. Koushik A, et al. Fruits, vegetables, and colon cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst. 2007;99(19):1471–83.

    Article  PubMed  Google Scholar 

  10. Skinner RC, Hagaman JA. The interplay of Western diet and binge drinking on the onset, progression, and outlook of liver disease. Nutr Rev. 2022;80(3):503–12.

    Article  PubMed  Google Scholar 

  11. Pollard MS, Tucker JS, Green HD. Changes in adult alcohol use and consequences during the COVID-19 pandemic in the US. JAMA Netw Open. 2020;3(9):e2022942.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Christen C. Meat consumption in the U.S. is growing at an alarming rate. 2021 [cited 2022 10/20/2022].

    Google Scholar 

  13. Bouvard V, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600.

    Article  PubMed  Google Scholar 

  14. Kobayashi M, et al. Fish, long-chain n-3 polyunsaturated fatty acids, and risk of colorectal cancer in middle-aged Japanese: the JPHC study. Nutr Cancer. 2004;49(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  15. Tiemersma EW, et al. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Cancer Causes Control. 2002;13(4):383–93.

    Article  PubMed  Google Scholar 

  16. Willett WC, et al. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med. 1990;323(24):1664–72.

    Article  CAS  PubMed  Google Scholar 

  17. Patel SG, Ahnen DJ. Colorectal cancer in the young. Curr Gastroenterol Rep. 2018;20(4):15.

    Article  PubMed  Google Scholar 

  18. Mauri G, et al. Early-onset colorectal cancer in young individuals. Mol Oncol. 2019;13(2):109–31.

    Article  PubMed  Google Scholar 

  19. Bailey CE, et al. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg. 2015;150(1):17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bernstein AM, et al. Processed and unprocessed red meat and risk of colorectal cancer: analysis by tumor location and modification by time. PLoS One. 2015;10(8):e0135959.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Norat T, et al. Meat, fish, and colorectal cancer risk: the European prospective investigation into cancer and nutrition. J Natl Cancer Inst. 2005;97(12):906–16.

    Article  PubMed  Google Scholar 

  22. English DR, et al. Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 2004;13(9):1509–14.

    Article  Google Scholar 

  23. Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk: a meta-analytical approach. Cancer Epidemiol Biomark Prev. 2001;10(5):439–46.

    CAS  Google Scholar 

  24. Smolińska K, Paluszkiewicz P. Risk of colorectal cancer in relation to frequency and total amount of red meat consumption. Systematic review and meta-analysis. Arch Med Sci. 2010;6(4):605–10.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jägerstad M, Skog K. Genotoxicity of heat-processed foods. Mutat Res. 2005;574(1–2):156–72.

    Article  PubMed  Google Scholar 

  26. Bingham SA, Hughes R, Cross AJ. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J Nutr. 2002;132(11 Suppl):3522S–5S.

    Article  CAS  PubMed  Google Scholar 

  27. Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  28. Seiwert N, et al. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188334.

    Article  CAS  PubMed  Google Scholar 

  29. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18(2):321–36.

    Article  CAS  PubMed  Google Scholar 

  30. Guéraud F, et al. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res. 2010;44(10):1098–124.

    Article  PubMed  Google Scholar 

  31. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.

    Article  CAS  PubMed  Google Scholar 

  32. Daniel CR, McQuade JL. Nutrition and cancer in the microbiome era. Trends Cancer. 2019;5(9):521–4.

    Article  PubMed  Google Scholar 

  33. Menni C, et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes. 2017;41(7):1099–105.

    Article  CAS  Google Scholar 

  34. Koh A, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.

    Article  CAS  PubMed  Google Scholar 

  35. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64.

    Article  CAS  PubMed  Google Scholar 

  36. Hryckowian AJ, et al. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat Microbiol. 2018;3(6):662–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cummings JH, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1(4):287–99.

    Article  CAS  PubMed  Google Scholar 

  39. Flint HJ, et al. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577–89.

    Article  CAS  PubMed  Google Scholar 

  40. Donohoe DR, et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson AS, et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. 2020;65(3):723–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh RK, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Johnson AJ, et al. A guide to diet-microbiome study design. Front Nutr. 2020;7:79.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Albracht-Schulte K, et al. Systematic review of beef protein effects on gut microbiota: implications for health. Adv Nutr. 2021;12(1):102–14.

    Article  PubMed  Google Scholar 

  45. Liao LM, et al. Substitution of dietary protein sources in relation to colorectal cancer risk in the NIH-AARP cohort study. Cancer Causes Control. 2019;30(10):1127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Malczewski AB, et al. Enhancing checkpoint inhibitor therapy in solid tissue cancers: the role of diet, the microbiome & microbiome-derived metabolites. Front Immunol. 2021;12:624434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spencer CN, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 2021;374(6575):1632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nosho K, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222(4):350–66.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Golshani G, Zhang Y. Advances in immunotherapy for colorectal cancer: a review. Ther Adv Gastroenterol. 2020;13:1756284820917527.

    Article  CAS  Google Scholar 

  50. Larsen N, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kitten AK, et al. Gut microbiome differences among Mexican Americans with and without type 2 diabetes mellitus. PLoS One. 2021;16(5):e0251245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  53. Kapourchali FR, Cresci GAM. Early-life gut microbiome-the importance of maternal and infant factors in its establishment. Nutr Clin Pract. 2020;35(3):386–405.

    Article  PubMed  Google Scholar 

  54. Ferretti P, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24(1):133–145.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amato KR et al. The human gut microbiome and health inequities. Proc Natl Acad Sci USA. 2021;118(25).

    Google Scholar 

  56. Henderson S, Wells R. Environmental racism and the contamination of black lives: a literature review. J Afr Am Stud. 2021;25(1):134–51.

    Article  Google Scholar 

  57. Bailey ZD, et al. Structural racism and health inequities in the USA: evidence and interventions. Lancet. 2017;389(10077):1453–63.

    Article  PubMed  Google Scholar 

  58. Evans GW, Kantrowitz E. Socioeconomic status and health: the potential role of environmental risk exposure. Annu Rev Public Health. 2002;23(1):303–31.

    Article  PubMed  Google Scholar 

  59. Kelly-Reif K, Wing S. Urban-rural exploitation: an underappreciated dimension of environmental injustice. J Rural Stud. 2016;47:350–8.

    Article  Google Scholar 

  60. Wing S. Environmental injustice connects local food environments with global food production. Local Food Environments: Food Access in America. CRC Press; 2014.

    Google Scholar 

  61. Ferguson DD, et al. Detection of airborne methicillin-resistant Staphylococcus aureus inside and downwind of a swine building, and in animal feed: potential occupational, animal health, and environmental implications. J Agromedicine. 2016;21(2):149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Parris K. Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Int J Water Resour Dev. 2011;27(1):33–52.

    Article  Google Scholar 

  63. Beane Freeman LE, et al. Poultry and livestock exposure and cancer risk among farmers in the agricultural health study. Cancer Causes Control. 2012;23(5):663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Eriksson M, Karlsson M. Occupational and other environmental factors and multiple myeloma: a population based case-control study. Br J Ind Med. 1992;49(2):95–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Research, W.C.R.F.A.I.f.C., Continuous update project expert report 2018. Alcoholic drinks and the risk of cancer. London: World Cancer Research Fund/American Institute for Cancer Research; 2018.

    Google Scholar 

  66. Stewart BW, W.C., World cancer report 2014. 2014, International Agency for Research on Cancer: Lyon.

    Google Scholar 

  67. Goding Sauer A, et al. Proportion of cancer cases and deaths attributable to alcohol consumption by US state, 2013-2016. Cancer Epidemiol. 2021;71(Pt A):101893.

    Article  PubMed  Google Scholar 

  68. Bagnardi V, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93.

    Article  CAS  PubMed  Google Scholar 

  69. Scheideler JK, Klein WMP. Awareness of the link between alcohol consumption and cancer across the world: a review. Cancer Epidemiol Biomark Prev. 2018;27(4):429–37.

    Article  Google Scholar 

  70. Wiseman KP, Klein WMP. Evaluating correlates of awareness of the association between drinking too much alcohol and cancer risk in the United States. Cancer Epidemiol Biomark Prev. 2019;28(7):1195–201.

    Article  Google Scholar 

  71. Research, A.I.f.C., 2017 AICR cancer risk awareness survey report. 2017, American Institute for Cancer Research.

    Google Scholar 

  72. Hirano T. Alcohol consumption and oxidative DNA damage. Int J Environ Res Public Health. 2011;8(7):2895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rachdaoui N, Sarkar DK. Effects of alcohol on the endocrine system. Endocrinol Metab Clin N Am. 2013;42(3):593–615.

    Article  Google Scholar 

  74. Pöschl G, Seitz HK. Alcohol and cancer. Alcohol Alcohol. 2004;39(3):155–65.

    Article  PubMed  Google Scholar 

  75. Woutersen RA, et al. Inhalation toxicity of acetaldehyde in rats. III Carcinogenicity study. Toxicology. 1986;41(2):213–31.

    Article  CAS  PubMed  Google Scholar 

  76. Feron VJ, Kruysse A, Woutersen RA. Respiratory tract tumours in hamsters exposed to acetaldehyde vapour alone or simultaneously to benzo(a)pyrene or diethylnitrosamine. Eur J Cancer Clin Oncol. 1982;18(1):13–31.

    Article  CAS  PubMed  Google Scholar 

  77. Fang J-L, Vaca CE. Development of a 32P-postlabelling method for the analysis of adducts arising through the reaction of acetaldehyde with 2′-deoxyguanosine-3′-monophosphate and DNA. Carcinogenesis. 1995;16(9):2177–85.

    Article  CAS  PubMed  Google Scholar 

  78. Galicia-Moreno M, Gutiérrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. Rev Gastroenterol Mex. 2014;79(2):135–44.

    CAS  PubMed  Google Scholar 

  79. Ames BN. Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun. 1989;7(3–6):121–8.

    Article  CAS  PubMed  Google Scholar 

  80. Cerutti PA. Oxy-radicals and cancer. Lancet. 1994;344(8926):862–3.

    Article  CAS  PubMed  Google Scholar 

  81. Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7(8):599–612.

    Article  CAS  PubMed  Google Scholar 

  82. Varela-Rey M, et al. Alcohol, DNA methylation, and cancer. Alcohol Res. 2013;35(1):25–35.

    PubMed  PubMed Central  Google Scholar 

  83. Seitz HK, et al. Epidemiology and pathophysiology of alcohol and breast cancer: update 2012. Alcohol Alcohol. 2012;47(3):204–12.

    Article  PubMed  Google Scholar 

  84. Singletary KW, Gapstur SM. Alcohol and breast cancer: review of epidemiologic and experimental evidence and potential mechanisms. JAMA. 2001;286(17):2143–51.

    Article  CAS  PubMed  Google Scholar 

  85. McDonald, J.A., A. Goyal, and M.B. Terry, Alcohol intake and breast cancer risk: weighing the overall evidence. Curr Breast Cancer Rep, 2013. 5(3), 208, 221.

    Google Scholar 

  86. Allen NE, et al. Moderate alcohol intake and cancer incidence in women. J Natl Cancer Instit. 2009;101(5):296–305.

    Article  Google Scholar 

  87. Ginsburg ES. Estrogen, alcohol and breast cancer risk. J Steroid Biochem Mol Biol. 1999;69(1–6):299–306.

    Article  CAS  PubMed  Google Scholar 

  88. Suzuki R, et al. Alcohol intake and risk of breast cancer defined by estrogen and progesterone receptor status—a meta-analysis of epidemiological studies. Int J Cancer. 2008;122(8):1832–41.

    Article  CAS  PubMed  Google Scholar 

  89. Deandrea S, et al. Alcohol and breast cancer risk defined by estrogen and progesterone receptor status: a case-control study. Cancer Epidemiol Biomark Prev. 2008;17(8):2025–8.

    Article  CAS  Google Scholar 

  90. Castro GD, Castro JA. Alcohol drinking and mammary cancer: pathogenesis and potential dietary preventive alternatives. World J Clin Oncol. 2014;5(4):713–29.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cooper GS, et al. Association of physical and behavioral characteristics with menstrual cycle patterns in women age 29-31 years. Epidemiology. 1996;7:624–8.

    Article  CAS  PubMed  Google Scholar 

  92. Huang C, Zhang Y, Zhong S. Alcohol intake and abnormal expression of Brf1 in breast cancer. Oxidative Med Cell Longev. 2019;2019:4818106.

    Article  Google Scholar 

  93. Frydenberg H, et al. Alcohol consumption, endogenous estrogen and mammographic density among premenopausal women. Breast Cancer Res. 2015;17(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fanelli SL, et al. Further studies on the potential contribution of acetaldehyde accumulation and oxidative stress in rat mammary tissue in the alcohol drinking promotion of breast cancer. J Appl Toxicol. 2011;31(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  95. Castro GD, et al. Acetaldehyde accumulation in rat mammary tissue after an acute treatment with alcohol. J Appl Toxicol. 2008;28(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  96. Mody MD, et al. Head and neck cancer. Lancet. 2021;398(10318):2289–99.

    Article  PubMed  Google Scholar 

  97. de França GM, et al. Five-year survival and prognostic factors for oropharyngeal squamous cell carcinoma: retrospective cohort of a cancer center. Oral Maxillofac Surg. 2022;26(2):261–9.

    Article  PubMed  Google Scholar 

  98. Prabhu A, Obi KO, Rubenstein JH. The synergistic effects of alcohol and tobacco consumption on the risk of esophageal squamous cell carcinoma: a meta-analysis. Off J Am Coll Gastroenterol. 2014;109(6):822–7.

    Article  Google Scholar 

  99. Giraldi L, et al. Alcohol and cigarette consumption predict mortality in patients with head and neck cancer: a pooled analysis within the international head and neck cancer epidemiology (INHANCE) consortium. Ann Oncol. 2017;28(11):2843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Talamini R, et al. Combined effect of tobacco and alcohol on laryngeal cancer risk: a case–control study. Cancer Causes Control. 2002;13(10):957–64.

    Article  CAS  PubMed  Google Scholar 

  101. Cao Y, et al. Light to moderate intake of alcohol, drinking patterns, and risk of cancer: results from two prospective US cohort studies. BMJ. 2015:351.

    Google Scholar 

  102. Fan X, et al. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome. 2018;6(1):1–15.

    Article  Google Scholar 

  103. Howie NM, et al. Short-term exposure to alcohol increases the permeability of human oral mucosa. Oral Dis. 2001;7(6):349–54.

    Article  CAS  PubMed  Google Scholar 

  104. Rumgay H, et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 2021;22(8):1071–80.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Steevens J, et al. Alcohol consumption, cigarette smoking and risk of subtypes of oesophageal and gastric cancer: a prospective cohort study. Gut. 2010;59(01):39–48.

    Article  CAS  PubMed  Google Scholar 

  106. World Cancer Research Fund, I., Diet, nutrition, physical activity and cancer: a global perspective: a summary of the Third Expert Report. 2018: World Cancer Research Fund International.

    Google Scholar 

  107. Rossi M, et al. Colorectal cancer and alcohol consumption—populations to molecules. Cancers. 2018;10(2):38.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Engen PA, et al. The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res. 2015;37(2):223–36.

    PubMed  PubMed Central  Google Scholar 

  109. Na H-K, Lee JY. Molecular basis of alcohol-related gastric and colon cancer. Int J Mol Sci. 2017;18(6):1116.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Siddiqui R, et al. The pivotal role of the gut microbiome in colorectal cancer. Biology. 2022;11. https://doi.org/10.3390/biology11111642

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renee Stubbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stubbins, R. (2023). Meat and Alcohol Consumption: Diet and Lifestyle Choice and Cancer. In: Bernicker, E.H. (eds) Environmental Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-33750-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33750-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33749-9

  • Online ISBN: 978-3-031-33750-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics